Standard LCD Segment Drivers

BU97950FUV MAX 280 segments (SEG35×COM8)

- Features

- Integrated RAM for display data (DDRAM): 35×8 bit (Max 280 Segment)
- LCD drive output:

8 Common output, 35 Segment output

- Integrated Buffer AMP for LCD driving
- Integrated Oscillator circuit
- No external components
- Low power consumption design
- Independent power supply for LCD driving
- Integrated Electrical volume register (EVR) function

- Applications

- Telephone
- FAX
- Portable equipment (POS, ECR, PDA etc.)
- DSC
- DVC
- Car audio
- Home electrical appliance Meter equipment
etc.
- Typical Application Circuit

-Key Specifications

Supply Voltage Range:
L
LCD drive power supply Range:
Operating Temperature Range: +2.5 V to +5.5 V +2.5 V to +5.5 V $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ 280 Segments

- Max Segments:

■ Display Duty: 1/4

2wire serial interface
-Packages

Figure 1. Typical Application Circuit

- Block Diagrams / Pin Configurations / Pin Descriptions

BU97950FUV (TSSOP-C48V)

Figure 2. Block Diagram
Figure 3. Pin Configuration (TOP VIEW)

Table 1 Pin Description

Terminal	Terminal No.	I/O	Function
SDA	48	I/O	Serial data input
SCL	47	I	Serial data transfer clock
VSS	3	I	GND
VDD	1	I	Power supply
VLCD	2	I	Power supply for LCD drive
SEG0 to 35	4 to 24 33 to 46	O	SEGMENT output for LCD drive
COM0 to 7	25 to 32	O	COMMON output for LCD drive

- Absolute Maximum Ratings (VSS=OV)

Parameter	Symbol	Ratings	Unit	Remarks
Power Supply Voltage1	VDD	-0.5 to +7.0	V	Power supply
Power Supply Voltage2	VLCD	-0.5 to +7.0	V	LCD drive voltage
Allowable loss	Pd	0.64	W	When used at more than Ta=25 ${ }^{\circ} \mathrm{C}$, subtract 6.4 mW per degree. (BU97950FUV Package only)
Input voltage range	VIN	-0.5 to VDD +0.5	V	
Operational temperature range	Topr	-40 to +85	${ }^{\circ} \mathrm{C}$	
Storage temperature range	Tstg	-55 to +125	${ }^{\circ} \mathrm{C}$	

- Recommended Operating Ratings($\mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{VSS}=0 \mathrm{~V}$)

Parameter	Symbol	Limits			Unit	
		MIN	TYP	MAX		
Power Supply Voltage1	VDD	2.5	-	5.5		Power supply
Power Supply Voltage2	VLCD	2.5	-	5.5	V	LCD drive voltage

- Electrical Characteristics

DC Characteristics (VDD $=2.5$ to $5.5 \mathrm{~V}, \mathrm{VLCD}=2.5$ to 5.5 V , $\mathrm{VSS}=0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise specified)

Parameter		Symbol	Limits			Unit	Conditions	
		MIN	TYP	MAX				
" H " level input voltage			VIH	0.7VDD		VDD	V	SDA,SCL
"L" level input voltage		VIL	VSS		0.3VDD	V	SDA,SGL	
"H" level input current		IIH	-		1	$\mu \mathrm{A}$	SDA,SCL	
"L" level input current		IIL	-1		-	$\mu \mathrm{A}$	SDA,SCL	
LCD Driver on resistance	SEG	RON		3.5		k Ω	lload $= \pm 10 \mu \mathrm{~A}$	
	COM	RON		3.5		k Ω		
Standby current					5	$\mu \mathrm{A}$	Display off, Oscillation off	
Power consumption 1						$\mu \mathrm{A}$	VDD=3.3V, VLCD $=5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$ Power save mode1, $\mathrm{FR}=80 \mathrm{~Hz}$ 1/4 bias, Frame inversion	
Power consumption 2		ILCD			20	$\mu \mathrm{A}$	VDD $=3.3 \mathrm{~V}, \mathrm{VLCD}=5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$ Power save mode1, FR=80Hz 1/4 bias, Frame inversion	

- Electrical Characteristics - continued

Oscillation Characteristics (VDD $=2.5$ to $5.5 \mathrm{~V}, \mathrm{VLCD}=2.5$ to $5.5 \mathrm{~V}, \mathrm{VSS}=0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, unless otherwise specified)

Parameter	Symbol	Limits			Unit	Conditions
		MIN	TYP	MAX		
Frame frequency	fCLK	56	80	104	Hz	FR $=80 \mathrm{~Hz}$ setting, VDD $=3.3 \mathrm{~V}$

