Digital Video Encorders

Video bus interface

-Description

BU9969KN is a digital video encoder IC for NTSC/PAL (ITU-R BT.601,ITU-R BT.656).
It allows captured images (e.g. downloaded or on mobile phones) to be viewed on a TV monitor. In addition, a digital filter is built in for high image quality, and both multifunction and simple types are available for greater compatibility.

-Features

- Video Format
- NTSC-M
- PAL-B/D/G/H/I
- Bus Interface
- 656 input mode YCbCr 8 bit (included in EAV, SAV)
- 601 input mode YCbCr 16 bit or RGB 16 bit (with Hsync, Vsync input)
- Input Data Format
- YCbCr 4:2:2 (656 mode or 601 mode)
- RGB R: 5bit, G: 6bit, B: 5bit (601 mode)
- Input Range
- YCbCr:

1) Y : $16-235, \mathrm{CbCr}: 16-240 \quad$ SCALE_M ${ }^{*}=" 1$ "
2) $\mathrm{YCbCr}: 1-254 \quad$ SCALE_M ${ }^{*}=$ " 0 " (601 mode)
*SCALE_M is $1^{\text {st }}$ bit of Sub-Address $x^{\prime} 04$.

- RGB: R, B: 0 - 31, G: $0-63$
- NTSC/PAL Standard Video Output Support
- Trap Filter Built In
- x4 System Clock Over Sampling Function Built In
- 10-bit Video DAC Built In
- PLL Built In
- 2-Wire Serial Interface
- 2 Supply Voltage Operation: (DVDD = PVDD = 1.8V : Typ, IOVDD = AVDD = 3.0V : Typ)
- Package: VQFN36

-Application

Cell Phone

-Absolute Maximum Ratings

Table. 1 Absolute Maximum Ratings

Item	Symbol	Rating	Unit
[1.8V Power Source System] Digital Core Power Source Voltage PLL Power Source Voltage	DVDD	-0.2 to 2.5	
[3.0V Power Source System] Digital I/O power source voltage DAC Power Source Voltage	IOVDD AVDD	-0.2 to 4.5	V
Power Dissipation1	Pd1	450 (Note.1)	mW
Power Dissipation2	Pd2	700 (Note.2)	mW
Storage temperature range	Tstg	-25 to 125	${ }^{\circ} \mathrm{C}$

Note 1 : When not mounted on any board at $\mathrm{Ta}=25^{\circ} \mathrm{C}$.
Note 2 : When mounted on $50 \mathrm{~mm} * 58 \mathrm{~mm} * 1.6 \mathrm{~mm}$ glass epoxy board. In the case to use at $\mathrm{Ta}=25^{\circ} \mathrm{C}$ or higher, 11.3 mW should be decreased per $1^{\circ} \mathrm{C}$. This value is an actually measured value, and not a guaranteed value.

-Recommended Operation Range

Table. 2 Recommended Operation Range

Item	Symbol	Range	Unit
[1.8V Power Source System]			
Digital Core Power Source Voltage PLL Power Source Voltage	DVDD	1.80 ± 0.1	V
[3.0V Power Source System]	PVDD		
Digital I/O power source voltage* DAC Power Source Voltage	IOVDD AVDD	3.00 ± 0.3	V
Operation temperature range	Topr	-20 to 70	${ }^{\circ} \mathrm{C}$

*Connect the pull-up resistance of the serial interface to the digital I/O power source voltage.
*Supply the power source voltage to all power source pins within $100 \mu \mathrm{sec}$.
This procedure is same, when stopping to supply the power source.

-Recommended Operating Conditions

Table. 3 Recommended Operating Conditions
(Unless otherwise specified $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{DVDD}=\mathrm{PVDD}=1.8 \mathrm{~V}, \mathrm{IOVDD}=\mathrm{AVDD}=3.0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$)

Item	Symbol	Min	Typ	Max	Unit	Condition
<Image data interface>						
SYSCLK frequency 1	fsysclk1	-	27	-	MHz	656 input mode
SYSCLK frequency 2	fsysclk2	-	13.5	-	MHz	601 input mode
SYSCLK frequency deviation 1	dfsysclk1	-100	-	100	ppm	27 MHz at 656 input mode
SYSCLK frequency deviation 2	dfsysclk2	-100	-	100	ppm	13.5 MHz at 601 input mode
SYSCLK rise time	t2r	-	-	5	ns	*1
SYSCLK fall time	t2f	-	-	5	ns	*1
SYSCLK duty	dutysclk	45	-	55	\%	*1
<Serial interface>						
SCLK frequency	$\mathrm{f}_{\text {SCLK }}$	-	-	400	kHz	
SCLK rise time	t1sr	-	-	300	ns	*1
SCLK fall time	t1sf	-	-	300	ns	*1
SDI rise time	t1dr	-	-	300	ns	*1
SDI fall time	t1df	-	-	300	ns	*1
SCLK "L" pulse width	t1wl	1.3	-	-	us	*1
SCLK "H" pulse width	t1wh	0.6	-	-	us	*1

*1 Refer to Fig. 5 the serial interface-timing chart on page 9.

