

RGTH50TS65

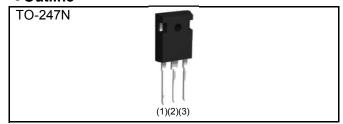
650V 25A Field Stop Trench IGBT

V_{CES}	650V
I _{C(100°C)}	25A
V _{CE(sat) (Typ.)}	1.6V
P_D	174W

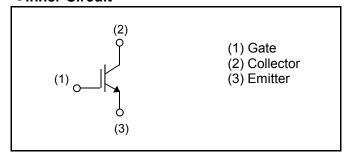
Features

- 1) Low Collector Emitter Saturation Voltage
- 2) High Speed Switching
- 3) Low Switching Loss & Soft Switching
- 4) Pb free Lead Plating; RoHS Compliant

Applications


PFC

UPS


Power Conditioner

ΙH

Outline

●Inner Circuit

Packaging Specifications

	Packaging	Tube
	Reel Size (mm)	-
Typo	Tape Width (mm)	-
Туре	Basic Ordering Unit (pcs)	450
	Packing code	C11
	Marking	RGTH50TS65

● Absolute Maximum Ratings (at T_C = 25°C unless otherwise specified)

Parameter		Symbol	Value	Unit
Collector - Emitter Voltage		V_{CES}	650	V
Gate - Emitter Voltage		V_{GES}	±30	V
Collector Current	T _C = 25°C	I _C	50	А
Collector Current	T _C = 100°C	I _C	25	А
Pulsed Collector Current		I _{CP} *1	100	А
Dower Dissination	T _C = 25°C	P _D	174	W
Power Dissipation	T _C = 100°C	P _D	87	W
Operating Junction Temperature		T _j	-40 to +175	°C
Storage Temperature		T _{stg}	-55 to +175	°C

^{*1} Pulse width limited by T_{jmax.}

●Thermal Resistance

Parameter	Symbol	Values			Unit
raiailletei		Min.	Тур.	Max.	Offic
Thermal Resistance IGBT Junction - Case	$R_{\theta(j-c)}$	ı	1	0.86	°C/W

ullet IGBT Electrical Characteristics (at T_j = 25°C unless otherwise specified)

Parameter	Symbol	Conditions	Values			Unit
Faranielei			Min.	Тур.	Max.	Offic
Collector - Emitter Breakdown Voltage	BV _{CES}	$I_{C} = 10 \mu A, V_{GE} = 0 V$	650	-	1	V
Collector Cut - off Current	I _{CES}	V _{CE} = 650V, V _{GE} = 0V	1	1	10	μΑ
Gate - Emitter Leakage Current	I _{GES}	$V_{GE} = \pm 30V, V_{CE} = 0V$	1	-	±200	nA
Gate - Emitter Threshold Voltage	$V_{GE(th)}$	$V_{CE} = 5V, I_{C} = 17.5 \text{mA}$	4.5	5.5	6.5	V
Collector - Emitter Saturation Voltage	V _{CE(sat)}	$I_C = 25A, V_{GE} = 15V$ $T_j = 25^{\circ}C$ $T_j = 175^{\circ}C$	-	1.6 2.1	2.1 -	V

●IGBT Electrical Characteristics (at T_j = 25°C unless otherwise specified)

Parameter	Symbol	Conditions -	Values			Unit
Farameter	Syllibol		Min.	Тур.	Max.	Offic
Input Capacitance	C _{ies}	V _{CE} = 30V	-	1410	-	
Output Capacitance	C _{oes}	V _{GE} = 0V	-	57	-	pF
Reverse Transfer Capacitance	C _{res}	f = 1MHz	-	22	-	
Total Gate Charge	Q_g	V _{CE} = 300V	-	49	-	
Gate - Emitter Charge	Q_ge	I _C = 25A	-	15	-	nC
Gate - Collector Charge	Q_{gc}	V _{GE} = 15V	-	19	-	
Turn - on Delay Time	t _{d(on)}	I _C = 25A, V _{CC} = 400V	-	27	-	
Rise Time	t _r	$V_{GE} = 15V, R_{G} = 10\Omega$	-	38	-	
Turn - off Delay Time	t _{d(off)}	T _j = 25°C	-	94	-	ns
Fall Time	t _f	Inductive Load	-	50	-	
Turn - on Delay Time	t _{d(on)}	I _C = 25A, V _{CC} = 400V	-	27	-	
Rise Time	t _r	$V_{GE} = 15V, R_G = 10\Omega$	-	38	-	
Turn - off Delay Time	t _{d(off)}	T _j = 175°C	-	107	-	ns
Fall Time	t _f	Inductive Load	-	65	-	
		I _C = 100A, V _{CC} = 520V				
Reverse Bias Safe Operating Area	RBSOA	$V_P = 650V, V_{GE} = 15V$	FU	LL SQUA	RE	-
		$R_G = 60\Omega, T_j = 175^{\circ}C$				