MPU I/F Characteristics (VDD $=2.5$ to $5.5 \mathrm{~V}, \mathrm{VLCD}=2.5$ to 5.5 V , VSS $=0 \mathrm{~V}$, $\mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise specified)

P Parameter	Symbol	Limits			Unit	Conditions
		miN	TYP	MAX		
Input rise time	-	-	0.3	$\mu \mathrm{~s}$		
Input fall time	tf	-	-	0.3	$\mu \mathrm{~s}$	
SCL cycle time	tSCYC	2.5	-	-	$\mu \mathrm{s}$	
"H" SCL pulse width	tSHW	0.6	-	-	$\mu \mathrm{s}$	
"L" SCL pulse width	tSLW	1.3	-	-	$\mu \mathrm{s}$	
SDA setup time	tSDS	200	-	-	ns	
SDA hold time	tSDH	0	-	-	ns	
Bus free time	tBUF	1.3	-	-	$\mu \mathrm{s}$	
START condition hold time	tHD;STA	0.6	-	-	$\mu \mathrm{s}$	
START condition setup time	tSU;STA	0.6	-	-	$\mu \mathrm{s}$	
STOP condition setup time	tSU;STO	0.6	-	-	$\mu \mathrm{s}$	

Figure 4. Serial Interface Timing

© I/O equivalent circuit

SDA
vSs

SCL

Figure 5. I/O Equivalent Circuit

Figure 6. Example of Recommended Circuit

- Function Description

OCommand /Data transfer method
This device is controlled by 2-wire serial signal (SDA, SCL).

Figure 7. 2-wire Serial Command/Data Transfer Format

START and STOP conditions are required in 2-wire serial interface transfer method.

Figure 8. Interface Protocol

Method of transferring command and data is as follows:

1) Generate "START condition".
2) Send Slave address.
3) Send command and display data.
4) Generate "STOP condition".

OAcknowledge

Data format is 8 -bit and an Acknowledge bit is returned after transfer of 8-bit data.
When SCL 8th='L' after transfer of 8-bit data (Slave Address, Command, Display Data), output 'L' and open SDA line. When SCL 9th='L', stop output function.
(As Output format is NMOS-Open-Drain, can't output 'H' level.)
If there is no need for Acknowledge function, please input 'L' level from SCL 8th='L' to SCL 9th=' L '.

Figure 9. Acknowledge timing

OCommand transfer method

Send the Slave Address (" 01111100 " for Write Mode or " 01111101 " for Read Mode) after the "START condition" is generated. Command input follows after the Slave Address. The least significant bit (LSB) of the Slave Address determines if the operation is Write or Read.

The MSB is the command/data judgment bit. This bit determines whether succeeding byte is a command or data.
When "command or data judgment bit"=' 1 ', the next byte is a command. When "command or data judgment bit"=' 0 ', the next byte is display data.

Once the chip is in display data transfer condition, command can no longer be accepted. To input another command, a "START condition" must be generated.

If "START condition" or "STOP condition" is inputted during command transmission, the current command will be cancelled. If the Slave address is continuously inputted after the "START condition", it will be in command input condition.

After "START condition" please input "Slave Address". When Slave Address is not recognized, Acknowledge bit will not be returned and succeeding transmissions will be invalid. During an invalid state, sending the "START condition" will cause the device to return to a valid status.

* When transferring command and data, please observe "MPU Interface characteristic" of input rise time, Setup time, and Hold time etc... (Refer to MPU Interface).

OWrite display and transfer method
BU97950 enters "Write mode" when R/W bit of Slave address is ' 0 '
BU97950 has Display Data RAM (DDRAM) of $35 \times 8=280$ bits.
The relationship between data input and display data, DDRAM data and address are as follows.

The 8 -bit display data will be stored in the DDRAM. The address to be written is specified by Address Set command, and the address is automatically incremented after every 8 -bit of data.

Data can be continuously written in the DDRAM by transmitting Data continuously.

	0		2	3	4	5	6	7	.	21h	22h	
0	a	i	\checkmark									COMO
1	b	j										COM1
2	c	k										COM2
3	d	I										COM3
4	e	m										COM4
5	f	n										COM5
6	g	0										COM6
7	h	p										COM7
	SEGO	SEG1	SEG2	SEG3	SEG4	SEG5	SEG6	SEG7		SEG33	SEG34	

ORead Command Register and Transfer Method
BU97950 enters "Read mode" when R/W bit of Slave address is ' 1 '
During Read mode the command registers can be read.
The sequence for the command register read is shown below.

