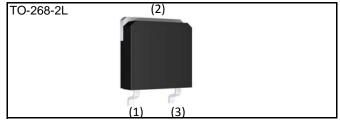


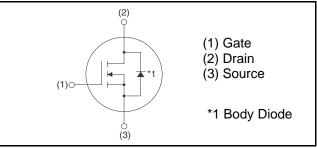
SCT2H12NY

N-channel SiC power MOSFET

V _{DSS}	1700V
R _{DS(on)} (Typ.)	1.15Ω
I _D	4A
P _D	44W


Features

- 1) Low on-resistance
- 2) Fast switching speed
- 3) Long creepage distance with no center lead
- 4) Simple to drive
- 5) Pb-free lead plating ; RoHS compliant


Application

- Auxilialy power supplies
- •Switch mode power supplies

Outline

Inner circuit

Packaging specifications

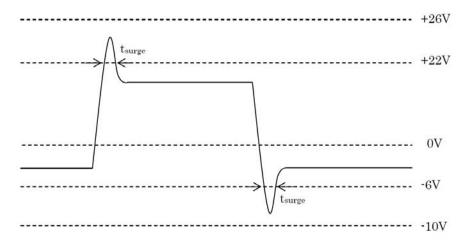
	Packing	Embossed tape
	Reel size (mm)	330
Tuno	Tape width (mm)	24
Туре	Basic ordering unit (pcs)	400
	Taping code	ТВ
	Marking	SCT2H12NY

●Absolute maximum ratings (T_a = 25°C)

Parameter		Symbol	Value	Unit
Drain - Source voltage		V _{DSS}	1700	V
Continuous drain surrent	$T_c = 25^{\circ}C$	Ι _D ^{*1}	4	А
Continuous drain current	$T_c = 100^{\circ}C$	Ι _D ^{*1}	2.9	А
Pulsed drain current		I _{D,pulse} *2	10	А
Gate - Source voltage (DC)		V _{GSS}	-6 to 22	V
Gate - Source surge voltage (t _{surge} <300nsec)		V_{GSS_surge} *3	-10 to 26	V
Power dissipation $(T_c = 25^{\circ}C)$		P _D	44	W
Junction temperature		Tj	175	°C
Range of storage temperature		T _{stg}	-55 to +175	°C

•Thermal resistance

Parameter	Symbol		Unit		
	Symbol	Min.	Тур.	Max.	Onit
Thermal resistance, junction - case	R_{thJC}	-	2.65	3.45	°C/W


•Electrical characteristics ($T_a = 25^{\circ}C$)

Parameter	Symbol	mbol Conditions -		Values		
Farameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Drain - Source breakdown voltage	V _{(BR)DSS}	$V_{GS} = 0V, I_D = 1mA$	1700	-	-	V
Zero gate voltage drain current	I _{DSS}	$V_{DS} = 1700V, V_{GS} = 0V$ $T_j = 25^{\circ}C$ $T_j = 150^{\circ}C$	-	0.1 0.2	10 -	μΑ
Gate - Source leakage current	I_{GSS^+}	$V_{GS} = +22V, V_{DS} = 0V$	-	-	100	nA
Gate - Source leakage current	I _{GSS-}	$V_{GS} = -6V, V_{DS} = 0V$	-	-	-100	nA
Gate threshold voltage	$V_{GS (th)}$	$V_{DS} = V_{GS}, I_{D} = 0.41 \text{mA}$	1.6	2.8	4.0	V

*1 Limited only by maximum temperature allowed.

*2 PW \leq 10 $\mu s,$ Duty cycle \leq 1%

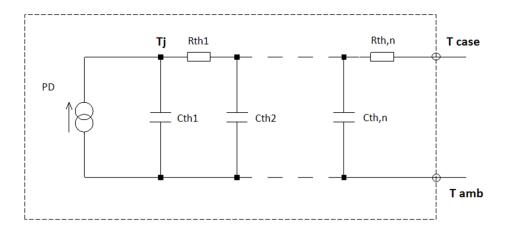
*3 Example of acceptable Vgs waveform

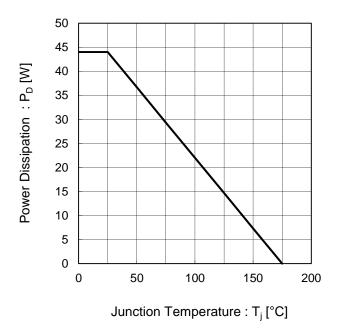
*4 Pulsed

•Electrical characteristics ($T_a = 25^{\circ}C$)