•Electrical Characteristic Curves

Fig.1 Power Dissipation vs. Case Temperature

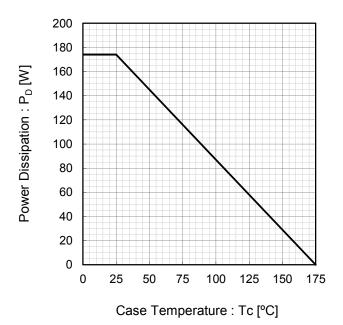


Fig.2 Collector Current vs. Case Temperature

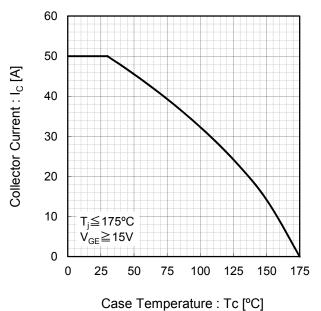


Fig.3 Forward Bias Safe Operating Area

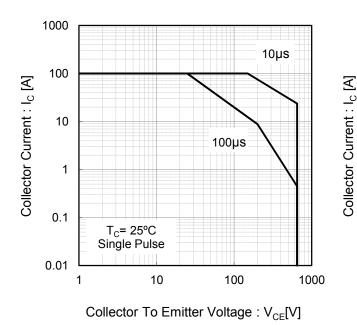
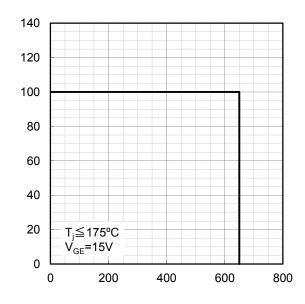



Fig.4 Reverse Bias Safe Operating Area

Collector To Emitter Voltage : $V_{CE}[V]$

• Electrical Characteristic Curves

Fig.5 Typical Output Characteristics

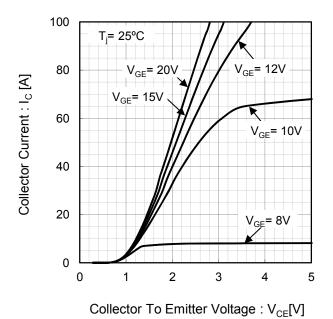


Fig.6 Typical Output Characteristics

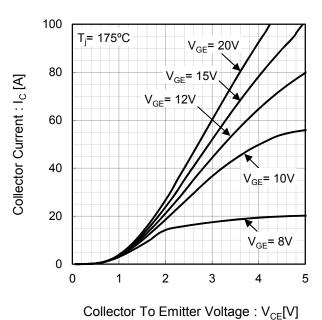


Fig.7 Typical Transfer Characteristics

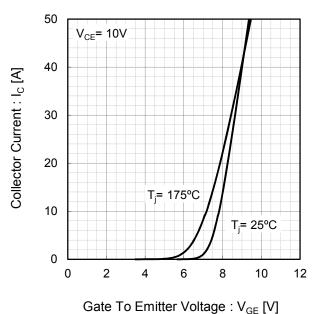
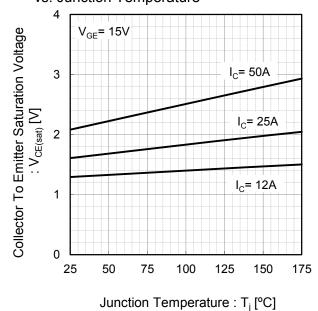



Fig.8 Typical Collector To Emitter Saturation Voltage vs. Junction Temperature

Electrical Characteristic Curves

Fig.9 Typical Collector To Emitter Saturation Voltage vs. Gate To Emitter Voltage

