

Technical Note

Digital Video Encorders Video bus interface

BU9969KN

No.09067EAT02

Description

BU9969KN is a digital video encoder IC for NTSC/PAL (ITU-R BT.601,ITU-R BT.656). It allows captured images (e.g. downloaded or on mobile phones) to be viewed on a TV monitor. In addition, a digital filter is built in for high image quality, and both multifunction and simple types are available for greater compatibility.

Features

Video Format

- NTSC-M
 - PAL-B/D/G/H/I
- Bus Interface
 - 656 input mode YCbCr 8 bit (included in EAV, SAV)
 - 601 input mode YCbCr 16 bit or RGB 16 bit (with Hsync, Vsync input)
- Input Data Format

 YCbCr 	4:2:2	(656 mode or 601 mode)
• RGB	R: 5bit, G: 6bit, B: 5bit	(601 mode)

Input Range

YCbCr:
1) Y: 16-235, CbCr: 16-240 SCALE_M* = "1"
2) YCbCr : 1-254 SCALE_M* = "0" (601 mode)
*SCALE_M is 1st bit of Sub-Address x' 04.

- RGB: R, B: 0 31, G: 0 63
- NTSC/PAL Standard Video Output Support
- Trap Filter Built In
- x4 System Clock Over Sampling Function Built In
- 10-bit Video DAC Built In
- PLL Built In
- 2-Wire Serial Interface
- 2 Supply Voltage Operation: (DVDD = PVDD = 1.8V : Typ, IOVDD = AVDD = 3.0V : Typ)
- Package: VQFN36

Application

Cell Phone

•Absolute Maximum Ratings

		-	
Item	Symbol	Rating	Unit
[1.8V Power Source System]			
Digital Core Power Source Voltage	DVDD	-0.2 to 2.5	v
PLL Power Source Voltage	PVDD		
[3.0V Power Source System]			
Digital I/O power source voltage	IOVDD	-0.2 to 4.5	V
DAC Power Source Voltage	AVDD		
Power Dissipation1	Pd1	450 (Note.1)	mW
Power Dissipation2	Pd2	700 (Note.2)	mW
Storage temperature range	Tstg	-25 to 125	°C

Table.1 Absolute Maximum Ratings

Note 1 : When not mounted on any board at Ta = 25° C.

•Recommended Operation Range

Item	Symbol	Range	Unit
[1.8V Power Source System]			
Digital Core Power Source Voltage	DVDD	1.80 ± 0.1	V
PLL Power Source Voltage	PVDD		
[3.0V Power Source System]			
Digital I/O power source voltage*	IOVDD	3.00 ± 0.3	V
DAC Power Source Voltage	AVDD		
Operation temperature range	Topr	-20 to 70	°C

Table.2 Recommended Operation Range

*Connect the pull-up resistance of the serial interface to the digital I/O power source voltage.

*Supply the power source voltage to all power source pins within 100 μ sec.

This procedure is same, when stopping to supply the power source.

Note 2 : When mounted on 50mm*58mm*1.6mm glass epoxy board. In the case to use at Ta = 25°C or higher, 11.3 mW should be decreased per 1°C. This value is an actually measured value, and not a guaranteed value.

•Recommended Operating Conditions

Table.3 Recommended Operating Conditions

(Unless otherwise specified Ta=25°C, DVDD=PVDD=1.8V, IOVDD=AVDD=3.0V, GND=0V)

Item	Symbol	Min	Тур	Max	Unit	Condition
<image data="" interface=""/>						
SYSCLK frequency 1	fsysclk1	-	27	-	MHz	656 input mode
SYSCLK frequency 2	fsysclk2	-	13.5	-	MHz	601 input mode
SYSCLK frequency deviation 1	dfsysclk1	-100	-	100	ppm	27MHz at 656 input mode
SYSCLK frequency deviation 2	dfsysclk2	-100	-	100	ppm	13.5MHz at 601 input mode
SYSCLK rise time	t2r	-	-	5	ns	*1
SYSCLK fall time	t2f	-	-	5	ns	*1
SYSCLK duty	dutysclk	45	-	55	%	*1
<serial interface=""></serial>						
SCLK frequency	f _{sclк}	-	-	400	kHz	
SCLK rise time	t1sr	-	-	300	ns	*1
SCLK fall time	t1sf	-	-	300	ns	*1
SDI rise time	t1dr	-	-	300	ns	*1
SDI fall time	t1df	-	-	300	ns	*1
SCLK "L" pulse width	t1wl	1.3	_	_	us	*1
SCLK "H" pulse width	t1wh	0.6	-	-	us	*1

*1 Refer to Fig.5 the serial interface-timing chart on page 9.