-Electric Characteristics 1

Table 4.1 Electric Characteristics 1
(Unless otherwise specified $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{DVDD}=\mathrm{PVDD}=1.8 \mathrm{~V}, \mathrm{IOVDD}=\mathrm{AVDD}=3.0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$)

Item	Symbol	Min	Typ	Max	Unit	Condition
<Image data interface>						
Data setup time	t2sd	5	-	-	ns	*1
Data hold time	t2hd	8	-	-	ns	*1
HS, VS setup time	t2sc	5	-	-	ns	*1
HS, VS hold time	t2hc	8	-	-	ns	*1
<Serial interface>						
Data hold time	t1h	0	-	0.9	us	*2
Data setup time	t1s	100	-	-	ns	*2
Hold time (START)	t1hSTA	0.6	-	-	us	*2
Setup time (STOP)	t1sSTO	0.6	-	-	us	*2
Setup time (START)	t1sSTA	0.6	-	-	us	*2
Bus free time Between "STOP" condition and "START" condition	tBUF	1.3	-	-	us	*2

*1 Refer to Fig.3., the image data and synchronous signal-timing chart on page 8.
*2 Refer to Fig.5., the serial interface timing chart on page 9.

- Electric Characteristics 2

Table 4.2 Electric Characteristics 2
(Unless otherwise specified $\mathrm{Ta}=25^{\circ} \mathrm{C}$, $\mathrm{DVDD}=\mathrm{PVDD}=1.8 \mathrm{~V}$, IOVDD=AVDD=3.0V, GND=0V)

Item	Symbol	Min	Typ	Max	Unit	Condition
<Video encoder digital portion>						
Digital core dynamic current	IDDCO	-	20	50	mA	*1
Digital I/O dynamic current	IDDIO	-	0.5	10.0	mA	
Digital core static current	ISTDCO	-	1.5	8	uA	*2
Digital I/O static current	ISTDIO	-	0.5	2	uA	*3
"H" input voltage	V_{IH}	$\begin{gathered} \text { IOVDD } \\ * 0.8 \end{gathered}$	-	$\begin{aligned} & \text { IOVDD } \\ & +0.2 \end{aligned}$	V	*4
"L" input voltage	$\mathrm{V}_{\text {IL }}$	-0.2	-	$\begin{gathered} \text { IOVDD } \\ * 0.2 \end{gathered}$	V	*4
L input leak current 1	$\mathrm{I}_{\text {ILL } 1}$	-10	-	10	uA	*5
L input leak current 2	$\mathrm{I}_{\text {LLL2 }}$					
H input leak current 1	I_{HL}	-10	-	10	uA	*6
H input leak current 2	I_{HT}	10	-	500	uA	*7
SDI "L" output voltage	V_{OL}	0	-	0.5	V	*8 $\mathrm{IOL}=2 \mathrm{~mA}$

*1 Internal Color Bar output mode at 27 MHz operation.
*2 RESETB = Low
*3 RESETB = Low and All inputs pins = Low
*4 The following pins are applied
SYSCLK, DATA[15:0], HS, VS, TEST[3:0], SCLK and SDI.
*5 The following pins are set to "Low".
SYSCLK, DATA[15:0], HS, VS, TEST[3:0], SCLK and SDI.
*6 The following pins are set to "High (IOVDD)". SYSCLK, DATA[15:0], HS, VS, SCLK and SDI.
*7 The following pins are set to "High (IOVDD)".
TEST [3:0]
*8 The SDI pin is applied.

-Electric Characteristics 3

Table 4.3 Electric Characteristics 3
(Unless otherwise specified $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{DVDD}=\mathrm{PVDD}=1.8 \mathrm{~V}, \mathrm{IOVDD}=\mathrm{AVDD}=3.0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$)

Item	Symbol	Min	Typ	Max	Unit	Condition	
<Video DAC portion>							
Video DAC resolution	RES	-	-	10	bit		
Video DAC dynamic current	IDDV	-	40	55	mA	$\mathrm{R}_{\mathrm{L}}=37.5 \Omega, \mathrm{R}_{\text {IREF }}=1.2 \mathrm{k} \Omega$	*1
Video DAC static current	ISTV	-	1	5	uA	RESETB=L *2	
Integral linearity error	INL	-	± 8.0	± 15.0	LSB	$\mathrm{R}_{\mathrm{L}}=37.5 \Omega, \mathrm{R}_{\text {IREF }}=1.2 \mathrm{k} \Omega$	*1
Differential linearity error	DNL	-	± 1.0	± 4.0	LSB	$\mathrm{R}_{\mathrm{L}}=37.5 \Omega, \mathrm{R}_{\text {IREF }}=1.2 \mathrm{k} \Omega$	*1
Full scale voltage	$\mathrm{V}_{\text {FS }}$	1.1	1.25	1.4	V	$\mathrm{R}_{\mathrm{L}}=37.5 \Omega, \mathrm{R}_{\text {IREF }}=1.2 \mathrm{k} \Omega$	*1
<PLL portion>							
PLL dynamic current	IDDP	-	1	2.5	mA	SYSCLK=27MHz input	
PLL static current	ISTP	-	1	5	uA	*2	

