ML610Q111/ML610Q112

8-bit Microcontroller

GENERAL DESCRIPTION

This LSI is a high-performance 8-bit CMOS microcontroller into which rich peripheral circuits, such as timers, PWM, UART, $\mathrm{I}^{2} \mathrm{C}$ bus interface (master/slave), synchronous serial port, voltage level supervisor analog comparators and 10-bit successive approximation type A/D converter, are incorporated around 8-bit CPU nX-U8/100.
The CPU nX-U8/100 is capable of efficient instruction execution in 1-intruction 1-clock mode by pipe line architecture parallel processing. The Flash ROM that is installed as program memory, and the on-chip debug function that is installed, enable program debugging and programming on customer's board.

FEATURES

- CPU
- 8-bit RISC CPU (CPU name: nX-U8/100)
- Instruction system: 16-bit instructions
- Instruction set:

Transfer, arithmetic operations, comparison, logic operations, multiplication/division, bit manipulations, bit logic operations, jump, conditional jump, call return stack manipulations, arithmetic shift, and so on

- On-Chip debug function
- Minimum instruction execution time:
-30.5us (@32.768kHz system clock)
-0.122us (@8.192MHz system clock)
- Internal memory
- ML610Q111:

Flash memory :

- Internal 24Kbyte Flash memory (12K x 16bit) for program including unusable 32byte test data area.
- Internal 4Kbyte Flash memory (2K x 16bit) for data.

SRAM :

- Internal 2Kbyte data RAM (2K x 8bit)
- ML610Q112:

Flash memory :

- Internal 32Kbyte Flash memory (16K x 16bit) for program including unusable 32byte test data area.
- Internal 4Kbyte Flash memory (2K x 16bit) for data.

SRAM :

- Internal 4Kbyte data RAM (4K x 8bit)
- Flash Memory operating condition and specification
- Refer to the chapter Electrical characteristics "FLASH MEMORY SPECIFIACTION".
- Interrupt controller
- 1 non-maskable interrupt source (Internal source: 1(WDT))
- 30 maskable interrupt sources (Internal sources: 23, External source: 7)
- Time base counter (TBC)
- Low-speed time base counter: 1 channel
- High-speed time base counter: 1 channel
(This time base counter is divided by 1-16, then it can be used as a clock of the Timer and PWM.)
- Watchdog timer (WDT)
- Non-maskable interrupt and reset
(Non-maskable interrupt is generated by the first overflow, and reset is generated by the second overflow)
- Free running
- Overflow period: 7 types selectable by software ($23.4 \mathrm{~ms}, 31.25 \mathrm{~ms}, 62.5 \mathrm{~ms}, 125 \mathrm{~ms}, 500 \mathrm{~ms}, 2 \mathrm{~s}$, and 8 s)
- Timer
- 8-bit x 6 channels (16-bit configuration available, 16-bit x 3ch)
- Supports auto reload timer mode/One shot timer mode
- Timer count start/stop by software or external input trigger
(Timer function with external trigger input supports for only 2ch. Selectable external pins/analog comparator output as an exeternal trigger.)
- The effective minimum pulse width of the external trigger input: Timer clock 3中 (about $183 \mathrm{~ns} @ 16.384 \mathrm{MHz}$)
- Allows measurement of pulse width etc. using an external trigger input.
- 8-selectable clock frequency as counter clock per channel
- PWM
- Resolution 16-bit
- Single output x 3ch, Multiple three outputs x 1ch
- Allows an output of the PWM signal in a cycle of about 122 ns (@PLLCLK $=16.384 \mathrm{MHz}$) to 2 s (@LSCLK = 32.768 kHz)
- Supports one shot PWM mode
- PWM start/stop by software and external trigger input (Selectable external pins, analog comparator output or timer interrupt as external trigger)
- 3-selectable clock frequency as PWM clock per channel
- UART
- TXD/RXD x 2ch
- Half-Duplex Communication
- Bit length, parity/no parity, odd parity/even parity, 1 stop bit/2 stop bits
- Positive logic/negative logic selectable
- Built-in baud rate generator
- $\mathrm{I}^{2} \mathrm{C}$ bus interface
- Master function: standard mode (100kbit/s@8MHz), Fast mode (400kbit/s@8MHz)
- Slave function : standard mode (100kbit/s)
- Synchronous serial port (SSIO)
- 1ch
- Master/slave selectable
- LSB first/MSB first selectable
- 8-bit length/16-bit length selectable
- Successive approximation type A/D converter (SA-ADC)
- 10-bit A/D converter
- Analog Input
-6ch (ML610Q111)
- 8ch (ML610Q112)
- Analog comparator
- 2ch
- ch0: Allows comparison of the voltage level of the two external pins or comparison of one external pin and internal reference voltage level.
- ch1: Allows comparison of one external pin and internal reference voltage level
- Input common mode voltage range : $\mathrm{V}_{\mathrm{DD}}=0.1 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}-1.5 \mathrm{~V}$
- Internal reference voltage : 0.1-0.8V (Selectable in 50 mV increments)
- Hysteresis (Comparator0 only): 20mV(Typ.)
- Allows selection of with/without interrupt sampling and interrupt edge.
- General-purpose ports (GPIO)
- Input/output port
- 15ch (ML610Q111)
- 25ch (ML610Q112)
- Reset
- Reset by the RESET_N pin
- Reset by power-on detection
- Reset by the watchdog timer (WDT) 2nd overflow
- Reset by the voltage level supervisor (VLS) function: Selectable by software
- Voltage level supervisor (VLS)
- 2ch
- ch0: It can be used for voltage level detection reset
- ch1: It can be used for voltage level detection interrupt
- Judgment accuracy: $\pm 3.0 \%$ (Typ.)
- Clock
- Low-speed clock:
- Built-in RC oscillation (32.768 kHz)
- High-speed clock:
- Built-in PLL oscillation (16.384MHz)
- High-speed external clock (max. 8.192MHz)

Maximum CPU clock is 8.192 MHz .