The following register settings can be read in this mode.
Only one register setting can be read at once, after reading register setting, BU97950 will exit from read mode and wait for slave address. If all register setting needs to be read, please make sequence for "REG1" and "REG2", respectively.

Register	D7	D6	D5	D4	D3	D2	D1	D0	Address
REG1	0	0	P5	P4	P3	P2	P1	P0	23 h
REG2	P7	P6	P5	P4	P3	P2	P1	P0	24 h

REG1: P5 = Software reset condition
P 4 to $\mathrm{PO}=\mathrm{EVR}$ setting
REG2: P 7 to $\mathrm{P6}=$ Frame Frequency (FR) setting P5 to P4 = Power Save Mode (SR) setting P3 = LCD drive waveform setting
P2 = Display ON/OFF setting
$\mathrm{P} 1=\mathrm{APON}$ setting
$\mathrm{PO}=\mathrm{APOFF}$ setting
An example of the command register read sequence is shown below.

O LCD Driver Bias Circuit
This device generates LCD driving voltage with built in Buffer AMP.
And it can drive LCD at low power consumption.
*Line and frame inversion is set in DISCTL command.
Refer to the "LCD driving waveform" about each LCD driving waveform.
O Reset initialize condition
Initial condition after Software Reset is as follows.

- Display is OFF.
- DDRAM address is initialized (DDRAM Data is not initialized).

Refer to Command Description about initialize value of register.
Command / Function List
Description List of Command / Function

	Command	Function
1	Address set (ADSET)	DDRAM address setting (00h to 22h) Command register address setting (23h, 24h)
2	EVR set (EVRSET)	EVR setting (0 to 31)
3	Display Control (DISCTL)	Frame Frequency, Power save mode setting
4	IC operation set (ICSET)	LCD drive mode, software reset, display on/off
5	All pixel Control (APCTL)	All pixel control during display ON

- Detailed command description

D7 (MSB) is bit for command or data judgment.
For more detailed information, please refer to "Command and data transfer method".
C: 0 : Next byte is RAM write data.
1: Next byte is command.

OAddress set (ADSET)

Address data is specified in $\mathrm{P}[5: 0]$.
The address range can be set as 000000 to 100010 (bin) for Write mode. When the specified address is out of range, the address will be set to "000000". The default value of the DDRAM address is " 000000 "

The address can be set 100011 (bin) and 100100 (bin) for Read mode. It is prohibited to set other address.
$P[5: 0]=23 h(100011 b)-$ REG1
Register address for Software reset condition and EVR setting
$\mathrm{P}[5: 0]=24 \mathrm{~h}$ (100100b) - REG2
Register address for the other settings
(For more detailed information, please refer to "Read Command Register and Transfer Method")

OEVR Set (EVRSET)

It is able to control a 32-step electrical volume register (EVR).
It is able to set V0 voltage level (the max level voltage of LCD driving voltage).
Electrical volume register (EVR) is set to " 00000 " upon initialization..
In "00000" condition, V0 voltage outputs VLCD voltage.
Avoid setting EVR V0 voltage under 2.5 V .
And ensure "VLCD - V0 >0.6 " condition is satisfied.
Unstable IC output voltage may result if the above conditions are not satisfied.