•Electric Characteristics 1

Table 4.1 Electric Characteristics 1

(Unless otherwise specified Ta=25°C, DVDD=PVDD=1.8V, IOVDD=AVDD=3.0V, GND=0V)

Item	Symbol	Min	Тур	Max	Unit	Condition
<image data="" interface=""/>			_			
Data setup time	t2sd	5	-	-	ns	*1
Data hold time	t2hd	8	Ι	-	ns	*1
HS, VS setup time	t2sc	5	-	-	ns	*1
HS, VS hold time	t2hc	8	-	-	ns	*1
<serial interface=""></serial>						
Data hold time	t1h	0	-	0.9	us	*2
Data setup time	t1s	100	-	-	ns	*2
Hold time (START)	t1hSTA	0.6	-	-	us	*2
Setup time (STOP)	t1sSTO	0.6	-	-	us	*2
Setup time (START)	t1sSTA	0.6	-	-	us	*2
Bus free time	tBUF	1.3	_	-	us	*2
Between "STOP" condition						
and "START" condition						

*1 Refer to Fig.3., the image data and synchronous signal-timing chart on page 8.

*2 Refer to Fig.5., the serial interface timing chart on page 9.

•Electric Characteristics 2

Table 4.2 Electric Characteristics 2

(Unless otherwise specified Ta=25°C, DVDD=PVDD=1.8V, IOVDD=AVDD=3.0V, GND=0V)

Item	Symbol	Min	Тур	Max	Unit	Condition
<video digital="" encoder="" portion<="" td=""><td>></td><td></td><td>_</td><td>_</td><td>_</td><td></td></video>	>		_	_	_	
Digital core dynamic current	IDDCO	-	20	50	mA	*1
Digital I/O dynamic current	IDDIO	Ι	0.5	10.0	mA	
Digital core static current	ISTDCO	-	1.5	8	uA	*2
Digital I/O static current	ISTDIO	-	0.5	2	uA	*3
"H" input voltage	V _{IH}	IOVDD	-	IOVDD	V	*4
		*0.8		+0.2		
"L" input voltage	V _{IL}	-0.2	-	IOVDD	V	*4
				*0.2		
L input leak current 1	\mathbf{I}_{ILL1}	-10	-	10	uA	*5
L input leak current 2	I _{ILL2}					
H input leak current 1	\mathbf{I}_{IHL}	-10	-	10	uA	*6
H input leak current 2	$\mathbf{I}_{\mathrm{IHT}}$	10	-	500	uA	*7
SDI "L" output voltage	V_{OL}	0	_	0.5	V	*8 IOL=2mA

*1 Internal Color Bar output mode at 27MHz operation.

*2 RESETB = Low

*3 RESETB = Low and All inputs pins = Low

*4 The following pins are applied. SYSCLK, DATA[15:0], HS, VS, TEST[3:0], SCLK and SDI.

- *5 The following pins are set to "Low". SYSCLK, DATA[15:0], HS, VS, TEST[3:0], SCLK and SDI.
 *6 The following pins are set to "High (IOVDD)".
- SYSCLK, DATA[15:0], HS, VS, SCLK and SDI.
 The following pins are set to "High (IOVDD)".
- *7 The following pins are set to "High (IOV TEST [3:0]
- *8 The SDI pin is applied.

•Electric Characteristics 3

Table 4.3 Electric Characteristics 3

(Unless otherwise specified Ta=25°C, DVDD=PVDD=1.8V, IOVDD=AVDD=3.0V, GND=0V)

Item	Symbol	Min	Тур	Max	Unit	Condition
<video dac="" portion=""></video>						
Video DAC resolution	RES	_	-	10	bit	
Video DAC dynamic current	IDDV	_	40	55	mA	R_L =37.5 Ω , R_{IREF} =1.2k Ω *1
Video DAC static current	ISTV	_	1	5	uA	RESETB=L *2
Integral linearity error	INL	-	±8.0	±15.0	LSB	$R_{L}=37.5 \Omega, R_{IREF}=1.2 k \Omega *1$
Differential linearity error	DNL	-	±1.0	±4.0	LSB	R_L =37.5 Ω , R_{IREF} =1.2k Ω *1
Full scale voltage	V _{FS}	1.1	1.25	1.4	V	$R_{L}=37.5 \Omega, R_{IREF}=1.2 k \Omega *1$
<pll portion=""></pll>						
PLL dynamic current	IDDP	-	1	2.5	mA	SYSCLK=27MHz input
PLL static current	ISTP	_	1	5	uA	*2

*1 RL=37.5 Ω shows the value at measurement.