- Selection of high-speed clock mode by software:
- Built-in PLL oscillation
- External clock
- Power management
- HALT mode: Instruction execution by CPU is suspended (peripheral circuits are in operating states)
- STOP mode: Stop of oscillation (Operations of CPU and peripheral circuits are stopped.)
- Clock gear: The frequency of system clock can be changed by software ($1 / 1,1 / 2,1 / 4$, or $1 / 8$ of the oscillation clock).
- Block Control Function: Power down (reset registers and stop clock supply) the circuits of unused peripherals.
- Shipment
- ML610Q111:

20-pin TSSOP:
ML610Q111-xxxTD (blank product: ML610Q111-NNNTD)

- ML610Q112:

32-pin LQFP:
ML610Q112-xxxTC (blank product: ML610Q112-NNNTC)

- Guaranteed operating range
- Operating temperature (ambience): $-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$ (Flash write/erase: $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)
- Operating voltage: VDD=2.7V to 5.5 V

BLOCK DIAGRAM

The block diagram is shown in figure 1.
"*"" means secondary function, tertiary function or quaternary function of each port.
" () $)^{* 2}$ " means the function of ML610Q112.

Figure 1. ML610Q111/ML610Q112 Block Diagram

PIN CONFIGURATION (TOP VIEW)

- ML610Q111-xxxTD

The pin layout is shown in figure 2.

TM90UT / PMMFO / PCO 1	\bigcirc	20	PC1/ PMMF1
RESET_N 2		19	PA0 / EXIO / AINO / PMMC / OUTCLK / TM90UT
TEST 3		18	PB7 / AIN5 / RXD1 / LSCLK / PMMF0 / PMMC
CMP1OU/ OUTCLK/PMMC/RXD0/ AIN2/EXI4/PB0 4		17	VDD
TXD1/ TXD0 / PMMD / AIN3 / EX15/ PB1 5		16	$V_{\text {SS }}$
PMME/RXD1/EXI6 / PB2 6		15	PB6 / AINA / CLKIN / SDA / PWMF1
TXD1 / SIN/EX17 / PB3 7		14	PB5 / CMPOM / RXDO / SCK / SCL / PMMF2
CMP00UT/CLKIN/PMME/EXI2/PA2 8		13	PB4/ CMPOP / SOUT / TXD0 / TXD1
TESTF 9		12	PA1 / EX11 / AIN1 / CMP1P / PMMD / LSCLK / TMFOUT
TMFOU/PC3 10		11	PC2/PMMF2

* PIN No.4-8, 12-15, 18, 19 can be used as external trigger of the Timer E-F and PWMC-F.

Figure 2. ML610Q111 TSSOP20 Pin Configuration

- ML610Q112-xxxTC

The pin layout is shown in figure 3.

* PIN No.3, 5-8, 16-19, 24, 25 can be used as external trigger of the Timer E- F and PWMC-F.

Figure 3. ML610Q112 LQFP32 Pin Configuration

PIN LIST

Table 1. ML610Q111/ML610Q112 Pin List

PIN No.		Primary function			Secondary function			Tertiary function			Quaternary function		
$\begin{gathered} 32 \\ \text { LQFP } \end{gathered}$	$\begin{gathered} 20 \\ \text { TSSOP } \end{gathered}$	Name	I/O	Function									
21	16	$\mathrm{V}_{\text {SS }}$	-	power supply	-	-	-	-	-	-	-	-	-
22	17	V_{DD}	-	power supply	-	-	-	-	-	-	-	-	-
9	9	TESTF	-	TEST	-	-	-	-	-	-	-	-	-
32	2	RESE T_N	I	SYSTEM	-	-	-	-	-	-	-	-	-
1	3	TEST	I/O	TEST	-	-	-	-	-	-	-	-	-
25	19	$\begin{gathered} \hline \text { PA0/ } \\ \text { EXIO/ } \\ \text { AIN0/ } \\ \text { TnTG }^{* / /} \\ \text { PmTG }^{* *} \\ \hline \end{gathered}$	I/O	GPIO/ EXINT/ SA-ADC/ TIMER/ PWM	PWMC	O	PWM	OUTCLK	O	SYSTEM	TM90UT	O	TIMER
16	12		I/O	GPIO/ EXINT/ SA-ADC/ COMP/ TIMER/ PWM	PWMD	O	PWM	LSCLK	O	SYSTEM	TMFOUT	0	TIMER
8	8	$\begin{gathered} \hline \text { PA2/ } \\ \text { EXI2/ } \\ \text { TnTG }^{*} / \\ \text { PmTG** }^{* *} \end{gathered}$	I/O	GPIO/ EXINT/ TIMER/ PWM	PWME	O	PWM	CLKIN	I	SYSTEM	CMP00UT	0	COMP
3	4		I/O	GPIO/ EXINT/ SA-ADC/ UART/ TIMER/ PWM	PWMC	O	PWM	OUTCLK	O	SYSTEM	CMP1OUT	O	COMP
5	5	$\begin{gathered} \hline \text { PB1/ } \\ \text { EXI5/ } \\ \text { AIN3/ } \\ \text { TnTG }^{* / /} \\ \text { PmTG** }^{*} \end{gathered}$	I/O	GPIO/ EXINT/ SA-ADC/ TIMER/ PWM	PWMD	O	PWM	TXD0	O	UART	TXD1	O	UART
6	6	PB2/ EXI6/ RXD1/ TnTG PmTG $^{* *}$	I/O	GPIO/ EXINT/ UART/ TIMER/ PWM	PWME	O	PWM	-	-	-	-	-	-
7	7	$\begin{gathered} \hline \text { PB3/ } \\ \text { EXI7/ } \\ \text { TnTG }^{*} / \\ \text { PmTG** }^{* *} \end{gathered}$	I/O	GPIO/ EXINT/ TIMER/ PWM	SIN	I	SSIO	TXD1	O	UART	-	-	-
17	13	$\begin{gathered} \text { PB4/ } \\ \text { CMP0P } \end{gathered}$	I/O	$\begin{aligned} & \text { GPIO/ } \\ & \text { COMP } \end{aligned}$	SOUT	O	SSIO	TXD0	O	UART	TXD1	O	UART
18	14	PB5/ RXD0/ CMP0M	I/O	$\begin{aligned} & \hline \text { GPIO/ } \\ & \text { UART/ } \\ & \text { COMP } \end{aligned}$	SCK	I/O	SSIO	SCL	I/O	$I^{2} \mathrm{C}$	PWMF2	O	PWM
19	15	$\begin{aligned} & \hline \text { PB6/ } \\ & \text { AIN4 } \\ & \hline \end{aligned}$	I/O	$\begin{gathered} \text { GPIO/ } \\ \text { SA-ADC } \end{gathered}$	CLKIN	I	SYSTEM	SDA	I/O	$I^{2} \mathrm{C}$	PWMF1	O	PWM
24	18	$\begin{gathered} \hline \text { PB7/ } \\ \text { AIN5/ } \\ \text { RXD1 } \\ \hline \end{gathered}$	I/O	GPIO/ SA-ADC/ UART	LSCLK	O	SYSTEM	PWMF0	O	PWM	PWMC	O	PWM
30	1	PC0	I/O	GPIO	-	-	-	PWMF0	O	PWM	TM90UT	O	TIMER
27	20	PC1	I/O	GPIO	-	-	-	PWMF1	O	PWM	-	-	-
14	11	PC2	I/O	GPIO	-	-	-	PWMF2	O	PWM	-	-	-
11	10	PC3	I/O	GPIO	-	-	-	-	-	-	TMFOUT	O	TIMER

