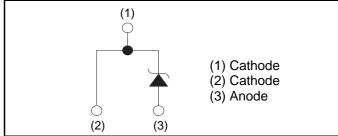
SiC Schottky Barrier Diode

Datasheet


V_R	1200V
I _F	20A
Q_{C}	65nC

●Outline TO-220AC (1) (2) (3)

Features

- 1) Shorter recovery time
- 2) Reduced temperature dependence
- 3) High-speed switching possible

●Inner circuit

Applications

- PFC Boost Topology
- Secondary Side Rectification
- Data Center
- PV Power Conditioners

Packaging specifications

	ging opcomouncing	
	Packaging	Tube
	Reel size (mm)	-
Typo	Tape width (mm)	-
Туре	Basic ordering unit (pcs)	50
	Packing code	С
	Marking	SCS220KG

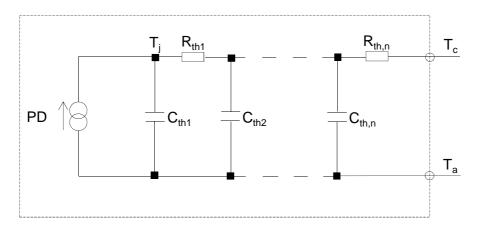
● Absolute maximum ratings (T_i = 25°C)

Parameter		Symbol	Value	Unit
Reverse voltage (repetitive peak)		V_{RM}	1200	V
Reverse voltage (D	C)	V_R	1200	V
Continuous forward	current (T _c = 133°C)	I _F	20	А
Surge non-			79	А
repetitive forward	PW=10ms sinusoidal, T _j =150°C	I_{FSM}	59	А
current	PW=10μs square, T _j =25°C		310	А
Repetitive peak forward current		I _{FRM}	83 ^{*1}	А
$i^{2}t \text{ value}$ $PW=10\text{ms}, T_{j}=25^{\circ}\text{C}$ $PW=10\text{ms}, T_{j}=150^{\circ}\text{C}$		$\int i^2 dt$	31	A ² s
		J i⁻dt	17	A ² s
Total power dissipation		P_D	210 ^{*2}	W
Junction temperature		T _j	175	°C
Range of storage temperature		T _{stg}	-55 to +175	°C

^{*1} T_c=100°C, T_i=150°C, Duty cycle=10% *2 T_c=25°C

●Electrical characteristics (T_j = 25°C)

Parameter	Symbol	Conditions	Values			Linit
			Min.	Тур.	Max.	Unit
DC blocking voltage	V_{DC}	I _R =0.4mA	1200	-	-	V
Forward voltage	V _F	I _F =20A,T _j =25°C	-	1.4	1.6	V
		I _F =20A,T _j =150°C	-	1.8	-	V
		I _F =20A,T _j =175°C	-	1.9	-	V
Reverse current	I _R	V _R =1200V,T _j =25°C	-	20	400	μΑ
		V _R =1200V,T _j =150°C	-	160	-	μΑ
		V _R =1200V,T _j =175°C	-	260	-	μΑ
Total capacitance	С	V _R =1V,f=1MHz	-	1050	-	pF
		V _R =800V,f=1MHz	-	85	-	pF
Total capacitive charge	Q _C	V _R =800V,di/dt=500A/μs	-	65	-	nC
Switching time	t _C	V _R =800V,di/dt=500A/μs	-	18	-	ns


●Thermal characteristics

Parameter	Symbol	Conditions	Values			Unit
			Min.	Тур.	Max.	UIIIL
Thermal resistance	$R_{\text{th(j-c)}}$	-	-	0.62	0.71	°C/W

● Typical Transient Thermal Characteristics

Symbol	Value	Unit
R _{th1}	1.59E-01	
R _{th2}	2.74E-01	K/W
R _{th3}	1.87E-01	

Symbol	Value	Unit
C_{th1}	5.03E-03	
C_{th2}	7.27E-03	Ws/K
C_{th3}	1.39E-01	

•Electrical characteristic curves

Fig.1 V_F - I_F Characteristics

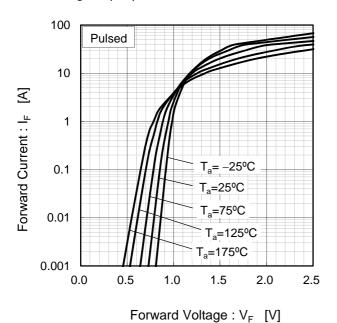
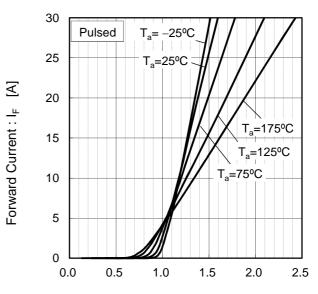