*2 Set the RESETB or 1st bit of register PWD_M to "Low".

Block Diagram

•Terminal Functions

Fig 2. BU9969KN Terminal Layout

•Terminal Functions

			Description of terminals		- / -			
Terminal No.	Terminal	RGB input	YCbCr input	YCbCr input	I/O			
	name	(601 input mode)	(601 input mode)	(656 input mode)	*1			
1	DATA [0]	R[0] data	Y[0] data	YCbCr[0] data	Ι			
2	DATA [1]	R[1] data	Y[1] data	YCbCr[1] data	I			
3	DATA [2]	R[2] data	Y[2] data	YCbCr[2] data	I			
4	DATA [3]	R[3] data	Y[3] data	YCbCr[3] data	I			
5	DATA [4]	R[4] data	Y[4] data	YCbCr[4] data	I			
6	DATA [5]	G[0] data	Y[5] data	YCbCr[5] data	Ι			
7	DATA [6]	G[1] data	Y[6] data	YCbCr[6] data	Ι			
8	DATA [7]	G[2] data	Y[7] data	YCbCr[7] data	Ι			
9	DATA [8]	G[3] data	CbCr[0] data	Connected to GND	I			
10	DATA [9]	G[4] data	CbCr[1] data	Connected to GND	Ι			
11	DATA [10]	G[5] data	CbCr[2] data	Connected to GND	Ι			
12	DATA [11]	B[0] data	CbCr[3] data	Connected to GND	I			
13	DATA [12]	B[1] data	CbCr[4] data	Connected to GND	I			
14	DATA [13]	B[2] data	CbCr[5] data	Connected to GND	Ι			
15	SYSCLK	System clock (Image dat	a transfer clock)		I(S)			
16	DVDD	Digital core power sourc	e		Р			
17	DATA [14]	B[3] data	CbCr[6] data	Connected to GND	I			
18	DATA [15]	B[4] data	CbCr[7] data	Connected to GND	I			
19	HS	Horizontal synchronous signal input (To be used only at 16-bit input mode)						
20	VS	Vertical synchronous signal input (To be used only at 16-bit input mode)						
21	GND	GND for I/O power source and Digital core power source						
22	IOVDD	V/O power source						
23	N.C.	Non Connection	·					
24	GND	GND for Analog power s	GND for Analog power source					
25	IREF	DAC reference current s	setting terminal		0			
26	AVDD	Analog power source			Р			
27	VOUT	Composite signal output			0			
28	TEST0	Test terminal. It connect	ts with GND.		I(PD)			
29	TEST1	Test terminal. It connect	ts with GND.		I(PD)			
30	TEST2	Test terminal. It connect	ts with GND.		I(PD)			
31	TEST3	Test terminal. It connect	ts with GND.		I(PD			
32	SDI	Serial data input			I(S)/0 *2			
33	SCLK	Serial clock input			I(S)			
34	GND	GND for PLL power sou	rce		G			
35	PVDD	PLL power source			P			
36	RESETB	Reset input (L: reset)			I(S)			

Table 5. BU9969KN Terminal Functions

*1 ABBR:

I(S): input I/O with schmitt, I(PD): input I/O with Pull Up register, O: output, P: power source, G: ground. *2 At reset mode, the bidirectional I/O pin is set to the input mode.

•Terminal Equivalent Circuit

•Input Timing Chart

Data latched by the rising edge of SYSCLK

Data latched by the falling edge of SYSCLK

Fig.3. Image data and synchronous signal timing chart

It can be controlled by 3rd bit of register SYCPOL_M that is latched by the rising or falling of SYSCLK.

•Serial Interface Format

The slave address of the device is E0h.

*Please change the SDA after SCLK is stabilized in Low except the condition "START" and "STOP".

Fig.5. Serial Interface Timing Diagram

•Application circuit diagram 1

656 input mode

Fig.6. Application Circuit Diagram Example

*1 Use 75 Ω resister and 1.2k Ω resister with precision ±1%.

Application example

The application circuit is recommended for use. Make sure to confirm the adequacy of the characteristics.