PIN No.		Primary function			Secondary function			Tertiary function			Quaternary function		
$\begin{gathered} 32 \\ \text { LQFP } \end{gathered}$	$\begin{gathered} \hline 20 \\ \text { TSSOP } \end{gathered}$	Name	I/O	Function									
29	-	PC4	I/O	GPIO	SCL	I/O	$\mathrm{I}^{2} \mathrm{C}$	-	-	-	-	-	-
28	-	PC5	I/O	GPIO	SDA	I/O	$\mathrm{I}^{2} \mathrm{C}$	-	-	-	-	-	-
26	-	$\begin{aligned} & \hline \text { PC6/ } \\ & \text { AIN6 } \\ & \hline \end{aligned}$	I/O	$\begin{gathered} \text { GPIO/ } \\ \text { SA-ADC } \end{gathered}$	-	-	-	-	-	-	-	-	-
23	-	$\begin{aligned} & \hline \text { PC7/ } \\ & \text { AIN7 } \\ & \hline \end{aligned}$	I/O	$\begin{gathered} \hline \text { GPIO/ } \\ \text { SA-ADC } \end{gathered}$	-	-	-	-	-	-	-	-	-
31	-	PD0	I/O	GPIO/	-	-	-	-	-	-	-	-	-
2	-	PD1	I/O	GPIO/	-	-	-	-	-	-	-	-	-
10	-	PD2	I/O	GPIO	-	-	-	-	-	-	-	-	-
12	-	PD3	1/O	GPIO	-	-	-	-	-	-	-	-	-
13	-	PD4	I/O	GPIO	-	-	-	-	-	-	-	-	-
15	-	PD5	I/O	GPIO	-	-	-	-	-	-	-	-	-

*: TnTG = TETG, TFTG.
** : PmTG = PCTG, PDTG, PETG, PFTG.