OThe relationship of electrical volume register (EVR) setting and V0 voltage

EVR	Calculation formula	VLCD $=5.500$	VLCD $=5.000$	VLCD $=4.000$	VLCD $=3.500$	VLCD $=3.000$	VLCD $=2.500$	[V]
0	VLCD	$\mathrm{V} 0=5.500$	$\mathrm{V} 0=5.000$	$\mathrm{V} 0=4.000$	$\mathrm{V} 0=3.500$	$\mathrm{V} 0=3.000$	$\mathrm{V} 0=2.500$	V]
1	0.967*VLCD	$\mathrm{V} 0=5.323$	$\mathrm{V} 0=4.839$	$\mathrm{V} 0=3.871$	$\mathrm{V} 0=3.387$	$\mathrm{V} 0=2.903$	$\mathrm{V} 0=2.419$	[V]
2	0.937*VLCD	$\mathrm{V} 0=5.156$	$\mathrm{V} 0=4.688$	$\mathrm{V} 0=3.750$	$\mathrm{V} 0=3.281$	$\mathrm{V} 0=2.813$	$\mathrm{V} 0=2.344$	[V]
3	0.909*VLCD	$\mathrm{V} 0=5.000$	$\mathrm{V} 0=4.545$	$\mathrm{V} 0=3.636$	$\mathrm{V} 0=3.182$	$\mathrm{V} 0=2.727$	$\mathrm{V} 0=2.273$	[V]
4	0.882*VLCD	$\mathrm{V} 0=4.853$	$\mathrm{V} 0=4.412$	$\mathrm{V} 0=3.529$	$\mathrm{V} 0=3.088$	$\mathrm{V} 0=2.647$	$\mathrm{V} 0=2.206$	[V]
5	$0.857 * \mathrm{VLCD}$	$\mathrm{V} 0=4.714$	$\mathrm{V} 0=4.286$	$\mathrm{V} 0=3.429$	$\mathrm{V} 0=3.000$	$\mathrm{V} 0=2.571$	$V \mathrm{O}=2.143$	[V]
6	$0.833^{*} \mathrm{VLCD}$	$\mathrm{V} 0=4.583$	$\mathrm{V} 0=4.167$	$\mathrm{V} 0=3.333$	$\mathrm{V} 0=2.917$	$\mathrm{V} 0=2.500$	$\mathrm{V} 0=2.083$	V]
7	$0.810^{*} \mathrm{VLCD}$	$\mathrm{V} 0=4.459$	$\mathrm{V} 0=4.054$	$\mathrm{V} 0=3.243$	$\mathrm{V} 0=2.838$	$\mathrm{V} 0=2.432$	$\mathrm{V} 0=2.027$	[V]
8	$0.789^{*} \mathrm{VLCD}$	$\mathrm{V} 0=4.342$	$\mathrm{V} 0=3.947$	$\mathrm{V} 0=3.158$	$\mathrm{V} 0=2.763$	V0	$\mathrm{V} 0=1.974$	V]
9	$0.769^{* V L C D}$	$\mathrm{V} 0=4.231$	$\mathrm{V} 0=3.846$	$\mathrm{V} 0=3.077$	$\mathrm{V} 0=2.692$	$\mathrm{V} 0=2.308$	$\mathrm{V} 0=1.923$	V]
10	$0.750 * \mathrm{VLCD}$	$\mathrm{V} 0=4.125$	$\mathrm{V} 0=3.750$	$\mathrm{V} 0=3.000$	$\mathrm{V} 0=2.625$	$V 0=2.250$	$\mathrm{V} 0=1.875$	[V]
11	$0.731 *$ VLCD	$\mathrm{V} 0=4.024$	$\mathrm{V} 0=3.659$	$\mathrm{V} 0=2.927$	$\mathrm{V} 0=2.561$	$\mathrm{V} 0=2.195$	$\mathrm{V} 0=1.829$	[V]
12	$0.714^{*} \mathrm{VLCD}$	$\mathrm{V} 0=3.929$	$\mathrm{V} 0=3.571$	$\mathrm{V} 0=2.857$	$\mathrm{V} 0=2.500$	$\mathrm{V} 0=2.143$	$\mathrm{V} 0=1.786$	[V]
13	$0.697 *$ VLCD	$\mathrm{V} 0=3.837$	$\mathrm{V} 0=3.488$	$\mathrm{V} 0=2.791$	$\mathrm{V} 0=2.442$	$\mathrm{V} 0=2.093$	$\mathrm{V} 0=1.744$	[V]
14	$0.681 *$ VLCD	$\mathrm{V} 0=3.750$	$\mathrm{V} 0=3.409$	$\mathrm{V} 0=2.727$	$\mathrm{V} 0=2.386$	$v 0=2.045$	$\mathrm{V} 0=1.705$	[V]