When using the circuit with changes to the external circuit constants, make sure to leave an adequate margin for external components including static and transitional characteristics as well as dispersion of the IC.

•Application circuit diagram 2

601 input mode

Fig.7. Application Circuit Diagram Example

*1 Use 75 Ω resister and 1.2k Ω resister with precision ±1%.

Application example

The application circuit is recommended for use. Make sure to confirm the adequacy of the characteristics.

When using the circuit with changes to the external circuit constants, make sure to leave an adequate margin for external components including static and transitional characteristics as well as dispersion of the IC.

•External Dimensional Drawing

(Note) It must not be mounted at the dotted line part.

Figure number : EX346-5001-3

.

Fig.8. BU9969KN External Dimensional Drawing

•Ordering part number

VQFN36

	Notes
	g or reproduction of this document, in part or in whole, is permitted without the ROHM Co.,Ltd.
The conte	nt specified herein is subject to change for improvement without notice.
"Products	nt specified herein is for the purpose of introducing ROHM's products (hereinafte "). If you wish to use any such Product, please be sure to refer to the specifications be obtained from ROHM upon request.
illustrate tl	of application circuits, circuit constants and any other information contained herein the standard usage and operations of the Products. The peripheral conditions mus nto account when designing circuits for mass production.
However,	e was taken in ensuring the accuracy of the information specified in this document should you incur any damage arising from any inaccuracy or misprint of sucl n, ROHM shall bear no responsibility for such damage.
examples implicitly, a other parti	cal information specified herein is intended only to show the typical functions of and of application circuits for the Products. ROHM does not grant you, explicitly o any license to use or exercise intellectual property or other rights held by ROHM and ies. ROHM shall bear no responsibility whatsoever for any dispute arising from the h technical information.
equipment	icts specified in this document are intended to be used with general-use electronic t or devices (such as audio visual equipment, office-automation equipment, commu evices, electronic appliances and amusement devices).
The Produ	cts specified in this document are not designed to be radiation tolerant.
	HM always makes efforts to enhance the quality and reliability of its Products, a ay fail or malfunction for a variety of reasons.
against the failure of a shall bear	sure to implement in your equipment using the Products safety measures to guard e possibility of physical injury, fire or any other damage caused in the event of the any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM no responsibility whatsoever for your use of any Product outside of the prescribed of in accordance with the instruction manual.
system wh may result instrumen fuel-contro any of the	incts are not designed or manufactured to be used with any equipment, device of hich requires an extremely high level of reliability the failure or malfunction of which is in a direct threat to human life or create a risk of human injury (such as a medican t, transportation equipment, aerospace machinery, nuclear-reactor controller obler or other safety device). ROHM shall bear no responsibility in any way for use of Products for the above special purposes. If a Product is intended to be used for an ial purpose, please contact a ROHM sales representative before purchasing.
be control	nd to export or ship overseas any Product or technology specified herein that may led under the Foreign Exchange and the Foreign Trade Law, you will be required to sense or permit under the Law.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Video ICs category:

Click to view products by ROHM manufacturer:

Other Similar products are found below :

M21328G-12 TW2964-LA2-CR TW9903-FB TW9919-PE1-GR ADV8003KBCZ-7T PI3HDX511DZLEX M23428G-33 PI7VD9008ABHFDE ADV7186BBCZ-TL ADV7186BBCZ-T-RL ADV8003KBCZ-7C PI3VDP411LSAZBEX PI3VDP411LSTZBEX M23145G-14 PI3VDP411LSRZBEX PI3HDX511EZLSEX BH76912GU-E2 CM5100-01CP TVP5160PNP TVP5151PBSR BA7603F-E2 MU82645DES S LM6B BH76106HFV-TR BH76206HFV-TR ADV7179WBCPZ ADV7611BSWZ-P-RL ADV7180KCP32Z ADV7180WBCP32Z ADV7182WBCPZ ADV7280KCPZ ADV7280WBCPZ-M ADV7281WBCPZ-MA ADV7283WBCPZ ADV7283BCPZ ADV7282WBCPZ-M ADV7280KCPZ-M ADV7280WBCPZ ADV7180KCP32Z-RL ADV7282AWBCPZ ADV7182AWBCPZ ADV7180WBCP32Z ADV7181DWBCPZ-RL ADV7173KSTZ-REEL ADV7180WBST48Z-RL ADA4411-3ARQZ ADA4411-3ARQZ-R7 ADA4417-3ARMZ ADA4417-3ARMZ-R7 ADA4424-6ARUZ