2.5V Drive Nch+Nch MOS FET

EM6K1

- Structure

Silicon N-channel MOS FET

-Features

1) Two 2 SK3019 transistors in a single EMT package.
2) The MOS FET elements are independent, eliminating mutual interference.
3) Mounting cost and area can be cut in half.
4) Low on-resistance.
5) Low voltage drive (2.5 V) makes this device ideal for portable equipment.

- Applications

Interfacing, switching (30V, 100mA)
-Packaging specifications

Type	Package	Taping
	Code	T2R
	Basic ordering unit (pieces)	8000
EM6K1	\bigcirc	

- Absolute maximum ratings $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$
<tt is the same ratings for $\operatorname{Tr} 1$ and $\operatorname{Tr} 2 .>$

Parameter	Symbol	Limits	Unit	
Drain-source voltage	Voss	30	V	
Gate-source voltage	VGss	± 20	V	
Drain current	Continuous	ID	± 100	mA
	Pulsed	$\mathrm{IDP}^{* 1}$	± 400	mA
Total power dissipation	$\mathrm{PD}^{* 2}$	150	$\mathrm{~mW} / \mathrm{TOTAL}$	
		120	$\mathrm{~mW} / \mathrm{ELEMENT}$	
Channel temperature	Tch	150	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	$-55 \mathrm{to}+150$	${ }^{\circ} \mathrm{C}$	
*1 PW≤ 10 us, Duty cycle $\leq 1 \%$				

*1 Pw $\leq 10 \mu \mathrm{~s}$, Duty cycle 1%

[^0]-External dimensions (Unit : mm)

- Equivalent circuit

Transistor
-Electrical characteristics ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)
<lt is the same characteristics for Tr1 and Tr2.>

Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions
Gate-source leakage	Igss	-	-	± 1	$\mu \mathrm{A}$	VGs $= \pm 20 \mathrm{~V}, \mathrm{VdS}=0 \mathrm{~V}$
Drain-source breakdown voltage	$V_{\text {(BR) }}$ DSS	30	-	-	V	$\mathrm{ld}=10 \mu \mathrm{~A}, \mathrm{VGS}=0 \mathrm{~V}$
Zero gate voltage drain current	Idss	-	-	1.0	$\mu \mathrm{A}$	Vds $=30 \mathrm{~V}$, VGgs $=0 \mathrm{~V}$
Gate threshold voltage	VGS(th)	0.8	-	1.5	V	V $\mathrm{dS}=3 \mathrm{~V}, \mathrm{ld}=100 \mu \mathrm{~A}$
Static drain-source on-starte resistance	Rds(on)	-	5	8	Ω	$\mathrm{ld}=10 \mathrm{~mA}, \mathrm{VGs}=4 \mathrm{~V}$
	Rds(on)	-	7	13	Ω	$\mathrm{ld}=1 \mathrm{~mA}, \mathrm{VGs}=2.5 \mathrm{~V}$
Forward transfer admittance	\| $\mathrm{Yfs}_{\text {f }}$ \|	20	-	-	mS	V $\mathrm{DS}=3 \mathrm{~V}, \mathrm{ID}=10 \mathrm{~mA}$
Input capacitance	Ciss	-	13	-	pF	$\begin{aligned} & \mathrm{VDS}=5 \mathrm{~V} \\ & \mathrm{VGS}=0 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$
Output capacitance	Coss	-	9	-	pF	
Reverse transfer capacitance	Crss	-	4	-	pF	
Turn-on delay time	td(on)	-	15	-	ns	$\begin{aligned} & \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}} \fallingdotseq 5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \\ & \mathrm{R}_{\mathrm{G}}=10 \Omega \end{aligned}$
Rise time	tr	-	35	-	ns	
Turn-off delay time	td(off)	-	80	-	ns	
Fall time	tf	-	80	-	ns	

-Electrical characteristic curves

Fig. 1 Typical Output Characteristics

GATE-SOURCE VOLTAGE: VGS (V)
Fig. 2 Typical Transfer Characteristics

Fig. 3 Gate Threshold Voltage vs. Channel Temperature

Fig. 4 Static Drain-Source On-State Resistance vs. Drain Current (I)

Fig. 5 Static Drain-Source On-State Resistance vs. Drain Current (II)

Fig. 6 Static Drain-Source On-State Resistance vs. Gate-Source Voltage

Fig. 7 Static Drain-Source On-State
Resistance vs.
Channel Temperature

Fig. 8 Forward Transfer Admittance vs. Drain Current

Fig. 9 Reverse Drain Current vs. Source-Drain Voltage (I)

Fig. 10 Reverse Drain Current vs. Source-Drain Voltage (II)

Fig. 11 Typical Capacitance vs. Drain-Source Voltage

Fig. 12 Switching Characteristics

- Switching characteristics measurement circuits

Fig. 13 Switching Time Test Circuit

Fig. 14 Switching Time Waveforms

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the product described in this document are for reference only. Upon actual use, therefore, please request that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).
Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

About Export Control Order in Japan

Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan.
In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for MOSFET category:
Click to view products by ROHM manufacturer:
Other Similar products are found below :
614233C 648584F IRFD120 JANTX2N5237 2N7000 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D
TPCC8103,L1Q(CM MIC4420CM-TR VN1206L 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C
IPS70R2K0CEAKMA1 BUK954R8-60E DMN3404LQ-7 NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI
DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384
NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956
NTE2911 US6M2GTR TK10A80W,S4X(S SSM6P69NU,LF

[^0]: *2 With each pin mounted on the recommended lands.

