NPN 100mA 50V Digital Transistors (Bias Resistor Built-in Transistors) | Parameter | Value | |----------------|-------| | $V_{\sf CEO}$ | 50V | | I _C | 100mA | | R ₁ | 47kΩ | #### Features ROHM - 1) Built-In Biasing Resistor - Built-in bias resistors enable the configuration of an inverter circuit without connecting external input resistors (see inner circuit). - 3) The bias resistors consist of thin-film resistors with complete isolation to allow negative biasing of the input. They also have the advantage of completely eliminating parasitic effects. - Only the on/off conditions need to be set for operation, making the circuit design easy. - 5) Complementary PNP Types: DTA144T series - 6) Complex transistors: UMH14N/ IMH14A/ EMH15/ IMH15A (NPN type) - 7) Lead Free/RoHS Compliant. #### Outline ## •Inner circuit ### Application Switching circuit, Inverter circuit, Interface circuit, Driver circuit **B: BASE** C: COLLECTOR **E: EMITTER** ### Packaging specifications | Part No. | Package | Package
size | Taping
code | Reel size
(mm) | Tape width (mm) | Basic
ordering
unit.(pcs) | Marking | |-----------|---------|-----------------|----------------|-------------------|-----------------|---------------------------------|---------| | DTC144TM | VMT3 | 1212 | T2L | 180 | 8 | 8000 | 06 | | DTC144TE | EMT3 | 1616 | TL | 180 | 8 | 3000 | 06 | | DTC144TUA | UMT3 | 2021 | T106 | 180 | 8 | 3000 | 06 | | DTC144TKA | SMT3 | 2928 | T146 | 180 | 8 | 3000 | 06 | # ● Absolute maximum ratings (T_a = 25°C) | Pa | arameter | Symbol | Values | Unit | | |---------------------------|---|-------------------|---------------------|------|--| | Collector-base voltage | | V_{CBO} | V _{CBO} 50 | | | | Collector-emitter voltage | | | 50 | V | | | Emitter-base voltage | Emitter-base voltage V _{EBO} 5 | | | V | | | Collector current | Collector current I _C 100 | | | mA | | | | DTC144TM | | 150 | | | | Dower discipation | DTC144TE | D *1 | 150 | | | | Power dissipation | DTC144TUA | P _D *1 | 200 | mW | | | | DTC144TKA | | 200 | | | | Junction temperature | T | 150 | °C | | | | Range of storage tempera | ture | T _{stg} | -55 to +150 | °C | | # ●Electrical characteristics (T_a = 25°C) | Parameter | Symbol Conditions | | Values | | | Unit | |--------------------------------------|----------------------|---|--------|------|------|------| | Parameter | | | Min. | Тур. | Max. | OHIL | | Collector-base breakdown voltage | BV _{CBO} | $I_C = 50\mu A$ | 50 | - | - | V | | Collector-emitter breakdown voltage | BV _{CEO} | I _C = 1mA | 50 | - | - | V | | Emitter-base breakdown voltage | BV _{EBO} | I _E = 50μA | 5 | - | - | V | | Collector cut-off current | I _{CBO} | V _{CB} = 50V | - | - | 0.5 | μA | | Emitter cut-off current | EBO | V _{EB} = 4V | - | - | 0.5 | μA | | Collector-emitter saturation voltage | V _{CE(sat)} | $I_{C} / I_{B} = 5 \text{mA} / 0.5 \text{mA}$ | - | - | 0.3 | V | | DC current gain | h _{FE} | $V_{CE} = 5V$, $I_{C} = 1mA$ | 100 | 250 | 600 | - | | Input resistance | R_1 | - | 32.9 | 47 | 61.1 | kΩ | | Transition frequency | f _T *2 | $V_{CE} = 10V, I_{E} = -5mA,$