Deremeter	Symbol	ool Conditions		Values			
Parameter	Symbol Conditions		Min.	Тур.	Max.	Unit	
		$V_{GS} = 18V, I_{D} = 1.1A$					
Static drain - source on - state resistance	R _{DS(on)} *4	$T_j = 25^{\circ}C$	-	1.15	1.5	Ω	
		T _j = 125°C	-	1.71	-		
Gate input resistance	R _G	f = 1MHz, open drain	-	64	-	Ω	
Transconductance	g _{fs} *4	$V_{DS} = 10V, I_D = 1.1A$	-	0.4	-	S	
Input capacitance	C _{iss}	$V_{GS} = 0V$	-	184	-		
Output capacitance	C _{oss}	V _{DS} = 800V	-	16	-	pF	
Reverse transfer capacitance	C _{rss}	f = 1MHz	-	6	-		
Effective output capacitance, energy related	C _{o(er)}	V _{GS} = 0V V _{DS} = 0V to 800V	-	17	-	pF	
Turn - on delay time	t _{d(on)} *4	$V_{DD} = 500V, I_{D} = 1.1A$	-	16	-		
Rise time	t _r *4	V _{GS} = 18V/0V	-	21	-		
Turn - off delay time	t _{d(off)} *4	$R_L = 455\Omega$	-	35	-	ns	
Fall time	t _f *4	$R_G = 0\Omega$	-	74	-		
Turn - on switching loss	E _{on} *4	$V_{DD} = 800V, I_{D} = 1.1A$ $V_{GS} = 18V/0V$	-	57	-		
Turn - off switching loss	E _{off} *4	R _G = 0Ω, L=2mH *E _{on} includes diode reverse recovery	-	32	-	μJ	

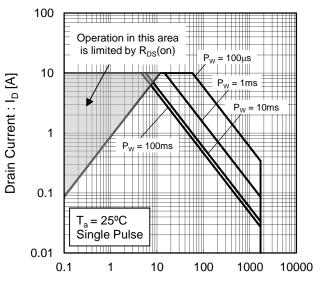
•Gate Charge characteristics ($T_a = 25^{\circ}C$)


Parameter	Symbol	Conditions		Unit		
Farameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Total gate charge	Q_g^{*4}	V _{DD} = 500V	-	14	-	
Gate - Source charge	Q_{gs}^{*4}	I _D = 1A	-	4	-	nC
Gate - Drain charge	Q_{gd}^{*4}	V _{GS} = 18V	-	5	-	
Gate plateau voltage	V _(plateau)	$V_{DD} = 500V, I_D = 1A$	-	10.5	-	V


●Body diode electrical characteristics (Source-Drain) (T_a = 25°C)

Parameter	Symbol	Conditions		Unit			
Faranielei	Symbol Conditions –		Min.	Тур.	Max.	Unit	
Inverse diode continuous, forward current	ا _S *1	T _c = 25°C	-	-	4	А	
Inverse diode direct current, pulsed	I_{SM}^{*2}	T _c = 25 C	-	-	10	A	
Forward voltage	V_{SD} *4	$V_{GS} = 0V, I_{S} = 1.1A$	-	4.3	-	V	
Reverse recovery time	t _{rr} *4		-	21	-	ns	
Reverse recovery charge	Q _{rr} ^{*4}	I _F = 1.1A, V _R = 800V di/dt = 300A/μs	-	13	-	nC	
Peak reverse recovery current	^{*4}		-	1.1	-	А	

•Typical Transient Thermal Characteristics


Symbol	Value	Unit	Symbol	Value	Unit
R _{th1}	493m		C _{th1}	378µ	
R _{th2}	1601m	K/W	C _{th2}	1.42m	Ws/K
R _{th3}	556m		C _{th3}	65.6m	