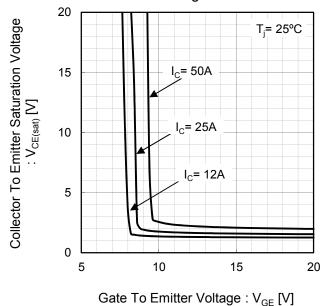
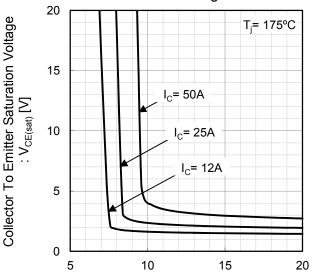



Fig. 10 Typical Collector To Emitter Saturation Voltage vs. Gate To Emitter Voltage

Gate To Emitter Voltage : $V_{GE}[V]$

Fig.11 Typical Switching Time vs. Collector Current

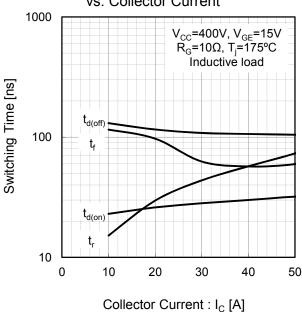
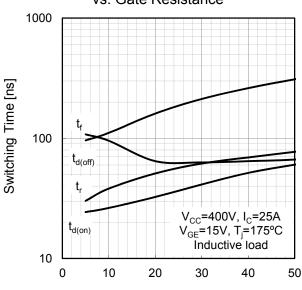



Fig.12 Typical Switching Time vs. Gate Resistance

Gate Resistance : $R_G[\Omega]$

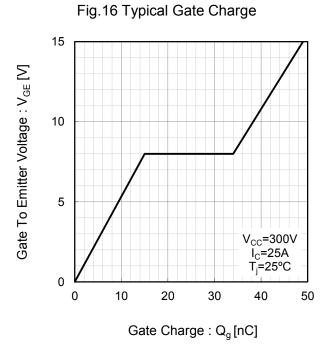

• Electrical Characteristic Curves

Fig.13 Typical Switching Energy Losses vs. Collector Current 10 Switching Energy Losses [mJ] 1 $\mathsf{E}_{\mathsf{off}}$ E_{or} 0.1 V_{CC} =400V, V_{GE} =15V R_G=10 Ω , T_j=175°C Inductive load 0.01 0 10 20 30 40 50 Collector Current : I_C [A]

vs. Gate Resistance 10 Switching Energy Losses [mJ] $\mathsf{E}_{\mathsf{off}}$ 1 0.1 V_{CC}=400V, I_C=25A V_{GE}=15V, T_j=175°C Inductive load 0.01 0 10 20 30 40 50 Gate Resistance : $R_G[\Omega]$

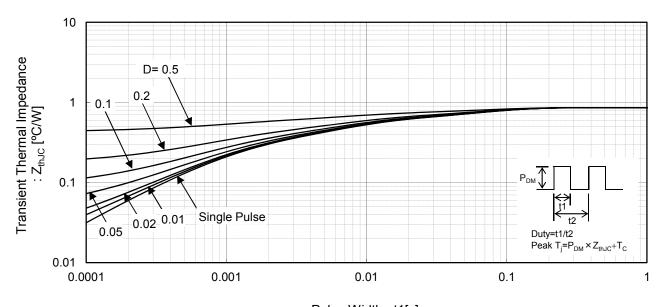

Fig.14 Typical Switching Energy Losses

Fig.15 Typical Capacitance vs. Collector To Emitter Voltage 10000 Cies 1000 Capacitance [pF] Coes 100 10 Cres f=1MHz V_{GE}=0V 25°C 0.01 0.1 1 10 100 Collector To Emitter Voltage : V_{CE}[V]

•Electrical Characteristic Curves

Fig.17 IGBT Transient Thermal Impedance

Pulse Width : t1[s]