PIN DESCRIPTION

Table 2. ML610Q111/ML610Q112 Pin Description

Pin name	I/O	Description	Primary Secondary Tertiary, Quaternary	Logic
System				
RESET_N	I	Reset input pin. When this pin is set to "L" level, system reset mode is set and the internal section is initialized. When this pin is set to "H" level subsequently, program execution starts. A pull-up resistor is internally connected.	Primary	Negative
CLKIN	I	High-speed clock input pin. This pin is used as the secondary function of PB6 pin and also as the tertiary function of PA2 pin.	Secondary, Tertiary	-
LSCLK	O	Low-speed clock output pin. This pin is used as the secondary function of PB7 pin and also as the tertiary function of the PA1.	Secondary, Tertiary	-
OUTCLK	O	High-speed clock output pin. This pin is used as the tertiary function of the PA0 and PB0 pin.	Tertiary	-
General Purpose Input/Output Port				
PA0 to PA2 PB0 to PB7 PC0 to PC7 PD0 to PD5	I/O	General-purpose input/output port. Since these pins have secondary, tertiary or quaternary functions, the pins cannot be used as a port when the secondary, tertiary or quaternary functions are used.	Primary	Positive
Synchronous Serial I/O				
SIN	I	Synchronous serial data input pin. This pin is used as the secondary function of PB3 pin.	Secondary	Positive
SCK	I/O	Synchronous serial clock input/output pin. This pin is used as the secondary function of PB5 pin.	Secondary	-
SOUT	O	Synchronous serial data output pin. This pin is used as the secondary function of PB4 pin.	Secondary	Positive
UART				
TXD0	O	UART0 data output pin. This pin is used as the tertiary function of the PB1 and PB4 pin.	Tertiary	Positive
RXD0	I	UART0 data input pin. This pin is used as the primary function of the PB0 and PB5 pin	Primary	Positive
TXD1	O	UART1 data output pin. This pin is used as the tertiary function of the PB3 pin and also the quaternary function of the PB1 and PB4 pin.	Tertiary Quaternary	Positive
RXD1	I	UART1 data input pin. This pin is used as the primary function of the PB2 and PB7 pin.	Primary	Positive
$\mathrm{I}^{2} \mathrm{C}$ Bus Interface				
SCL	I/O	Serial clock input/output. This pin is used as the tertiary function of the PB5 and the secondary function of the PC4 pin.	Tertiary Secondary	Positive
SDA	I/O	Serial data input/output. This pin is used as the tertiary function of the PB6 and the secondary function of the PC5 pin.	Tertiary Secondary	Positive
PWM				
PWMC	O	PWMC output pin. This pin is used as the secondary function of the PA0 and PB0 and also the quaternary function of the PB7 pin.	Secondary Quaternary	Positive/ Negative
PWMD	O	PWMD output pin. This pin is used as the secondary function of the PA1 and PB1 pin.	Secondary	Positive/ Negative
PWME	O	PWME output pin. This pin is used as the secondary function of the PA2 and PB2 pin.	Secondary	Positive/ Negative
PWMF0	O	PWMF0 output pin. This pin is used as the tertiary function of the PB7 and PC0 pin.	Tertiary	Positive/ Negative
PWMF1	O	PWMF1 output pin. This pin is used as the tertiary function of the PC1 and also the quaternary function of PB6 pin.	Tertiary/ Quaternary	Positive/ Negative

PWMF2	O	PWMF2 output pin. This pin is used as the tertiary function of the PC2 and also the quaternary function of the PB5 pin.	Tertiary/ Quaternary	Positive/ Negative
Pin name	I/O	Description	Primary Secondary Tertiary, Quaternary	Logic
External Interrupt				
EXIO to 2	I	External maskable interrupt input pins. Interrupt enable and edge selection can be performed for each bit by software. These pins are used as the primary functions of the PA0 - PA2 pins.	Primary	Positive/ negative
EXI4 to 7	I	External maskable interrupt input pins. Interrupt enable and edge selection can be performed for each bit by software. These pins are used as the primary functions of the PB0 - PB3 pins.	Primary	Positive/ negative
Timer				
TETE, TFTG	I	External clock input pin used for both Timer E and Timer F.These pins are used as the primary function of the PA0-PA2, PB0-PB7 pins.	Primary	-
TM90UT	O	Timer 9 output pin. This pin is used as the quaternary function of the PA0 and PC0 pin.	Quaternary	Positive
TMFOUT	O	Timer F output pin. This pin is used as the quaternary function of the PA1 and PC3 pin.	Quaternary	Positive
Successive approximation type A/D converter				
AIN0	I	Channel 0 analog input for successive approximation type A/D converter. This pin is used as the primary function of the PA0 pin.	Primary	-
AIN1	I	Channel 1 analog input for successive approximation type A/D converter. This pin is used as the primary function of the PA1 pin.	Primary	-
AIN2	I	Channel 2 analog input for successive approximation type A/D converter. This pin is used as the primary function of the PB0 pin.	Primary	-
AIN3	I	Channel 3 analog input for successive approximation type A/D converter. This pin is used as the primary function of the PB1 pin.	Primary	-
AIN4	I	Channel 4 analog input for successive approximation type A/D converter. This pin is used as the primary function of the PB6 pin.	Primary	-
AIN5	I	Channel 5 analog input for successive approximation type A/D converter. This pin is used as the primary function of the PB7 pin.	Primary	-
AIN6	I	Channel 6 analog input for successive approximation type A/D converter. This pin is used as the primary function of the PC6 pin.	Primary	-
AIN7	I	Channel 7 analog input for successive approximation type A/D converter. This pin is used as the primary function of the PC7 pin.	Primary	-
Comparator				
CMP0P	I	Non-inverting input for comparator0. This pin is used as the primary function of the PB4 pin.	Primary	-
CMP0M	I	Inverting input for comparator0. This pin is used as the primary function of the PB5 pin.	Primary	-
CMP0OUT	O	Output for comparator0. This pin is used as the quaternary function of the PA2 pin.	Quaternary	-
CMP1P	I	Non-inverting input for comparator1. This pin is used as the primary function of the PA1 pin.	Primary	-
CMP1OUT	O	Output for comparator1. This pin is used as the quaternary function of the PB0 pin.	Quaternary	-
TEST				
TEST	I/O	Input/output pin for testing. A pull-down resistor is internally connected.	-	Positive
TESTF	-	Test pin for flash memory. A pull-down resistor is internally connected.	-	-
Power Supply				
$\mathrm{V}_{\text {SS }}$	-	Negative power supply pin.	-	-
V_{DD}	-	Positive power supply pin.	-	-

TERMINATION OF UNUSED PINS

Table 3 shows methods of terminating the unused pins for ML610Q111/ML610Q112
Table 3. Termination of Unused Pins

Pin	Recommended pin termination
RESET_N	Open
TEST	Open
TESTF	Open
PA0 to PA2	Open
PB0 to PB7	Open
PC0 to PC7	Open
PD0 to PD5	Open
N.C.	Open

Note:

It is recommended to set the unused input ports and input/output ports to the inputs with pull-down resistors/pull-up resistors or the output mode since the supply current may become excessively large if the pins are left open in the high impedance input setting.