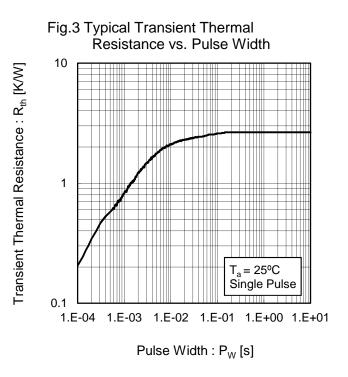
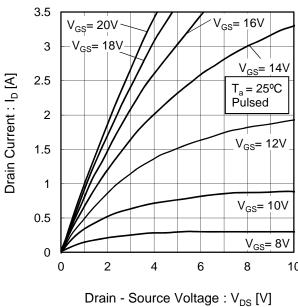
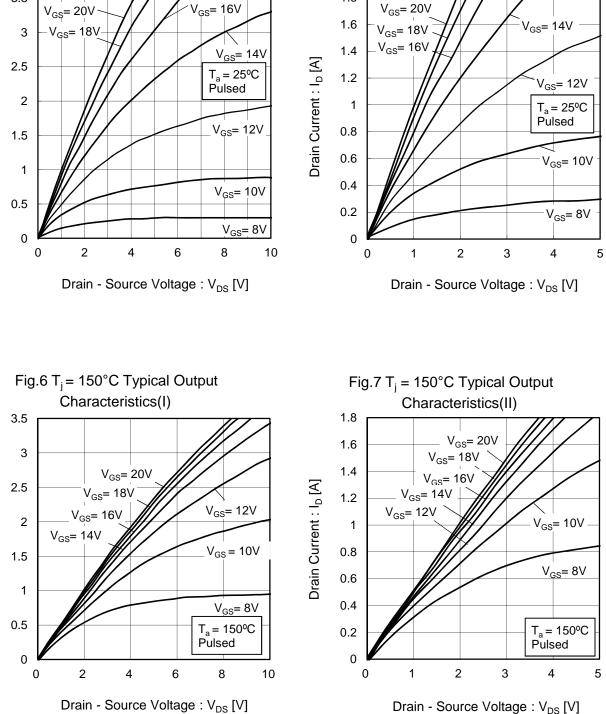


Fig.1 Power Dissipation Derating Curve


Fig.2 Maximum Safe Operating Area

Drain - Source Voltage : V_{DS} [V]



www.rohm.com © 2016 ROHM Co., Ltd. All rights reserved.

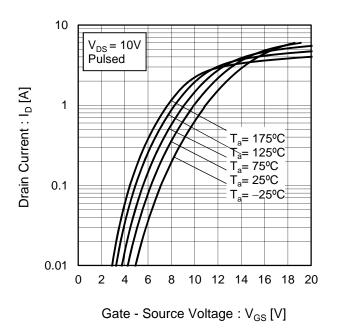

Fig.4 Typical Output Characteristics(I)

Fig.5 Typical Output Characteristics(II)

1.8

Drain Current : I_D [A]

Fig.8 Typical Transfer Characteristics (I)

Fig.9 Typical Transfer Characteristics (II)

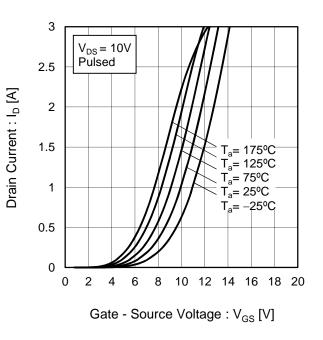
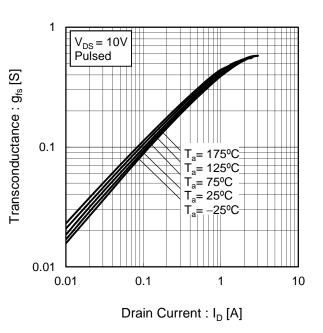
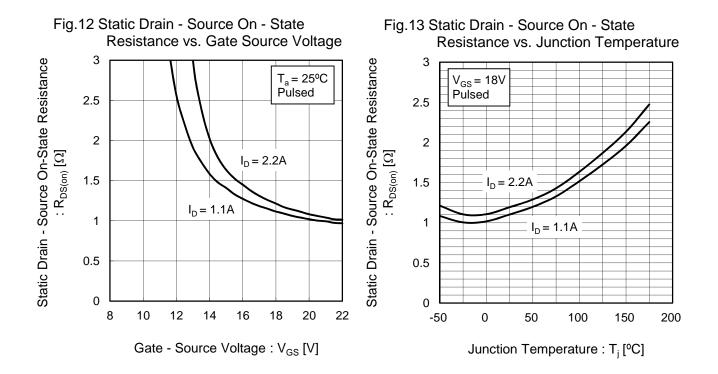
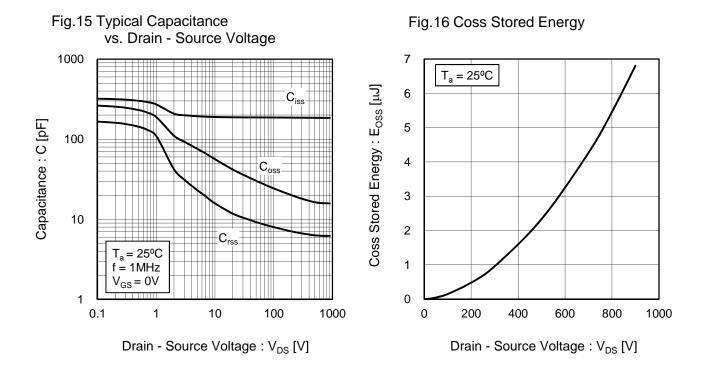
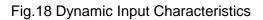




