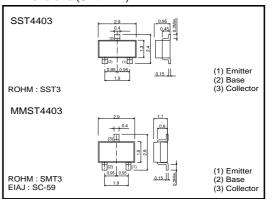
PNP Medium Power Transistor (Switching)

SST4403 / MMST4403

●Features

- 1) BVcEo = -40V (Min.); at Ic= -1mA
- 2) Complements the SST4401 / MMST4401

Package, marking, and packaging specifications


Part No.	SST4403	MMST4403
Packaging type	SST3	SMT3
Marking	R2T	R2T
Code	T116	T146
Basic ordering unit (pieces)	3000	3000

● Absolute maximum ratings (Ta=25°C)

Parameter	Symbol	Limits	Unit	
Collector-base voltage	Vсво	-40	V	
Collector-emitter voltage	Vceo	-40	V	
Emitter-base voltage	VEBO	-6	V	
Collector current	lc	-0.6	Α	
Collector power	Pc	0.2	w	
dissipation		0.35	w	
Junction temperature	Tj	150	°C	
O:				

* Mounted on a 7×5×0.6mm CERAMIC SUBSTRATE

●Dimensions (Unit: mm)

●Electrical characteristics (Ta=25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Collector-base breakdown voltage	ВУсво	-40	-	-	V	Ic=-100μA
Collector-emitter breakdown voltage	BVceo	-40	-	-	V	Ic=-1mA
Emitter-base breakdown voltage	ВVево	-5	-	-	V	Iε=-100μA
Collector cutoff current	Ісво	-	-	-0.1	μΑ	VcB=-35V
Emitter cutoff current	Ієво	-	-	-0.1	μΑ	V _{EB} =-5V
Collector-emitter saturation voltage	VCE(sat)	-	-	-0.4	٧	Ic/I _B =-150mA/-15mA
		-	-	-0.75		Ic/I _B =-500mA/-50mA
Base-emitter saturation voltage	V _{BE} (sat)	-0.75	-	-0.95	٧	Ic/I _B =-150mA/-15mA
		-	-	-1.3		Ic/I _B =-500mA/-50mA
DC current transfer ratio	hre	30	-	-	-	VcE=-1V, Ic=-0.1mA
		60	-	-		VcE=-1V, Ic=-1mA
		100	-	-		VcE=-1V, Ic=-10mA
		100	-	300		Vc=-1V, lc=-150mA
		20	-	-		Vc=-2V, Ic=-500mA
Transition frequency	f⊤	200	-	-	MHz	Vc=-10V, I=20mA, f=100MHz
Collector output capacitance	Cob	-	-	8.5	pF	VcB=-10V, f=100kHz
Emitter input capacitance	Cib	-	-	30	pF	V _{EB} =-0.5V, f=100kHz
Delay time	td	-	-	15	ns	Vcc=-30V, Veb(off)=-2V, Ic=-150mA, Ib1=-15mA
Rise time	tr	-	-	20	ns	Vcc=-30V, Veb(off)=-2V, Ic=-150mA, Ib1=-15mA
Storage time	tstg	-	-	225	ns	Vcc=-30V, lc=-150mA, l _{B1} =-l _{B2} =-15mA
Fall time	tf	-	-	30	ns	Vcc=-30V, Ic=-150mA, I _{B1} =-I _{B2} =-15mA

•Electrical characteristic curves

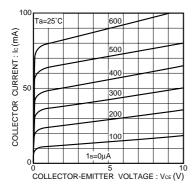


Fig.1 Grounded emitter output characteristics

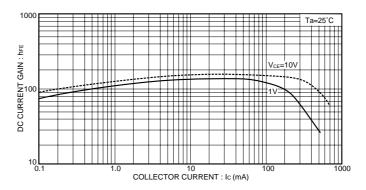


Fig.3 DC current gain vs. collector current (1)