ELECTRICAL CHARACTERISTICS

- ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Condition	Rating	Unit
Power supply voltage	V_{DD}	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	C	
Input voltage	$\mathrm{V}_{\text {IN }}$	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	-0.3 to +7.0	V
Output voltage	$\mathrm{V}_{\text {OUT }}$	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Output current	$\mathrm{I}_{\text {OUT }}$	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Power dissipation	PD	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	-12 to +11	mA
Storage temperature	$\mathrm{T}_{\text {STG }}$	-	0.84	W

- RECOMMENDED OPERATING CONDITIONS

	$\left(\mathrm{V}_{\mathrm{Ss}}=0 \mathrm{~V}\right)$			
Parameter	Symbol	Condition	Range	Unit
Operating temperature $($ ambience $)$	T_{OP}	-	-40 to +105	${ }^{\circ} \mathrm{C}$
Operating voltage	V_{DD}	-	2.7 to 5.5	V

- FLASH MEMORY SPECIFICATION

				$\left(\mathrm{V}_{\mathrm{ss}}=0 \mathrm{~V}\right)$
Parameter	Symbol	Condition	Rating	Unit
Operating temperature (ambience)	TopF	At read	-40 to +105	${ }^{\circ} \mathrm{C}$
		At write/erase	-20 to +85	${ }^{\circ} \mathrm{C}$
Rewrite counts**	$\mathrm{C}_{\text {EPD }}$	Data flash memory (4KB)	6000	cycles
	$\mathrm{C}_{\text {EPP }}$	Program flash memory	80	
Erase unit	-	Chip-erase	Program flash and Data flash memory	-
	-	Block-erase (Program flash memory)	8	KB
	-	Block-erase (Data flash memory)	4	KB
	-	Sector-erase (Data flash memory)	1	KB
Erase time (max.)	-	Chip-erase/Block-erase/Sector-erase	100	ms
Write unit	-	-	1word(2bytes)	-
Write time (max.)	-	1word(2bytes)	40	$\mu \mathrm{S}$
Data retention ${ }^{\text {2 }}$	$Y_{\text {DR }}$	-	15	years

[^0]- security function: providing security ID for the protection of program code implemented in Flash memory
- accidental-write protection: providing special sequence to protect accidental write data to Flash memory. By writing "0FAx" and"0F5x" sequentially, before write/erase, writing one word is available just only one time.
- erase interrupt function: in the case of external interrupt during erasing flash memory, erase execution is suspended. And then the interrupt is activated. Please re-erase after interrupt execution.
- DC CHARACTERISTICS (Supply Current)

Parameter	Symbol	Condition	Rating			Unit	Measuring circuit
			Min.	Typ.	Max.		
Supply current 1	IDD1	CPU : In STOP state (All clock stop) $V_{D D}=5.0 \mathrm{~V}$	-	1	50	$\mu \mathrm{A}$	
Supply current 2	IDD2	CPU : In HALT state* (Only CR oscillation operates) $V_{D D}=5.0 \mathrm{~V}$	-	240	-	$\mu \mathrm{A}$	
Supply current 3	IDD3	CPU : CR32.768kHz operating state ${ }^{* 2}$ (Only CR oscillation operates) $V_{D D}=5.0 \mathrm{~V}$	-	250	-	$\mu \mathrm{A}$	1
Supply current 4	IDD4	$\begin{gathered} \text { CPU : CR8.192MHz } \\ \text { operating state*3 } \\ \text { (CR and PLL oscillation operate) } \\ V_{\mathrm{DD}}=5.0 \mathrm{~V} \\ \hline \end{gathered}$	-	4	6	mA	

[^1]- DC CHARACTERISTICS (VLS, Comparator)
$\left(\mathrm{V}_{\mathrm{DD}}=2.7\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$, unless otherwise specified $)$

Parameter	Symbol	Condition		Rating			Unit	Measuring circuit
				Min.	Typ.	Max.		
VLSO threshold voltage ($V_{D D}=$ fall)	Vvısof	$\mathrm{Ta}=25^{\circ} \mathrm{C}$		$\begin{gathered} \hline \text { Typ } \\ -3.0 \% \end{gathered}$	2.85	$\begin{gathered} \hline \text { Typ } \\ +3.0 \% \end{gathered}$	V	
		-		$\begin{gathered} \text { Typ } \\ -5.0 \% \end{gathered}$		$\begin{gathered} \text { Typ } \\ +5.0 \% \end{gathered}$		
VLS0 threshold voltage ($\mathrm{V}_{\mathrm{DD}}=$ rise)	VvLsor	$\mathrm{Ta}=25^{\circ} \mathrm{C}$		$\begin{gathered} \text { Typ } \\ -3.0 \% \end{gathered}$	2.92	$\begin{gathered} \text { Typ } \\ +3.0 \% \end{gathered}$		
		-		$\begin{gathered} \text { Typ } \\ -5.0 \% \end{gathered}$		$\begin{gathered} \text { Typ } \\ +5.0 \% \end{gathered}$		
VLS1 threshold voltage ($\mathrm{V}_{\mathrm{DD}}=\mathrm{fall}$)	VvLs1	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	VLS1=0	$\begin{gathered} \text { Typ } \\ -3.0 \% \end{gathered}$	3.3	$\begin{gathered} \text { Typ } \\ +3.0 \% \end{gathered}$		1
			VLS1=1		3.6			
			VLS1=2		3.9			
			VLS1=3		4.2			
		-	VLS1=0	$\begin{gathered} \text { Typ } \\ -5.0 \% \end{gathered}$	3.3	$\begin{gathered} \text { Typ } \\ +5.0 \% \end{gathered}$		
			VLS1=1		3.6			
			VLS1=2		3.9			
			VLS1=3		4.2			
Comparator0 In-phase input voltage range	$V_{\text {cmR }}$	-		0.1	-	$V_{\text {DD }}-1.5$	V	
Comparator0 hysteresis	$\mathrm{V}_{\text {HYSP }}$	$\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$		10	20	30	mV	
		$V_{D D}$		5	20	35		
Comparator0 Input offset voltage	$V_{\text {cmof }}$	$\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$		-	-	7		
Comparator Referencevoltage error*1	$\mathrm{V}_{\text {CMREF }}$	$\mathrm{Ta}=25^{\circ} \mathrm{C}$		-25	-	25		
		-		-50	-	50		