15	$0.666 *$ VLCD	$\mathrm{V} 0=3.667$	$\mathrm{V} 0=3.333$	$\mathrm{V} 0=2.667$	$\mathrm{V} 0=2.333$	$\mathrm{V} 0=2.000$	$\mathrm{V} 0=1.667$	[V]
16	$0.652^{*} \mathrm{VLCD}$	$\mathrm{V} 0=3.587$	$\mathrm{V} 0=3.261$	$\mathrm{V} 0=2.609$	$\mathrm{V} 0=2.283$	$\mathrm{V} 0=1.957$	$\mathrm{V} 0=1.630$	[V]
17	$0.638 *$ VLCD	$\mathrm{V} 0=3.511$	$\mathrm{V} 0=3.191$	$\mathrm{V} 0=2.553$	$\mathrm{V} 0=2.234$	$V 0=1.915$	$\mathrm{V} 0=1.596$	[V]
18	$0.625 * \mathrm{VLCD}$	$\mathrm{V} 0=3.438$	$\mathrm{V} 0=3.125$	$\mathrm{V} 0=2.500$	$V 0=2.188$	V $V=1.875$	$\mathrm{V} 0=1.563$	[V]
19	$0.612^{*} \mathrm{VLCD}$	$\mathrm{V} 0=3.367$	$\mathrm{V} 0=3.061$	$\mathrm{V} 0=2.449$	$V 0=2.143$	$\mathrm{V} 0=1.837$	$\mathrm{V} 0=1.531$	[V]
20	$0.600 *$ VLCD	$\mathrm{V} 0=3.300$	$\mathrm{V} 0=3.000$	$\mathrm{V} 0=2.400$	$\mathrm{V} 0=2.100$	$\mathrm{V} 0=1.800$	$\mathrm{V} 0=1.500$	[V]
21	$0.588 *$ VLCD	$\mathrm{V} 0=3.235$	$\mathrm{V} 0=2.941$	$\mathrm{V} 0=2.353$	$\mathrm{V} 0=2.059$	$\mathrm{V} 0=1.765$	$\mathrm{V} 0=1.471$	[V]
22	$0.576 *$ VLCD	$\mathrm{V} 0=3.173$	$\mathrm{V} 0=2.885$	$V 0=2.308$	$\mathrm{V} 0=2.019$	$\mathrm{V} 0=1.731$	$\mathrm{V} 0=1.442$	[V]
23	$0.566 *$ VLCD	$\mathrm{V} 0=3.113$	$\mathrm{V} 0=2.830$	$\mathrm{V} 0=2.264$	$\mathrm{V} 0=1.981$	$\mathrm{V} 0=1.698$	$\mathrm{V} 0=1.415$	[V]
24	$0.555 * \mathrm{VLCD}$	$\mathrm{V} 0=3.056$	$\mathrm{V} 0=2.778$	$\mathrm{V} 0=2.222$	$\mathrm{V} 0=1.944$	$\mathrm{V} 0=1.667$	$\mathrm{V} 0=1.389$	[V]
25	$0.545 *$ VLCD	$\mathrm{V} 0=3.000$	$\mathrm{V} 0=2.727$	$\mathrm{V} 0=2.182$	$\mathrm{V} 0=1.909$	$\mathrm{V} 0=1.636$	$\mathrm{V} 0=1.364$	[V]
26	0.535*VLCD	$v 0=2.946$	$\mathrm{V} 0=2.679$	$\mathrm{V} 0=2.143$	$\mathrm{V} 0=1.875$	$\mathrm{V} 0=1.607$	$\mathrm{V} 0=1.339$	[V]
27	$0.526^{*} \mathrm{VLCD}$	$\mathrm{V} 0=2.895$	$\mathrm{V} 0=2.632$	$\mathrm{V} 0=2.105$	$\mathrm{V} 0=1.842$	$\mathrm{V} 0=1.579$	$\mathrm{V} 0=1.316$	[V]
28	$0.517 *$ VLCD	$\mathrm{V} 0=2.845$	$\mathrm{V} 0=2.586$	$\mathrm{V} 0=2.069$	$\mathrm{V} 0=1.810$	$\mathrm{V} 0=1.552$	$\mathrm{V} 0=1.293$	[V]
29	$0.508 *$ VLCD	$\mathrm{V} 0=2.797$	$\mathrm{V} 0=2.542$	$\mathrm{V} 0=2.034$	$\mathrm{V} 0=1.780$	$\mathrm{V} 0=1.525$	$\mathrm{V} 0=1.271$	[V]
30	$0.500 * \mathrm{VLCD}$	$\mathrm{V} 0=2.750$	$\mathrm{V} 0=2.500$	$\mathrm{V} 0=2.000$	$\mathrm{V} 0=1.750$	$\mathrm{V} 0=1.500$	$\mathrm{V} 0=1.250$	[V]
31	0.491*VLCD	$\mathrm{V} 0=2.705$	$\mathrm{V} 0=2.459$	$\mathrm{V} 0=1.967$	$\mathrm{V} 0=1.721$	$\mathrm{V} 0=1.475$	$\mathrm{V} 0=1.230$	[V]