f = 100MHz | - | 250 | - | MHz | ^{*1} Each terminal mounted on a reference footprint ^{*2} Characteristics of built-in transistor #### ● Electrical characteristic curves(Ta=25°C) Fig.1 Grounded emitter propagation characteristics Fig.2 Grounded emitter output characteristics Fig.3 DC Current gain vs. Collector Current Fig.4 Collector-emitter saturation voltage vs. Collector Current 3/7 Pattern of terminal position areas [Not a recommended pattern of soldering pads] | DIM | MILIM | ETERS | INC | HES | |-----|-------|-------|-------|-------| | DIM | MIN | MAX | MIN | MAX | | A | 0.45 | 0.55 | 0.018 | 0.022 | | A1 | 0.00 | 0.10 | 0.000 | 0.004 | | b | 0.17 | 0.27 | 0.007 | 0.011 | | b1 | 0.27 | 0.37 | 0.011 | 0.015 | | С | 0.08 | 0.18 | 0.003 | 0.007 | | D | 1.10 | 1.30 | 0.043 | 0.051 | | Ē | 0.70 | 0.90 | 0.028 | 0.035 | | е | 0. | 40 | 0.0 | 02 | | HE | 1.10 | 1.30 | 0.043 | 0.051 | | L | 0.10 | 0.30 | 0.004 | 0.012 | | Lp | 0.20 | 0.40 | 0.008 | 0.016 | | × | 42 | 0.10 | = | 0.004 | | DIM MILIM | ETERS | INC | HES | | |-----------|-------------|------|-----|-------| | | MIN | MAX | MIN | MAX | | b2 | = | 0.37 | | 0.015 | | b3 | | 0.47 | 100 | 0.019 | | e1 | 0.80 | | 0.0 | 031 | | 11 | - | 0.50 | - | 0.020 | Dimension in mm/inches EMT3 Pattern of terminal position areas [Not a recommended pattern of soldering pads] | DIM | MILIME | ETERS | INC | HES | |-----|--------|-------|-------|-----------------| | DIM | MIN | MAX | MIN | MAX | | A | 0.60 | 0.80 | 0.024 | 0.031 | | A1 | 0.00 | 0.10 | 0.000 | 0.004 | | A3 | 0. | 25 | 0.0 | 10 | | Ь | 0.15 | 0.30 | 0.006 | 0.012 | | b1 | 0.25 | 0.40 | 0.010 | 0.016 | | C | 0.10 | 0.20 | 0.004 | 0.008 | | D | 1.50 | 1.70 | 0.059 | 0.067 | | E | 0.70 | 0.90 | 0.028 | 0.035 | | е | 0.8 | 50 | 0.0 | 20 | | HE | 1.40 | 1.80 | 0.055 | 0.071 | | L1 | 0.10 | #8 | 0.004 | , 3 | | Lp | 0.15 | 52 | 0.006 | EL. | | Q | 0.05 | 0.25 | 0.002 | 0.010 | | × | =7 | 0.10 | = 1 | 0.004 | | DIM | DIM | MILIMETERS | | INC | HES | |-----|------------------|------------|-----|-------|-----| | | MIN | MAX | MIN | MAX | | | b2 | ₹7.1t | 0.40 | | 0.016 | | | b3 | | 0.50 | - | 0.020 | | | e1 | 1.10 | | 0.0 | 043 | | | 11 | 42 55 | 0.70 | - | 0.028 | | Dimension in mm/inches UMT3 Pattern of terminal position areas [Not a recommended pattern of soldering pads] | DIM | MILIM | ETERS | INC | HES | |-----|------------|-------|-------|-------| | DIM | MIN | MAX | MIN | MAX | | A | 0.80 | 1.00 | 0.031 | 0.039 | | A1 | 0.00 | 0.10 | 0.000 | 0.004 | | A3 | 0.3 | 25 | 0.0 | 10 | | ь | 0.15 | 0.30 | 0.006 | 0.012 | | С | 0.10 | 0.20 | 0.004 | 0.008 | | D | 1.90 | 2.10 | 0.075 | 0.083 | | E | 1.15 | 1.35 | 0.045 | 0.053 | | е | 0.65 0.026 | | 026 | | | HE | 2.00 | 2.20 | 0.079 | 0.087 | | L1 | 0.20 | 0.50 | 0.008 | 0.020 | | Lp | 0.25 | 0.55 | 0.010 | 0.022 | | Q | 0.10 | 0.30 | 0.004 | 0.012 | | × | = | 0.10 | = | 0.004 | | DIM | MILIMETERS | | INCHES | | |-----|------------|------|--------|-------| | | MIN | MAX | MIN | MAX | | b2 | | 0.50 | _ | 0.020 | | e1 | 1.55 | | 0.0 | 061 | | 11 | _ | 0.65 | _ | 0.026 | Dimension in mm/inches SMT3 Pattern of terminal position areas [Not a recommended pattern of soldering pads] | DIM | MILIM | ETERS | INC | HES | |-----|-------|-------|---------------|-------| | DIM | MIN | MAX | MIN | MAX | | A | 1.00 | 1.30 | 0.039 | 0.051 | | (A1 | 0.00 | 0.10 | 0.000 | 0.004 | | A3 | 0 | 25 | 0.0 | 10 | | b | 0.35 | 0.50 | 0.014 | 0.020 | | С | 0.09 | 0.25 | 0.004 | 0.010 | | D | 2.80 | 3.00 | 0.110 | 0.118 | | E | 1.50 | 1.80 | 0.059 | 0.071 | | е | 0.9 | 95 | 0.037 | | | HE | 2.60 | 3.00 | 0.102 | 0.118 | | L1 | 0.30 | 0.60 | 0.012 | 0.024 | | Lр | 0.40 | 0.70 | 0.016 | 0.028 | | Q | 0.20 | 0.30 | 0.008 | 0.012 | | X | 2 | 0.10 | 1 <u>20</u> 1 | 0.004 | | У | 27 | 0.10 | _ | 0.004 | | | | | | - | | DIM | MILIM | ETERS | INC | HES | | DIM | MIN | MAX | MIN | MAX | | 60 | 1505 | 0.00 | | 0.004 | | DIM | MILIMETERS | | DIM MILIMETE | | INC | HES | |-----|------------|------|--------------|-------|-----|-----| | DIM | MIN | MAX | MIN | MAX | | | | b2 | = | 0.60 | | 0.024 | | | | e1 | 2.10 | | 0.0 | 083 | | | | 11 | =: | 0.90 | - | 0.035 | | | Dimension in mm/inches #### Notes No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM Co.,Ltd. The content specified herein is subject to change for improvement without notice. The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request. Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production. Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage. The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information. The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices). The Products specified in this document are not designed to be radiation tolerant. While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons. Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual. The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing. If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law. Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us. ## ROHM Customer Support System http://www.rohm.com/contact/ # **X-ON Electronics** Largest Supplier of Electrical and Electronic Components Click to view similar products for Bipolar Transistors - Pre-Biased category: Click to view products by ROHM manufacturer: Other Similar products are found below: RN1607(TE85L,F) DTA124GKAT146 DTA144WETL DTA144WKAT146 DTC113EET1G DTC115TETL DTC115TKAT146 DTC124TETL DTC144ECA-TP DTC144VUAT106 MUN5241T1G BCR158WH6327XTSA1 NSBA114TDP6T5G NSBA143ZF3T5G NSBC114YF3T5G NSBC123TF3T5G SMUN5235T1G SMUN5330DW1T1G SSVMUN5312DW1T2G RN1303(TE85L,F) RN4605(TE85L,F) TTEPROTOTYPE79 DDTC114EUAQ-7-F EMH15T2R SMUN2214T3G SMUN5335DW1T1G NSBC114TF3T5G NSBC143ZPDP6T5G NSVMUN5113DW1T3G SMUN5230DW1T1G SMUN5133T1G SMUN2214T1G DTC114EUA-TP NSBA144EF3T5G NSVDTA114EET1G 2SC2223-T1B-A 2SC3912-TB-E SMUN5237DW1T1G SMUN5213DW1T1G SMUN5114DW1T1G SMUN2111T1G NSVDTC144EM3T5G DTC124ECA-TP DTC123TM3T5G DTA114ECA-TP DTA113EM3T5G DCX115EK-7-F DTC113EM3T5G NSVMUN5135DW1T1G NSVMUN2237T1G