[^2]- DC CHARACTERISTICS (IO pins)
$\left(\mathrm{V}_{\mathrm{DD}}=2.7\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$, unless otherwise specified $)$

Parameter	Symbol	Condition	Rating			Unit	Measuring circuit
			Min.	Typ.	Max.		
Output voltage1 (TEST, PA0-2, PB0-7, PC0-7, PD0-5)	VOH1	$\begin{gathered} \mathrm{IOH}=-3.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=4.5 \mathrm{~V}^{\star 1} \\ \mathrm{Ta}=-40 \text { to } 85^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & V_{D D} \\ & -0.7 \end{aligned}$	-	-	V	2
		$\mathrm{IOH}=-3.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=4.5 \mathrm{~V}^{* 1}$	$\begin{aligned} & V_{D D} \\ & -0.8 \end{aligned}$	-	-		
	VOL1	$\begin{gathered} \mathrm{IOL}=+8.5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=4.5 \mathrm{~V}^{\star 1} \\ \mathrm{Ta}=-40 \text { to } 85^{\circ} \mathrm{C} \end{gathered}$	-	-	0.6		
		$\mathrm{IOL}=+8.5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=4.5 \mathrm{~V}^{* 1}$	-	-	0.7		
Output voltage2 (PB5, PB6 PC4, PC5)	VOL2	$1 \mathrm{OL}=+3.0 \mathrm{~mA}$	-	-	0.4		
Output leakage (PA0-2, PB0-7, PC0-7, PD0-5)	IOOH	$\mathrm{VOH}=\mathrm{V}_{\mathrm{DD}}$ (in high-impedance state)	-	-	1	$\mu \mathrm{A}$	3
	IOOL	$\mathrm{VOL}=\mathrm{V}_{\text {ss }}$ (in high-impedance state)	-1	-	-		
Input current 1 (RESET_N)	IIH1	$\mathrm{VIH} 1=\mathrm{V}_{\mathrm{DD}}$	-	-	1	$\mu \mathrm{A}$	4
	IIL1	$\mathrm{VIL} 1=\mathrm{V}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$	-650	-500	-350		
Input current 2 (TEST)	IIH2	$\mathrm{VIH2}=\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$	20	115	200		
	IIL2	$\mathrm{VIL2}=\mathrm{V}_{\text {Ss }}$	-1	-	-		
Input current 3 (PA0-2, PB0-7, PC0-7, PD0-5)	IIH3	$\mathrm{VIH} 3=\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$ (when pulled-down)	20	115	200		
	IIL3	$\mathrm{VIL3}=\mathrm{V}_{\text {SS }}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$ (when pulled-up)	-200	-100	-20		
	IIH3Z	VIH3 $=\mathrm{V}_{\mathrm{DD}}$ (in high-impedance stat)	-	-	1		
	IIL3Z	VIH3 $=$ V ${ }_{\text {SS }}$ (in high-impedance stat)	-1	-	-		

${ }^{* 1}$: When the one terminal output state.

$\left(\mathrm{V}_{\mathrm{DD}}=2.7\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$, unless otherwise specified $)$							
Parameter	Symbol	Condition	Rating			Unit	Measuring circuit
			Min.	Typ.	Max.		
Input voltage 1	VIH1	-	$\begin{gathered} 0.7 \\ \times V_{D D} \end{gathered}$	-	$V_{\text {DD }}$	V	2
PC0-7, PD0-5)	VIL1	-	0	-	$\begin{gathered} 0.3 \\ \times V_{D D} \end{gathered}$		
Input pin capacitance (PA0-2, PB0-7, PC0-7, PD0-5)	CIN	$\begin{aligned} & \mathrm{f}=10 \mathrm{kHz} \\ & \mathrm{Ta}=25^{\circ} \mathrm{C} \end{aligned}$	-	-	20	pF	-

- MEASURING CIRCUITS

Measuring circuit 1

$C_{V}: 1 \mu \mathrm{~F}$

Measuring circuit 3

Measuring circuit 2

Measuring circuit 4

*1: Input logic circuit to determine the specified measuring conditions.
*2: Measured at the specified output pins.
*3: Measured at the specified input pins.

- AC CHARACTERISTICS (Clock)

Parameter	Symbol	Condition	Rating			Unit
			Min.	Typ.	Max.	
32 kHz RC oscillation frequency	$\mathrm{f}_{\mathrm{RCL}}$	$\mathrm{Ta}=-20$ to $85^{\circ} \mathrm{C}$	$\begin{aligned} & \text { Typ. } \\ & -3 \% \end{aligned}$	32.768	$\begin{aligned} & \hline \text { Typ. } \\ & +3 \% \end{aligned}$	kHz
		-	$\begin{aligned} & \text { Typ. } \\ & -4 \% \end{aligned}$		$\begin{aligned} & \text { Typ. } \\ & +4 \% \end{aligned}$	
PLL oscillation frequency *1	ffLL	$\mathrm{Ta}=-20$ to $85^{\circ} \mathrm{C}$	$\begin{aligned} & \text { Typ. } \\ & -3 \% \end{aligned}$	16.384	$\begin{aligned} & \text { Typ. } \\ & +3 \% \\ & \hline \end{aligned}$	MHz
		-	$\begin{aligned} & \text { Typ. } \\ & -4 \% \end{aligned}$		$\begin{aligned} & \text { Typ. } \\ & +4 \% \end{aligned}$	

${ }^{* 1}: 1024$ clock average. Maximum CPU clock frequency is $\mathrm{f}_{\text {PLL }} / 2$.