Fig.2 V_F - I_F Characteristics

Forward Voltage : V_F [V]

Fig.3 V_R - I_R Characteristics

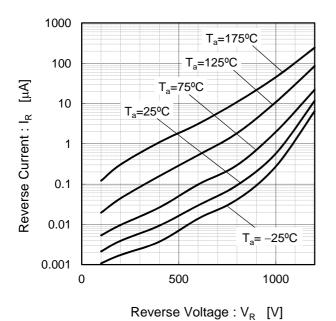
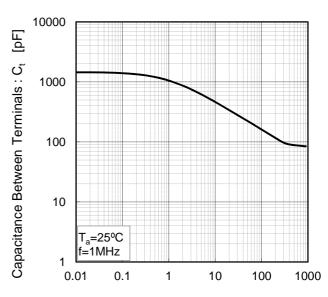
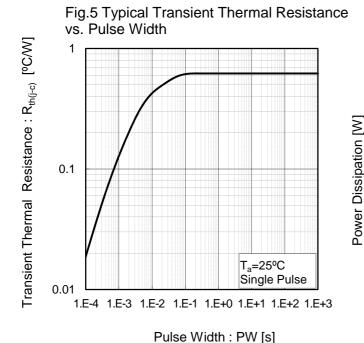



Fig.4 V_R - C_t Characteristics



Reverse Voltage : V_R [V]

175

150

Electrical characteristic curves

250 200 150 100

Fig.6 Power Dissipation

50

25

50

75

Case Temperature : T_c [°C]

125

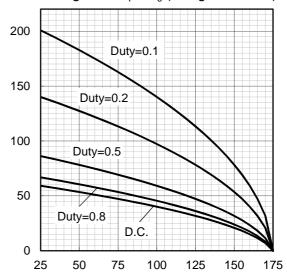
100

Fig.7*3 Maximum peak forward current derating curve I_P - T_c 200 Peak Forward Current : Ip [A] 150 Duty=0.1 100 Duty=0.2

Case Temperature : T_c [°C] *3 Based on max Vf, max R_{th(j-c)} Valid for switching of above 10kHz, excluding D.C. curve.

100

125


150

175

D.C

75

Fig.8*4 Typical peak forward current derating curve I_P - T_c (Not guaranteed)

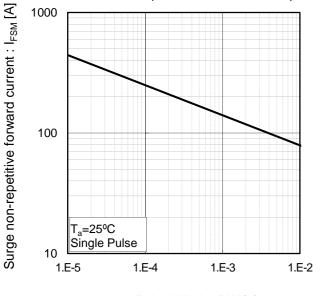
Case Temperature : T_c [°C] *4 Based on typ Vf, typ $R_{th(j-c)}$ Typical value, not guaranteed Valid for switching of above 10kHz, excluding D.C. curve

Duty=0.5

Duty=0.8

50

50


0

25

Peak Forward Current : IP [A]

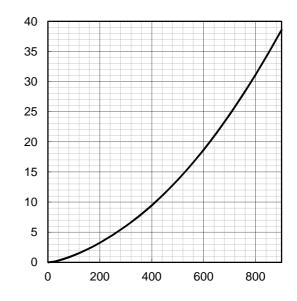
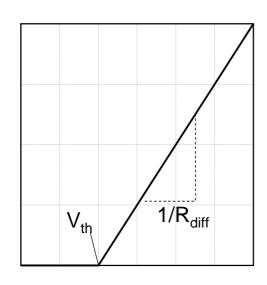

•Electrical characteristic curves

Fig.9 Surge non-repetitive forward current vs. Pulse width (Sinusoidal waveform)

Pulse Width: PW [s]

Fig.10 Typical capacitance store energy



Capacitance stored energy : $\mathsf{E}_\mathsf{C}[\mu J]$

Reverse Voltage: V_R [V]