*1 $\mathrm{R}_{\mathrm{L}}=37.5 \Omega$ shows the value at measurement.
*2 Set the RESETB or $1^{\text {st }}$ bit of register PWD_M to "Low".

-Block Diagram

Fig.1. BU9969KN Block Diagram

- Terminal Functions

Fig 2. BU9969KN Terminal Layout

- Terminal Functions

Table 5. BU9969KN Terminal Functions

Terminal No.	Terminal name	Description of terminals			$\begin{gathered} \text { I/O } \\ * 1 \end{gathered}$
		RGB input (601 input mode)	YCbCr input (601 input mode)	YCbCr input (656 input mode)	
1	DATA [0]	$\mathrm{R}[0]$ data	$\mathrm{Y}[0]$ data	$\mathrm{YCbCr}[0]$ data	I
2	DATA [1]	R [1] data	Y[1] data	YCbCr[1] data	I
3	DATA [2]	R [2] data	Y[2] data	$\mathrm{YCbCr[2]} \mathrm{data}$	I
4	DATA [3]	R [3] data	Y[3] data	YCbCr[3] data	I
5	DATA [4]	$\mathrm{R}[4]$ data	Y[4] data	YCbCr[4] data	I
6	DATA [5]	$\mathrm{G}[0]$ data	Y[5] data	YCbCr[5] data	I
7	DATA [6]	G [1] data	Y[6] data	YCbCr[6] data	I
8	DATA [7]	G [2] data	Y[7] data	YCbCr[7] data	I
9	DATA [8]	G [3] data	$\mathrm{CbCr}[0]$ data	Connected to GND	I
10	DATA [9]	$\mathrm{G}[4]$ data	$\mathrm{CbCr}[1]$ data	Connected to GND	I
11	DATA [10]	$\mathrm{G}[5]$ data	$\mathrm{CbCr}[2]$ data	Connected to GND	I
12	DATA [11]	$\mathrm{B}[0]$ data	$\mathrm{CbCr}[3]$ data	Connected to GND	I
13	DATA [12]	$B[1]$ data	$\mathrm{CbCr}[4]$ data	Connected to GND	I
14	DATA [13]	B [2] data	$\mathrm{CbCr}[5]$ data	Connected to GND	I
15	SYSCLK	System clock (Image data transfer clock)			I(S)
16	DVDD	Digital core power source			P
17	DATA [14]	$B[3]$ data	$\mathrm{CbCr}[6]$ data	Connected to GND	I
18	DATA [15]	B[4] data	$\mathrm{CbCr}[7]$ data	Connected to GND	I
19	HS	Horizontal synchronous signal input (To be used only at 16-bit input mode)			I(S)
20	VS	Vertical synchronous signal input (To be used only at 16-bit input mode)			I(S)
21	GND	GND for I/O power source and Digital core power source			G
22	IOVDD	I/O power source			P
23	N.C.	Non Connection			-
24	GND	GND for Analog power source			G
25	IREF	DAC reference current setting terminal			0
26	AVDD	Analog power source			P
27	VOUT	Composite signal output			0
28	TEST0	Test terminal. It connects with GND.			I(PD)
29	TEST1	Test terminal. It connects with GND.			I(PD)
30	TEST2	Test terminal. It connects with GND.			I(PD)
31	TEST3	Test terminal. It connects with GND.			I(PD)
32	SDI	Serial data input			$\begin{aligned} & \mathrm{I}(\mathrm{~S}) / \mathrm{O} \\ & \quad * 2 \end{aligned}$
33	SCLK	Serial clock input			I(S)
34	GND	GND for PLL power source			G
35	PVDD	PLL power source			P
36	RESETB	Reset input (L: reset)			I(S)

*1 ABBR:
$\mathrm{I}(\mathrm{S})$: input I/O with schmitt, $\mathrm{I}(\mathrm{PD})$: input I/O with Pull Up register, O : output, P : power source, $\mathrm{G}:$ ground.
*2 At reset mode, the bidirectional I / O pin is set to the input mode.