*In case EVR is used, please satisfy VLCD-V0 $>0.6 \mathrm{~V}$ condition.
If this condition cannot be satisfied, IC output will be unstable.
*Do not use $\mathrm{V} 0<2.5 \mathrm{~V}$ area. If EVR is set to this area, IC operation will be unstable.

ODisplay control (DISCTL)

MSB	D6	D5	D4	D3	D2	D1	$\begin{gathered} \text { LSB } \\ \text { D0 } \end{gathered}$
C	1	1	0	P3	P2	P1	P0

Set Power save mode FR.

Power save mode FR	P3	P2	Reset initialize condition
Normal mode $(80 \mathrm{~Hz})$	0	0	\circ
Power save mode1 $(71 \mathrm{~Hz})$	0	1	
Power save mode2 $(64 \mathrm{~Hz})$	1	0	
Power save mode3 $(50 \mathrm{~Hz})$	1	1	

* Operation current decrease in

Normal mode > Power save mode1 > Power save mode2 > Power save mode 3 order.

Set Power save mode SR.

Setup	P1	P0	Reset initialize condition
Power save mode 1	0	0	
Power save mode 2	0	1	
Normal mode	1	0	
High power mode	1	1	

* Operation current increase in order of

Power save mode 1 < Power save mode 2 < Normal mode < High power mode order.

Note:

Power save mode FR / LCD drive waveform / Power save mode SR will affect the display image. Select the best value depending on the current consumption and display image using LCD panel (under real application).

OSet IC Operation (ICSET)

MSB	D6	D5	D4	D3	D2	D1	$\begin{gathered} \text { LSB } \\ \text { DO } \end{gathered}$
C	1	1	1	0	P2	P1	P0

Set LCD drive waveform.

Setup	P2	Reset initialize condition
Line inversion mode	0	
Frame inversion mode	1	\circ

Operation current: Line inversion > Frame inversion For drive mode of Line inversion and Frame inversion, refer to LCD waveform.

Set Software Reset condition.

Setup	P1	Reset initialize condition
No operation	0	\circ
Software reset	1	

When "Software Reset" is executed, this device is reset to initial condition.
(Refer to Reset initialize condition)
Software reset is asserted only once when P1 is set.
Other settings can be set after this.
Set Display ON and OFF
Display ON and OFF

Setup	P0	Reset initialize condition
Display OFF (DISPOFF)	0	
Display ON (DISPON)	1	

Display OFF : The DDRAM content is not affected. All SEGMENT and COMMON output stop after a frame. Display OFF mode ends when Display ON is set:

Display ON: SEGMENT and COMMON outputs are active. Start read operation to display data from the DDRAM.

OAll Pixel control (APCTL)

MSB							
D7	D6						

All display set OFF

APOFF	P0	Reset initialize condition
Normal	0	\circ
All pixel OFF	1	

All pixels ON : All pixels are ON regardless of DDRAM data.
All pixels OFF: All pixels are OFF regardless of DDRAM data.

Note:
All pixels ON/OFF is effective only at the time of "Display ON" status.
The contents of DDRAM do not change at this time.
When P1 and P0='1', APOFF is selected. APOFF has higher priority than APON.

-LCD driving waveform

(1/4bias, $1 / 8 d u t y)$
Line inversion mode

Figure 10. Wave form of line inversion

Frame inversion mode

Figure 11. Wave form of frame inversion

- Initialize sequence

Please follow the sequence below after Power-On to set this device to initial condition.
Power on
STOP condition
$\stackrel{\downarrow}{\text { START condition }}$
ssue Slave address
Execute Software Reset by ICSET command
Each register value and DDRAM address is initialized to their default values.
DDRAM data is random after power on.

-Start sequence

-Start sequence example

- Caution in P.O.R circuit use

This device has "P.O.R." (Power-On Reset) circuit and Software Reset function.
Please keep the following recommended Power-On conditions in order to power up properly.
Please set power up conditions to meet the recommended tR, tF, tOFF, and Vbot spec below in order to ensure P.O.R. operation

Recommended condition of tR, tF, tOFF, Vbot ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Figure 12. Power ON/OFF waveform

If it is difficult to meet above conditions, execute the following sequence after Power-On.
(1) STOP condition

Figure 13. STOP condition
(2) START condition.
(3) Issue Slave address.
(4) Execute Software Reset (ICSET) command.

- Power Up Sequence and Power Down Sequence

To prevent incorrect display, malfunction and abnormal current,
VDD must be turned on before VLCD In power up sequence.
VDD must be turned off after VLCD In power down sequence.
Please satisfies VLCD \geq VDD, $\mathrm{t} 1>0 \mathrm{~ns}$, $\mathrm{t} 2>0 \mathrm{~ns}$

Figure 14. Power On/Off Sequence

O Note on the number of LSIs being connected to the same bus.

Do not access the other device without power supply (VDD) to the BU97950.

Figure 15. Example of BUS connection

To control the slope of the falling edge, a capacitor is connected between gate and drain of a NMOS transistor (Refer to Figure16).
The gate is in a high-impedance state if the power supply (VDD) is not supplied.
In this condition, the gate voltage is pulled up by the current flow through the capacitance as a result of the SDA signal's transition from LOW to HIGH.

The NMOS transistor turns on and draws some current (Ids) from the SDA port if the gate voltage (Vg) is higher than the threshold voltage (Vth).