•Symplified forward characteristic model

Fig.11 Equivalent forward current curve

Forward Voltage: V_F

$$V_F = V_{th} + R_{diff} I_F$$

$$V_{th} (T_j) = a_0 + a_1 T_j$$

 $R_{diff} (T_j) = b_0 + b_1 T_j + b_2 T_j^2$

Symbol	Typical Value	Unit
a ₀	9.93E-01	V
a ₁	-1.27E-03	V/°C
b ₀	1.83E-02	Ω
b ₁	1.03E-04	Ω/°C
b ₂	6.65E-07	$\Omega/^{\circ}C^{2}$

 T_i in ${}^{\circ}C$; -55 ${}^{\circ}C$ < T_i < ${}^{\circ}C$; I_F < 40 A

Forward Current: IF

Notes

- 1) The information contained herein is subject to change without notice.
- Before you use our Products, please contact our sales representative and verify the latest specifications:
- 3) Although ROHM is continuously working to improve product reliability and quality, semiconductors can break down and malfunction due to various factors.

 Therefore, in order to prevent personal injury or fire arising from failure, please take safety measures such as complying with the derating characteristics, implementing redundant and fire prevention designs, and utilizing backups and fail-safe procedures. ROHM shall have no responsibility for any damages arising out of the use of our Poducts beyond the rating specified by ROHM.
- 4) Examples of application circuits, circuit constants and any other information contained herein are provided only to illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.
- 5) The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM or any other parties. ROHM shall have no responsibility whatsoever for any dispute arising out of the use of such technical information.
- 6) The Products specified in this document are not designed to be radiation tolerant.
- 7) For use of our Products in applications requiring a high degree of reliability (as exemplified below), please contact and consult with a ROHM representative: transportation equipment (i.e. cars, ships, trains), primary communication equipment, traffic lights, fire/crime prevention, safety equipment, medical systems, and power transmission systems.
- 8) Do not use our Products in applications requiring extremely high reliability, such as aerospace equipment, nuclear power control systems, and submarine repeaters.
- 9) ROHM shall have no responsibility for any damages or injury arising from non-compliance with the recommended usage conditions and specifications contained herein.
- 10) ROHM has used reasonable care to ensur the accuracy of the information contained in this document. However, ROHM does not warrants that such information is error-free, and ROHM shall have no responsibility for any damages arising from any inaccuracy or misprint of such information.
- 11) Please use the Products in accordance with any applicable environmental laws and regulations, such as the RoHS Directive. For more details, including RoHS compatibility, please contact a ROHM sales office. ROHM shall have no responsibility for any damages or losses resulting non-compliance with any applicable laws or regulations.
- 12) When providing our Products and technologies contained in this document to other countries, you must abide by the procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US Export Administration Regulations and the Foreign Exchange and Foreign Trade Act.
- This document, in part or in whole, may not be reprinted or reproduced without prior consent of ROHM.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Schottky Diodes & Rectifiers category:

Click to view products by ROHM manufacturer:

Other Similar products are found below:

MA4E2039 D1FH3-5063 MBR0530L-TP MBR10100CT-BP MBR1545CT MMBD301M3T5G RB160M-50TR RB551V-30

BAS16E6433HTMA1 BAT 54-02LRH E6327 NSR05F40QNXT5G NTE555 JANS1N6640 SB07-03C-TB-H SB1003M3-TL-W SK310-T

SK32A-LTP SK33A-TP SK34B-TP SS3003CH-TL-E GA01SHT18 CRS10I30A(TE85L,QM MA4E2501L-1290 MBRB30H30CT-1G

SB007-03C-TB-E SK32A-TP SK33B-TP SK35A-TP SK38B-TP NRVBM120LT1G NTE505 NTSB30U100CT-1G SS15E-TP VS-6CWQ10FNHM3 ACDBA1100LR-HF ACDBA1200-HF ACDBA140-HF ACDBA2100-HF ACDBA3100-HF CDBQC0530L-HF

CDBQC0240LR-HF ACDBA340-HF ACDBA260LR-HF ACDBA1100-HF SK310B-TP MA4E2502L-1246 MA4E2502H-1246

NRVBM120ET1G NSR01L30MXT5G NTE573