- Terminal Equivalent Circuit

Table 6. Terminal Equivalent Circuit

Terminal name	Equivalent circuit diagram	Terminal name	Equivalent circuit diagram
DATA[15:0]		IREF	
$\begin{gathered} \text { SYSCLK } \\ \text { SCLK } \\ \text { VS } \\ \text { HS } \\ \text { RESETB } \end{gathered}$		VOUT	
SDI		DVDD PVDD	
TESTO TEST1 TEST2 TEST3		IOVDD AVDD	
		GND	

- Input Timing Chart

Data latched by the rising edge of SYSCLK

Data latched by the falling edge of SYSCLK

Fig.3. Image data and synchronous signal timing chart

It can be controlled by $3^{\text {rd }}$ bit of register SYCPOL_M that is latched by the rising or falling of SYSCLK.

-Serial Interface Format

The slave address of the device is EOh.

Write 1110_000 0									\cdots			
sequence	S	$\begin{gathered} \hline \text { Slave } \\ \text { ADDR } \end{gathered}$	W	A(S)	Sub ADDR	A(S)	Data	A(S)		Data	A(S)	P

		1110_000	0					1110_000	1							
Read sequence	S	Slave ADDR	W	A(S)	Sub ADDR	A(S)	S	Slave ADDR	R	A(S)	Data	A(M)	\cdots	Data	$\overline{\mathrm{A}}$ (M)	P
(write)																

Write / read sequence

$$
\begin{array}{lll}
S=\text { start bit } & A(S)=\text { acknowledge by slave } & \bar{A}(S)=\text { no acknowledge by slave } \\
P=\text { stop bit } & A(M)=\text { acknowledge by master } & \bar{A}(M)=\text { no acknowledge by master }
\end{array}
$$

Fig.4. Serial Interface Format

- Serial Interface Timing

*Please change the SDA after SCLK is stabilized in Low except the condition "START" and "STOP".
Fig.5. Serial Interface Timing Diagram

-Application circuit diagram 1

656 input mode
Fig.6. Application Circuit Diagram Example
$* 1$ Use 75Ω resister and $1.2 \mathrm{k} \Omega$ resister with precision $\pm 1 \%$.

Application example

The application circuit is recommended for use. Make sure to confirm the adequacy of the characteristics.
When using the circuit with changes to the external circuit constants, make sure to leave an adequate margin for external components including static and transitional characteristics as well as dispersion of the IC.

-Application circuit diagram 2

601 input mode
Fig.7. Application Circuit Diagram Example
$* 1$ Use 75Ω resister and $1.2 \mathrm{k} \Omega$ resister with precision $\pm 1 \%$.

Application example
The application circuit is recommended for use. Make sure to confirm the adequacy of the characteristics.
When using the circuit with changes to the external circuit constants, make sure to leave an adequate margin for external components including static and transitional characteristics as well as dispersion of the IC.

- External Dimensional Drawing

(Note) It must not be mounted at the dotted line part.

Figure number : EX346-5001-3

Fig.8. BU9969KN External Dimensional Drawing

-Ordering part number

Part No.

Part No.

Package
KN: VQFN36

Packaging and forming specification E2: Embossed tape and reel

VQFN36

Notes

No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM Co.,Ltd.

The content specified herein is subject to change for improvement without notice.
The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request.

Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage.

The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information.

The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).

The Products specified in this document are not designed to be radiation tolerant.
While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons.

Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing.

If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Video ICs category:
Click to view products by ROHM manufacturer:
Other Similar products are found below :
M21328G-12 TW2964-LA2-CR TW9903-FB TW9919-PE1-GR ADV8003KBCZ-7T PI3HDX511DZLEX M23428G-33 PI7VD9008ABHFDE ADV7186BBCZ-TL ADV7186BBCZ-T-RL ADV8003KBCZ-7C PI3VDP411LSAZBEX PI3VDP411LSTZBEX M23145G-14 PI3VDP411LSRZBEX PI3HDX511EZLSEX BH76912GU-E2 CM5100-01CP TVP5160PNP TVP5151PBSR BA7603F-E2 MU82645DES S LM6B BH76106HFV-TR BH76206HFV-TR ADV7179WBCPZ ADV7611BSWZ-P-RL ADV7180KCP32Z ADV7180WBCP32Z ADV7182WBCPZ ADV7280KCPZ ADV7280WBCPZ-M ADV7281WBCPZ-MA ADV7283WBCPZ ADV7283BCPZ ADV7282WBCPZ-M ADV7280KCPZ-M ADV7280WBCPZ ADV7180KCP32Z-RL ADV7282AWBCPZ ADV7182AWBCPZ AD723ARUZ ADV7611BSWZ ADV7181DWBCPZ-RL ADV7173KSTZ-REEL ADV7180WBST48Z-RL ADA4411-3ARQZ ADA4411-3ARQZ-R7 ADA4417-3ARMZ ADA4417-3ARMZ-R7 ADA4424-6ARUZ