- AC CHARACTERISTICS (Power on / Reset sequence)

Parameter	Symbol	Condition	Rating			Unit
			Min.	Typ.	Max.	
Reset pulse width	$\mathrm{P}_{\text {RST }}$	-	100	-	-	$\mu \mathrm{s}$
Reset noise elimination pulse width	$P_{\text {NRSt }}$	-	-	-	0.4	
Power-on reset activation power rise time	$\mathrm{T}_{\text {POR }}$	-	-	-	10	

External Reset sequence

- AC CHARACTERISTICS (External Interrupt)

Parameter	Symbol	Condition	Rating			Unit
			Min.	Typ.	Max.	
External interrupt disable period	T NuL	Interrupt: Enabled (MIE = 1), CPU: NOP operation	$\begin{array}{r} \hline 2.5 x \\ \text { sysclk } \end{array}$	-	$\begin{gathered} 3.5 \times \\ \text { sysclk } \end{gathered}$	φ

- AC CHARACTERISTICS (Synchronous Serial Port)
$\left(\mathrm{V}_{\mathrm{DD}}=2.7\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$, unless otherwise specified)

Parameter	Symbol	Condition	Rating			Unit
			Min.	Typ.	Max.	
SCK input cycle (slave mode)	$\mathrm{tscyc}^{\text {c }}$	When high-speed oscillation is not active	10	-	-	$\mu \mathrm{s}$
		When high-speed oscillation is active	500	-	-	ns
SCKoutput cycle (master mode)	tscyc	-	-	SCK ${ }^{* 1}$	-	s
SCK input pulse width (slave mode)	tsw	When high-speed oscillation is not active	4	-	-	$\mu \mathrm{S}$
		When high-speed oscillation is active	200	-	-	ns
SCK output pulse width (master mode)	tsw	-	$\begin{aligned} & \hline \mathrm{t}_{\mathrm{ccyc}} \\ & \times 0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} \mathrm{t}_{\mathrm{scyc}} \\ \times 0.5 \\ \hline \end{array}$	$\begin{gathered} \hline \mathrm{t}_{\text {scyc }} \\ \times 0.6 \\ \hline \end{gathered}$	s
SOUT output delay (slave mode)	$t_{\text {SD }}$	-	-	-	180	ns
SOUT output delay (master mode)	$t_{\text {SD }}$	-	-	-	80	ns
SIN input setup time (slave mode)	tss	-	50	-	-	ns
SIN input hold time	$\mathrm{tsH}_{\text {S }}$	-	50	-	-	ns

${ }^{{ }^{1}}$: Clock period selected with S0CK3-0 of the serial port 0 mode register(SIOOMOD1)

- AC CHARACTERISTICS ($\mathrm{I}^{2} \mathrm{C}$ Bus Interface: Standard Mode 100 kHz)
($\mathrm{V}_{\mathrm{DD}}=2.7$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$, unless otherwise specified)

Parameter	Symbol	Condition	Rating			Unit
			Min.	Typ.	Max.	
SCL clock frequency	fsCL	-	0	-	100	kHz
SCL hold time (start/restart condition)	thd:STA	-	4.0	-	-	$\mu \mathrm{s}$
SCL"L" level time	tow	-	4.7	-	-	us
SCL"H" level time	$\mathrm{t}_{\text {HIGH }}$	-	4.0	-	-	us
SCL setup time (restart condition)	$\mathrm{t}_{\text {su:STA }}$	-	4.7	-	-	$\mu \mathrm{S}$
SDA hold time	$\mathrm{t}_{\text {HD: }}$ DAT	-	0	-	-	$\mu \mathrm{s}$
SDA setup time	tsu:DAT	-	0.25	-	-	$\mu \mathrm{s}$
SDA setup time (stop condition)	tsu:sto	-	4.0	-	-	$\mu \mathrm{S}$
Bus-free time	$\mathrm{t}_{\text {BUF }}$	-	4.7	-	-	$\mu \mathrm{s}$

- AC CHARACTERISTICS (I²C Bus Interface: Fast Mode 400 kHz)

Parameter		$\left(\mathrm{V}_{\mathrm{DD}}=2.7\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{Tj}=-40$ to $+105^{\circ} \mathrm{C}$, unless otherwise specified)				
	Symbol	Condition	Rating			Unit
			Min.	Typ.	Max.	
SCL clock frequency	$\mathrm{f}_{\mathrm{SCL}}$	-	0	-	400	kHz
SCL hold time (start/restart condition)	$t_{\text {HD:STA }}$	-	0.6	-	-	$\mu \mathrm{S}$
SCL"L" level time	tLow	-	1.3	-	-	$\mu \mathrm{s}$
SCL"H" level time	$\mathrm{t}_{\text {HIGH }}$	-	0.6	-	-	$\mu \mathrm{S}$
SCL setup time (restart condition)	$\mathrm{t}_{\text {Su:STA }}$	-	0.6	-	-	$\mu \mathrm{S}$
SDA hold time	$\mathrm{t}_{\mathrm{HD}: \text { DAT }}$	-	0	-	-	$\mu \mathrm{s}$
SDA setup time	$\mathrm{t}_{\text {SU:DAT }}$	-	0.1	-	-	$\mu \mathrm{s}$
SDA setup time (stop condition)	$\mathrm{t}_{\text {su: }}$ Sto	-	0.6	-	-	$\mu \mathrm{S}$
Bus-free time	$\mathrm{t}_{\text {BUF }}$	-	1.3	-	-	$\mu \mathrm{S}$

start condition
restart condition
stop condition

SDA

SCL

- Electrical Characteristics of Successive Approximation Type A/D Converter

Parameter	Symbol	Condition	Rating			Unit
			Min.	Typ.	Max.	
Resolution	n	-	-	-	10	bit
Integral non-linearity error	INL	-	-4	-	+4	LSB
Differential non-linearity error	DNL	-	-3	-	+3	
Zero-scale error	VofF	-	-4	-	+4	
Full-scale error	FSE	-	-4	-	+4	
Conversion time	$\mathrm{t}_{\text {conv }}$	-	-	102	-	φ / CH