An external resistor (R) is connected between the power line and SDA line to keep the SDA line as logic HIGH. But the line cannot be kept as logic HGH if the voltage drop ($R^{*} \mid d s$) is large.

Access the other LSIs with power supply to BU9792x to control the gate voltage as logic level of 1 or 0 if the number of LSIs are connected to the same bus.

Figure 16. SDA output cell structure

-Operational Notes

(1) Absolute maximum ratings

Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit between pins. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is operated over the absolute maximum ratings.
(2) Recommended operating conditions

These conditions represent a range within which the expected characteristics of the IC can be approximately obtained. The electrical characteristics are guaranteed under the conditions of each parameter.
(3) Reverse connection of power supply

Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when connecting the power supply, such as mounting an external diode between the power supply and the 16 's power supply terminals.
(4) Power supply lines

Design the PCB layout pattern to provide low impedance ground and supply lines. Separate the ground and supply lines of the digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic capacitors.
(5) Ground Voltage

The voltage of the ground pin must be the lowest voltage of all pins of the 1 C at all operating conditions. Ensure that no pins are at a voltage below the ground pin at any time, even during transient condition.
(6) Short between pins and mounting errors

Be careful when mounting the IC on printed circuit boards. The IC may be damaged if it is mounted in a wrong orientation or if pins are shorted together. Short circuit may be caused by conductive particles caught between the pins.
(7) Operation under strong electromagnetic field

Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.
(8) Testing on application boards

When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject the IC to stress. Always discharge capacitors completely after each process or step. The IC's power supply should always be turned off completely before connecting or removing it from the test setup during the inspection process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport and storage.
(9) Regarding input pins of the IC

In the construction of this IC, P-N junctions are inevitably formed creating parasitic diodes or transistors. The operation of these parasitic elements can result in mutual interference among circuits, operational faults, or physical damage. Therefore, conditions which cause these parasitic elements to operate, such as applying a voltage to an input pin lower than the GND voltage should be avoided. Furthermore, do not apply a voltage to the input terminals when no power supply voltage is applied to the IC. Even ifthe power supply voltage is applied, make sure that the input terminals have voltages within the values specified in the electrical characteristics of this IC.
(10) GND wiring pattern

When using both small-signal and large-current GND traces, the two ground traces should be routed separately but connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal ground caused by large currents. Also ensure that the GND traces of external components do not cause variations on the GND voltage. The power supply and ground lines must be as short and thick as possible to reduce line impedance.
(11) External Capacitor

When using a ceramic capacitor, determine the dielectric constant considering the change of capacitance with temperature and the decrease in nominal capacitance due to DC bias and others.
(12) Unused input terminals

Input terminals of an IC are often connected to the gate of a CMOS transistor. The gate has extremely high impedance and extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and cause unexpected operation of IC. So unless otherwise specified, input terminals not being used should be connected to the power supply or ground line.
(13) Rush current

When power is first supplied to the IC, rush current may flow instantaneously. It is possible that the charge current to the parasitic capacitance of internal photo diode or the internal logic may be unstable. Therefore, give special consideration to power coupling capacitance, power wiring, width of GND wiring, and routing of connections.
-Ordering Information

Package
FUV $: T S S O P-C 48 V$

Packaging and forming specification
E2: Embossed tape and reel (TSSOP-C48V)

- Lineup

Package		Orderable Part Number
TSSOP-C48V	Reel of 2000	BU97950FUV-E2

- Marking Diagrams

-Physical Dimension, Tape and Reel Information

Package Name	TSSOP-C48V

12. 5 ± 0.1

-Revision History

Date	Revision	Changes
14.Mar.2012	001	New Release
8.Jan.2013	002	Improved the statement in all pages. Deleted "Status of this document" in page 20. Changed format of Physical Dimension, Tape and Reel Information.
22.Apr.2013	003	Delete BU97950KS2
8.Sep.2015	004	Add Power Up Sequence and Power Down Sequence in page 16. Changed figure number of Example of BUS connection in page 17. Changed figure number of SDA output cell structure in page 17.
19.Apr.2018	005	Add the watermark of NRND due to the change to "Not recommended for new designs products"

Notice

Precaution on using ROHM Products

1. Our Products are designed and manufactured for application in ordinary electronic equipment (such as AV equipment,

OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment ${ }^{(\text {Note } 1)}$), transport equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or serious damage to property ("Specific Applications"), please consult with the ROHM sales representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any ROHM's Products for Specific Applications.
(Note1) Medical Equipment Classification of the Specific Applications

