

Power management (dual digital transistors)

IMD16A

●Features

- 1) Two digital class transistors in a SMT package.
- 2) Up to 500mA can be driven.
- 3) Low VCE(sat) of drive transistors for low power dissipation.

Package, marking, and packaging specifications

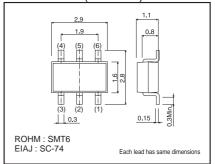
Part No.	IMD16A
Package	SMT6
Marking	D16
Code	T108
Basic ordering unit (pieces)	3000

●Absolute maximum ratings (Ta=25°C)

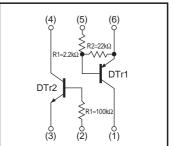
DTr₁ (PNP)

Parameter	Symbol	Limits	Unit	
Supply voltage	Vcc	-50	V	
Input voltage	VIN	-12	· V	
	VIIV	5		
Output current	lc	-500	mA	

DTr₂ (NPN)


Parameter	Symbol	Limits	Unit
Collector-base voltage	Vсво	50	V
Collector-emitter voltage	VCEO	50	V
Emitter-base voltage	VEBO	5	V
Collector current	lc	100	mA

Total


Parameter	Symbol	Limits	Unit
Collector power dissipation	Pd *	300(TOTAL)	mW
Junction temperature	Tj	150	°C
Storage temperature	Tstg	-55 to +150	°C

^{* 200}mW per element must not be exceeded.

● Dimensions (Unit: mm)

•Inner circuit

IMD16A Data Sheet

●Electrical characteristics (Ta=25°C)

DTr₁

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Input voltage	VI(off)	-	_	-0.3	V	Vcc= -5V , Io= -100μA
Input voltage	VI(on)	-2	_	_		Vo= -0.3V , Io= -20mA
Output voltage	Vo(on)	-	-	-0.3	V	Io/I⊫ -50mA / -2.5mA
Input current	lı	_	_	-3	mA	V= −5V
Output current	IO(off)	_	_	-0.5	μΑ	Vcc= -50V , Vi=0V
DC current gain	G _i *1	82	_	_	_	Io= -50mA , Vo= -5V
Transition frequency	f _T *2	-	250	_	MHz	Vc== -10V , I==50mA , f=100MHz
Input resistance	R ₁	1.54	2.2	2.86	kΩ	_
Resistance ratio	R ₂ / R ₁	8	10	12	_	-

^{\$1} Measured using pulse current. ~\$2 Transition frequency of mounted transistor.

DTr_2

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Collector-base breakdown voltage	ВУсво	50	-	_	V	Ic=50μA
Collector-emitter breakdown voltage	BVceo	50	-	_	V	Ic=1mA
Emitter-base breakdown voltage	ВVево	5	-	_	V	Iε=50μA
Collector cutoff current	Ісво	-	_	0.5	μΑ	Vcb=50V
Emitter cutoff current	ІЕВО	_	_	0.5	μΑ	V _{EB} =4V
Collector-emitter saturation voltage	VCE(sat)	1	-	0.3	V	Ic/I _B =1mA/0.1mA
DC current transfer ratio	hfe	100	250	600	_	VcE=5V , Ic=1mA
Transition frequency	f⊤ *	-	250	_	MHz	Vc=10V , I=-5mA , f=100MHz
Input resistance	R ₁	70	100	130	kΩ	_

 * Transition frequency of mounted transistor.

IMD16A Data Sheet

●Electrical characteristic curves DTr₁ (PNP)

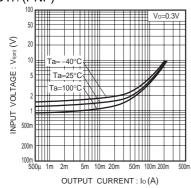


Fig.1 Input voltage vs. Output current (ON characterisitics)

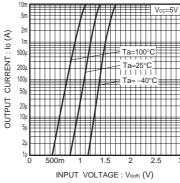


Fig.2 Output current vs. Input voltage (OFF characteristics)

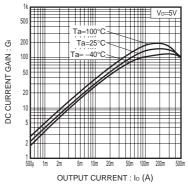


Fig.3 DC current gain vs.
Output current characteristics

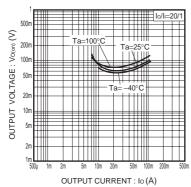


Fig.4 Output voltage vs.
Output current characteristics

DTr₂ (NPN)

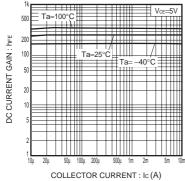


Fig.5 DC current gain vs.
Output current characteristics

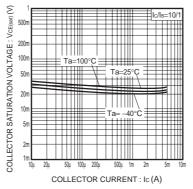


Fig.6 Output voltage vs.
Output current characteristics

Notes

No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM Co.,Ltd.

The content specified herein is subject to change for improvement without notice.

The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request.

Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage.

The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information.

The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).

The Products specified in this document are not designed to be radiation tolerant.

While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons.

Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing.

If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.

Thank you for your accessing to ROHM product informations.

More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - Pre-Biased category:

Click to view products by ROHM manufacturer:

Other Similar products are found below:

RN1607(TE85L,F) DTA124GKAT146 DTA144WETL DTA144WKAT146 DTC113EET1G DTC115TETL DTC115TKAT146

DTC124TETL DTC144ECA-TP DTC144VUAT106 MUN5241T1G BCR158WH6327XTSA1 NSBA114TDP6T5G NSBA143ZF3T5G

NSBC114YF3T5G NSBC123TF3T5G SMUN5235T1G SMUN5330DW1T1G SSVMUN5312DW1T2G RN1303(TE85L,F)

RN4605(TE85L,F) TTEPROTOTYPE79 DDTC114EUAQ-7-F EMH15T2R SMUN2214T3G NSBC114TF3T5G NSBC143ZPDP6T5G

NSVMUN5113DW1T3G SMUN5230DW1T1G SMUN5133T1G SMUN2214T1G DTC114EUA-TP NSBA144EF3T5G

NSVDTA114EET1G 2SC2223-T1B-A 2SC3912-TB-E SMUN5237DW1T1G SMUN5213DW1T1G SMUN5114DW1T1G SMUN2111T1G

NSVDTC144EM3T5G DTC124ECA-TP DTC123TM3T5G DTA114ECA-TP DTA113EM3T5G DCX115EK-7-F DTC113EM3T5G

NSVMUN5135DW1T1G NSVMUN2237T1G NSVDTC143ZM3T5G