PACKAGE DIMENSIONS

- ML610Q111-xxxTD

NOTES:

1. LPAD TIDTH DOFS NOT INCLLDD TRIM OFFSET.
2. PACKAGB IIDTH AND LENGTH DO NOT INCLIDE MOLD PROTRUSION, DIEPAD SLPPORT PROTRUSION AND CAVITY OFFSET BETEEEN TOP AND BOTTOM CAYITY.
3. the seating plane is tie surface wiich tie package

IS HOUNTED ON AND GETS IN CONTACT HITH.

LAPIS Semiconductor Co. Ltd.			
PACKAGE CODE	P-TSSOP20-0225-0. 65-TK6		
PACKAGE MATERIAL	EPOXY RESIN	UNIT	mm
LEAD FLAME MATERIAL.	Cu ALLOY	DWG No.	QSL-68909
LBAD FINISH	Sn	REVISION	1
SOLDER THICKNESS	MORE THAN $5 \mu \mathrm{~m}$	1st ISSUE	Feb/04/2013
PACKAGE MASS (g)	$0.08 T Y P$.	REVISED	

Figure 4 TSSOP20

- ML610Q112-xxxTC

Figure 5 LQFP32

- Notes for Mounting the Surface Mount Type Package

The surface mount type packages are very susceptible to heat in reflow mounting and humidity absorbed in storage. Therefore, before you perform reflow mounting, contact ROHM's responsible sales person for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

REVISION HISTORY

		Page		
Document No.	Date	Previous Edition	Current Edition	Description
FEDL610Q111-01	2013.9 .26	-	-	Final edition 1

NOTES

No copying or reproduction of this document, in part or in whole, is permitted without the consent of LAPIS Semiconductor Co., Ltd.
The content specified herein is subject to change for improvement without notice.
Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.
Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, LAPIS Semiconductor shall bear no responsibility for such damage.
The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. LAPIS Semiconductor does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by LAPIS Semiconductor and other parties. LAPIS Semiconductor shall bear no responsibility whatsoever for any dispute arising from the use of such technical information.
The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).
The Products specified in this document are not designed to be radiation tolerant.
While LAPIS Semiconductor always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons.
Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. LAPIS Semiconductor shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual.
The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). LAPIS Semiconductor shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing.
If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.

Copyright 2013 LAPIS Semiconductor Co., Ltd.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for 8 -bit Microcontrollers - MCU category:
Click to view products by ROHM manufacturer:
Other Similar products are found below :

```
CY8C20524-12PVXIT MB95F012KPFT-G-SNE2 MB95F013KPMC-G-SNE2 MB95F263KPF-G-SNE2 MB95F264KPFT-G-SNE2
MB95F398KPMC-G-SNE2 MB95F478KPMC2-G-SNE2 MB95F564KPF-G-SNE2 MB95F636KWQN-G-SNE1 MB95F696KPMC-G-SNE2
MB95F698KPMC2-G-SNE2 MB95F698KPMC-G-SNE2 MB95F818KPMC1-G-SNE2 901015X CY8C3MFIDOCK-125 403708R
MB95F354EPF-G-SNE2 MB95F564KWQN-G-SNE1 MB95F636KP-G-SH-SNE2 MB95F694KPMC-G-SNE2 MB95F778JPMC1-G-SNE2
MB95F818KPMC-G-SNE2 LC87F0G08AUJA-AH CP8361BT CG8421AF MB95F202KPF-G-SNE2 DF36014FPV 5962-8768407MUA
MB95F318EPMC-G-SNE2 MB94F601APMC1-GSE1 MB95F656EPF-G-SNE2 LC78615E-01US-H LC87F5WC8AVU-QIP-H
MB95F108AJSPMC-G-JNE1 73S1210F-68M/F/PJ MB89F538-101PMC-GE1 LC87F7DC8AVU-QIP-H MB95F876KPMC-G-SNE2
MB88386PMC-GS-BNDE1 LC87FBK08AU-SSOP-H LC87F2C64AU-QFP-H MB95F636KNWQN-G-118-SNE1 MB95F136NBSTPFV-GS-
N2E1 LC87F5NC8AVU-QIP-E CY8C20324-12LQXIT LC87F76C8AU-TQFP-E CG8581AA LC87F2G08AU-SSOP-E CP8085AT
ATTINY3224-SSU
```


[^0]: ${ }^{* 1}$: Rewrite counts is counted as one even if you erase suspend.
 ${ }^{* 2}$: However, keep active time of the LSI from exceeding ten years.
 In addition, following capability of Flash memory is available;

[^1]: ${ }^{* 1}$: LTBC and WDT are operating ,and significant bits of BLKCON0 to BLKCON7 registers are all "1".
 \star^{2} : When the CPU operating rate is 100%. Minimum instruction execution time: Approx $30.52 \mu \mathrm{~S}$ (at 32.768 kHz system clock)
 \star^{3} : When the CPU operating rate is 100%. Minimum instruction execution time: Approx 122 ns (at 8.192 MHz system clock)

[^2]: ${ }^{\star 1}$:Comparator input offset voltage is included.