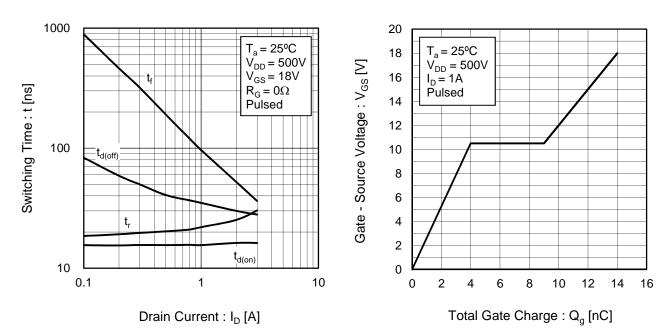
Fig.10 Gate Threshold Voltage vs. Junction Temperature 5 $V_{DS} = 10V$ 4.5 Gate Threshold Voltage : $V_{GS(th)}$ [V] $I_{\rm D} = 0.41 \,{\rm mA}$ 4 3.5 3 2.5 2 1.5 1 0.5 0 -50 0 50 100 200 150 Junction Temperature : T_i [°C]

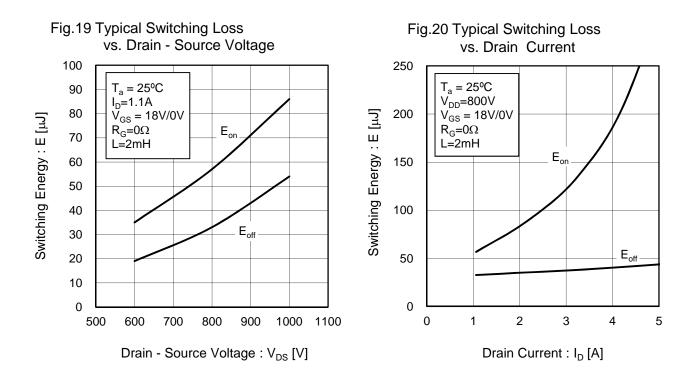
Fig.11 Transconductance vs. Drain Current


Fig.14 Static Drain - Source On - State Resistance vs. Drain Current 10 Static Drain - Source On-State Resistance $V_{GS} = 18V$ Pulsed : $R_{DS(on)}$ [Ω] 1 T_a = 175°C T_a = 125⁰C T_{a} = 75°C $T_a = 25^{\circ}C$ T_a = −25°C 0.1 0.1 1 10

Drain Current : I_D [A]


www.rohm.com




8/12

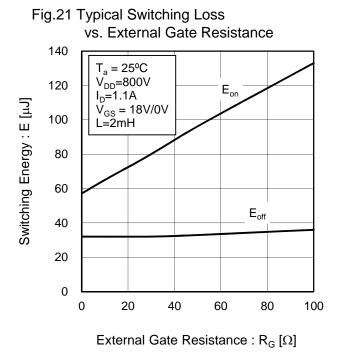
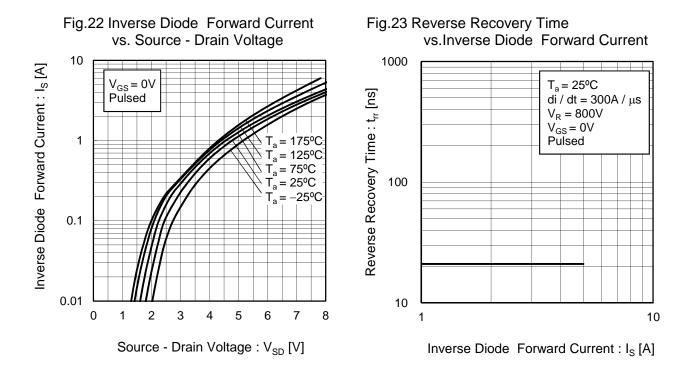