●Inductive Load Switching Circuit and Waveform

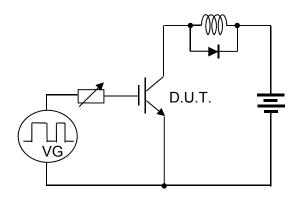


Fig.18 Inductive Load Circuit

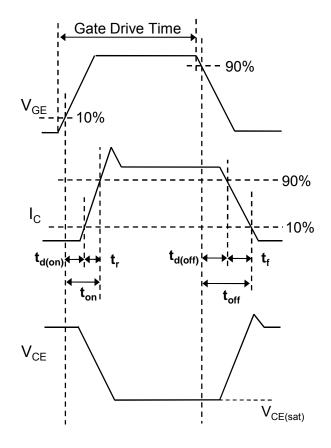


Fig.19 Inductive Load Waveform

Notes

- 1) The information contained herein is subject to change without notice.
- Before you use our Products, please contact our sales representative and verify the latest specifications:
- 3) Although ROHM is continuously working to improve product reliability and quality, semiconductors can break down and malfunction due to various factors. Therefore, in order to prevent personal injury or fire arising from failure, please take safety measures such as complying with the derating characteristics, implementing redundant and fire prevention designs, and utilizing backups and fail-safe procedures. ROHM shall have no responsibility for any damages arising out of the use of our Poducts beyond the rating specified by ROHM.
- 4) Examples of application circuits, circuit constants and any other information contained herein are provided only to illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.
- 5) The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM or any other parties. ROHM shall have no responsibility whatsoever for any dispute arising out of the use of such technical information.
- 6) The Products specified in this document are not designed to be radiation tolerant.
- 7) For use of our Products in applications requiring a high degree of reliability (as exemplified below), please contact and consult with a ROHM representative: transportation equipment (i.e. cars, ships, trains), primary communication equipment, traffic lights, fire/crime prevention, safety equipment, medical systems, servers, solar cells, and power transmission systems.
- 8) Do not use our Products in applications requiring extremely high reliability, such as aerospace equipment, nuclear power control systems, and submarine repeaters.
- 9) ROHM shall have no responsibility for any damages or injury arising from non-compliance with the recommended usage conditions and specifications contained herein.
- 10) ROHM has used reasonable care to ensur the accuracy of the information contained in this document. However, ROHM does not warrants that such information is error-free, and ROHM shall have no responsibility for any damages arising from any inaccuracy or misprint of such information.
- 11) Please use the Products in accordance with any applicable environmental laws and regulations, such as the RoHS Directive. For more details, including RoHS compatibility, please contact a ROHM sales office. ROHM shall have no responsibility for any damages or losses resulting non-compliance with any applicable laws or regulations.
- 12) When providing our Products and technologies contained in this document to other countries, you must abide by the procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US Export Administration Regulations and the Foreign Exchange and Foreign Trade Act.
- 13) This document, in part or in whole, may not be reprinted or reproduced without prior consent of ROHM.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/

RGTH50TS65 - Web Page

Distribution Inventory

Part Number	RGTH50TS65
Package	TO-247N
Unit Quantity	450
Minimum Package Quantity	450
Packing Type	Bulk
Constitution Materials List	inquiry
RoHS	Yes

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for IGBT Transistors category:

Click to view products by ROHM manufacturer:

Other Similar products are found below:

 748152A
 APT20GT60BRDQ1G
 NGTB10N60FG
 IGP30N60H3XKSA1
 STGFW20V60DF
 APT30GP60BG
 APT45GR65B2DU30

 GT50JR22(STA1ES)
 TIG058E8-TL-H
 VS-CPV364M4KPBF
 NGTB25N120FL2WAG
 NGTG40N120FL2WG
 RJH60F3DPQ-A0#T0

 APT40GR120B2SCD10
 APT15GT120BRG
 APT20GT60BRG
 NGTB75N65FL2WAG
 NGTG15N120FL2WG
 IXA30RG1200DHGLB

 IXA40RG1200DHGLB
 APT70GR65B2DU40
 NTE3320
 IHFW40N65R5SXKSA1
 APT70GR120J
 APT35GP120JDQ2

 IKFW40N65ES5XKSA1
 IMBG120R220M1HXTMA1
 XD15H120CX1
 XD25H120CX0
 XP15PJS120CL1B1
 IGW30N60H3FKSA1

 STGWA8M120DF3
 IGW08T120FKSA1
 IGW75N60H3FKSA1
 HGTG40N60B3
 FGH60N60SMD_F085
 FGH75T65UPD

 STGWA15H120F2
 IKA10N60TXKSA1
 IKW25N120T2FKSA1
 IKP20N60TXKSA1
 IHW20N65R5XKSA1
 IDW40E65D2FKSA1

 APT70GR120JD60
 AOD5B60D
 STGWT60H65FB
 STGWT60H65DFB
 STGWT40V60DF
 STGWT20V60DF
 STGB10NB37LZT4