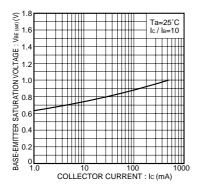


Fig.2 Base-emitter saturation voltage vs. collector current

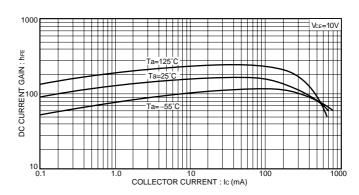


Fig.4 DC current gain vs. collector current (II)

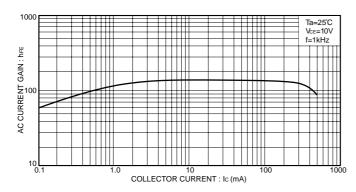


Fig.5 AC current gain vs. collector current

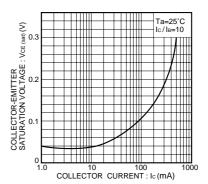


Fig.6 Collector-emitter saturation voltage vs. collector current

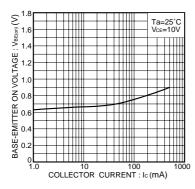


Fig.7 Grounded emitter propagation characteristics

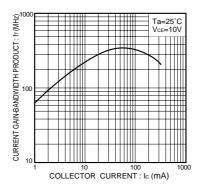


Fig.8 Gain bandwidth product vs. collector current

Fig.9 Gain bandwidth product

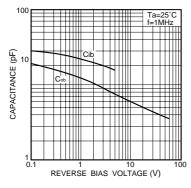


Fig.10 Input /output capacitance vs. voltage

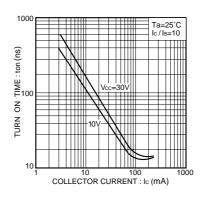


Fig.11 Turn-on time vs.collector current

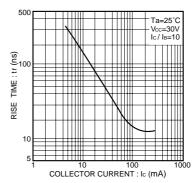


Fig.12 Rise time vs. collector current

Fig.13 Storage time vs. collector current

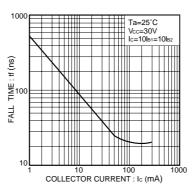


Fig.14 Fall time vs. collector current

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any
 means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the
 product described in this document are for reference only. Upon actual use, therefore, please request
 that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard
 use and operation. Please pay careful attention to the peripheral conditions when designing circuits
 and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
 otherwise dispose of the same, no express or implied right or license to practice or commercially
 exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

It is our top priority to supply products with the utmost quality and reliability. However, there is always a chance of failure due to unexpected factors. Therefore, please take into account the derating characteristics and allow for sufficient safety features, such as extra margin, anti-flammability, and fail-safe measures when designing in order to prevent possible accidents that may result in bodily harm or fire caused by component failure. ROHM cannot be held responsible for any damages arising from the use of the products under conditions out of the range of the specifications or due to non-compliance with the NOTES specified in this catalog.

Thank you for your accessing to ROHM product informations.

More detail product informations and catalogs are available, please contact your nearest sales office.

ROHM Customer Support System

THE AMERICAS / EUPOPE / ASIA / JAPAN

www.rohm.com

Contact us : webmaster @ rohm.co.jp

Copyright © 2007 ROHM CO.,LTD.

ROHM CO., LTD. 21, Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan

FAX:+81-75-315-0172

TEL: +81-75-311-2121

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by ROHM manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H BC546/116 BC557/116 BSW67A NTE158 NTE187A NTE195A NTE2302 NTE2330 NTE63 C4460

2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA2126-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMMTA92QTA

2N2369ADCSM 2SC2412KT146S 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E

US6T6TR 732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H 873787E IMZ2AT108 UMX21NTR EMT2T2R MCH6102-TL-E

FP204-TL-E NJL0302DG 2N3583 2SA1434-TB-E 2SC3143-4-TB-E 2SD1621S-TD-E NTE103 30A02MH-TL-E NSV40301MZ4T1G

NTE101 NTE13 NTE15