Fig.17 Switching Characteristics



Measurement circuits

Fig.1-1 Switching Time Measurement Circuit

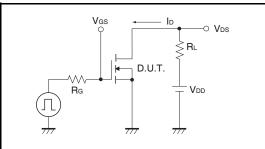


Fig.2-1 Gate Charge Measurement Circuit

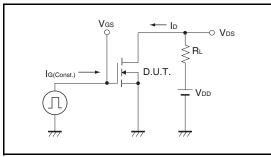


Fig.3-1 Switching Energy Measurement Circuit

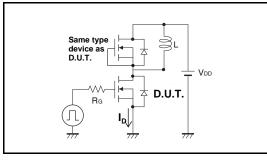
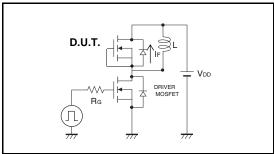



Fig.4-1 Reverse Recovery Time Measurement Circuit Fig.4-2 Reverse Recovery Waveform

Fig.1-2 Switching Waveforms

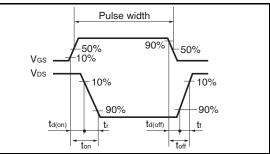


Fig.2-2 Gate Charge Waveform

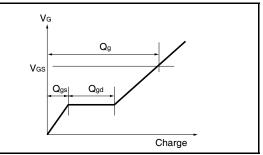
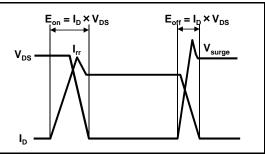
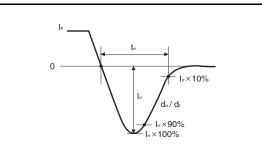




Fig.3-2 Switching Waveforms

	Notes
1)	The information contained herein is subject to change without notice.
2)	Before you use our Products, please contact our sales representative and verify the latest specifications :
3)	Although ROHM is continuously working to improve product reliability and quality, semicon ductors can break down and malfunction due to various factors. Therefore, in order to prevent personal injury or fire arising from failure, please take safety measures such as complying with the derating characteristics, implementing redundant and fire prevention designs, and utilizing backups and fail-safe procedures. ROHM shall have no responsibility for any damages arising out of the use of our Poducts beyond the rating specified by ROHM.
4)	Examples of application circuits, circuit constants and any other information contained herein are provided only to illustrate the standard usage and operations of the Products. The periphera conditions must be taken into account when designing circuits for mass production.
5)	The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly any license to use or exercise intellectual property or other rights held by ROHM or any other parties. ROHM shall have no responsibility whatsoever for any dispute arising out of the use of such technical information.
6)	The Products specified in this document are not designed to be radiation tolerant.
7)	For use of our Products in applications requiring a high degree of reliability (as exemplified below), please contact and consult with a ROHM representative : transportation equipment (i.e cars, ships, trains), primary communication equipment, traffic lights, fire/crime prevention, safety equipment, medical systems, and power transmission systems.
8)	Do not use our Products in applications requiring extremely high reliability, such as aerospace equipment, nuclear power control systems, and submarine repeaters.
9)	ROHM shall have no responsibility for any damages or injury arising from non-compliance with the recommended usage conditions and specifications contained herein.
10)	ROHM has used reasonable care to ensur the accuracy of the information contained in this document. However, ROHM does not warrants that such information is error-free, and ROHM shall have no responsibility for any damages arising from any inaccuracy or misprint of such information.
11)	Please use the Products in accordance with any applicable environmental laws and regulations such as the RoHS Directive. For more details, including RoHS compatibility, please contact a ROHM sales office. ROHM shall have no responsibility for any damages or losses resulting non-compliance with any applicable laws or regulations.
12)	When providing our Products and technologies contained in this document to other countries you must abide by the procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US Export Administration Regulations and the Foreign Exchange and Foreign Trade Act.
13)	This document, in part or in whole, may not be reprinted or reproduced without prior consent or ROHM.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/

General Precaution

- 1. Before you use our Products, you are requested to care fully read this document and fully understand its contents. ROHM shall not be in an y way responsible or liable for failure, malfunction or accident arising from the use of a ny ROHM's Products against warning, caution or note contained in this document.
- 2. All information contained in this docume nt is current as of the issuing date and subject to change without any prior notice. Before purchasing or using ROHM's Products, please confirm the latest information with a ROHM sale s representative.
- 3. The information contained in this document is provided on an "as is" basis and ROHM does not warrant that all information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or concerning such information.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by ROHM manufacturer:

Other Similar products are found below :

614233C 648584F IRFD120 JANTX2N5237 2N7000 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C IPS70R2K0CEAKMA1 BUK954R8-60E DMN3404LQ-7 NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 US6M2GTR TK10A80W,S4X(S SSM6P69NU,LF