JAPAN	USA	EU	CHINA
CLASSIII	CLASSIII	CLASS II b	CLASSIII
		CLASSIII	

2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which a failure or malfunction of our Products may cause. The following are examples of safety measures:
[a] Installation of protection circuits or other protective devices to improve system safety
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure
3. Our Products are designed and manufactured for use under standard conditions and not under any special or extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the use of any ROHM's Products under any special or extraordinary environments or conditions. If you intend to use our Products under any special or extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl_{2}, $\mathrm{H}_{2} \mathrm{~S}, \mathrm{NH}_{3}, \mathrm{SO} 2$, and NO_{2}
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items
[f] Sealing or coating our Products with resin or other coating materials
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning residue after soldering
[h] Use of the Products in places subject to dew condensation
4. The Products are not subject to radiation-proof design.
5. Please verify and confirm characteristics of the final or mounted products in using the Products.
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied, confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect product performance and reliability.
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in the range that does not exceed the maximum junction temperature.
8. Confirm that operation temperature is within the specified range described in the product specification.
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in this document.

Precaution for Mounting / Circuit board design

1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product performance and reliability.
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products, please consult with the ROHM representative in advance.

For details, please refer to ROHM Mounting specification

Precautions Regarding Application Examples and External Circuits

1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the characteristics of the Products and external components, including transient characteristics, as well as static characteristics.
2. You agree that application notes, reference designs, and associated data and information contained in this document are presented only as guidance for Products use. Therefore, in case you use such information, you are solely responsible for it and you must exercise your own independent verification and judgment in the use of such information contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of such information.

Precaution for Electrostatic

This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron, isolation from charged objects, setting of lonizer, friction prevention and temperature / humidity control).

Precaution for Storage / Transportation

1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2
[b] the temperature or humidity exceeds those recommended by ROHM
[c] the Products are exposed to direct sunshine or condensation
[d] the Products are exposed to high Electrostatic
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is exceeding the recommended storage time period.
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads may occur due to excessive stress applied when dropping of a carton.
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of which storage time is exceeding the recommended storage time period.

Precaution for Product Label

A two-dimensional barcode printed on ROHM Products label is for ROHM's internal use only.

Precaution for Disposition

When disposing Products please dispose them properly using an authorized industry waste company.

Precaution for Foreign Exchange and Foreign Trade act

Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign trade act, please consult with ROHM in case of export.

Precaution Regarding Intellectual Property Rights

1. All information and data including but not limited to application example contained in this document is for reference only, ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any other rights of any third party regarding such information or data.
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the Products with other articles such as components, circuits, systems or external equipment (including software).

No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to manufacture or sell products containing the Products, subject to the terms and conditions herein.

Other Precaution

1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written consent of ROHM.
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the Products or this document for any military purposes, including but not limited to, the development of mass-destruction weapons.
4. The proper names of companies or products described in this document are trademarks or registered trademarks of ROHM, its affiliated companies or third parties.

General Precaution

1. Before you use our Products, you are requested to carefully read this document and fully understand its contents. ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any ROHM's Products against warning, caution or note contained in this document.
2. All information contained in this document is current as of the issuing date and subject to change without any prior notice. Before purchasing or using ROHM's Products, please confirm the latest information with a ROHM sales representative.
3. The information contained in this document is provided on an "as is" basis and ROHM does not warrant that all information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or concerning such information.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for LCD Drivers category:
Click to view products by ROHM manufacturer:
Other Similar products are found below :
LC75836WH-E CD4056BE LC75829PW-H LC75852W-E LC79430KNE-E LC79431KNE-E FAN7317BMX LC75839PW-H LC75884W-
E LC75814VS-TLM-E MAX25520ATEC/V + MAX25520ATEB/VY + BU9795AFV-E2 PCF8566T/1.118 TPS65132A0YFFR
BU9795AKV-E2 34801000 BU97510CKV-ME2 BU97520AKV-ME2 ICL7136CM44Z BL55070 BL55066 MAX1605ETT+T MAX16928BGUP/V+ ICL7129ACPL+ MAX131CMHD MAX138CMH+D MAX1491CAI+ MAX1518BETJ+ MAX1606EUA+ MAX138CQH+TD MAX25520ATEB/V+ MAX16929AGUI/V+ MAX16929CGUI/V+ MAX16929DGUI/V+ BU97530KVT-E2 MAX8570ELT+T MAX8570EUT+T MAX8575EUT+T MAX8795AGCJ/V+ MAX138CPL+ AY0438/L HV66PG-G HV881K7-G TC7106CKW TC7106CPL TC7116CPL TC7126CLW TC7126CPL TC7129CKW

