<For DTr1(NPN)>

Parameter	Value
V_{CC}	50 V
$\mathrm{I}_{\mathrm{C}(\mathrm{MAX.})}$	100 mA
R_{1}	$47 \mathrm{k} \Omega$
R_{2}	$47 \mathrm{k} \Omega$

<For DTr2(PNP)>

Parameter	Value
V_{CC}	-50 V
$\mathrm{I}_{\mathrm{C}(\mathrm{MAX.})}$	-100 mA
R_{1}	$47 \mathrm{k} \Omega$
R_{2}	$47 \mathrm{k} \Omega$

-Features

1) Both the DTC144E chip and DTA144E chip in one package.
2) Built-in bias resistors enable the configuration of an inverter circuit without connecting external input resistors (see inner circuit).
3) The bias resistors consist of thin-film resistors with complete isolation to allow negative biasing of the input. They also have the advantage of completely eliminating parasitic effects.
4) Only the on/off conditions need to be set for operation, making the circuit design easy.
5) Lead Free/RoHS Compliant.

- Application

Inverter circuit, Interface circuit, Driver circuit

\bullet Outline

(1) (2) (3) EMD12 (SC-107C)	(6) (2) (5) (1) (3) UMD12N SOT-363 (SC-88)

- Inner circuit

\bullet Packaging specifications

Part No.	Package	Package size (mm)	Taping code	Reel size (mm)	Tape width (mm)	Basic ordering unit (pcs)	Marking
EMD12	EMT6	1616	T2R	180	8	8,000	D12
UMD12N	UMT6	2021	TR	180	8	3,000	D12

- Absolute maximum ratings $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	DTr1(NPN)	DTr2(PNP)	Unit
Supply voltage	$\mathrm{V}_{\text {cc }}$	50	-50	V
Input voltage	$\mathrm{V}_{\text {IN }}$	-10 to +40	-40 to +10	V
Output current	Io	30	-30	mA
Collector current	$\mathrm{I}_{\mathrm{C} \text { (MAX.) }}{ }^{*}$	100	-100	mA
Power dissipation	$\mathrm{P}_{\mathrm{D}}{ }^{\text {2 }}$	150 (Total) ${ }^{*}$		mW
Junction temperature	T_{j}	150		${ }^{\circ} \mathrm{C}$
Range of storage temperature	$\mathrm{T}_{\text {stg }}$	-55 to +150		${ }^{\circ} \mathrm{C}$

-Electrical characteristics($\mathrm{Ta}=25^{\circ} \mathrm{C}$) <For DTr1(NPN)>

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
Input voltage	$\mathrm{V}_{\text {I(off) }}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=100 \mu \mathrm{~A}$	-	-	0.5	V
	$\mathrm{V}_{\text {I(on) }}$	$\mathrm{V}_{\mathrm{O}}=0.3 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=2 \mathrm{~mA}$	3.0	-	-	
Output voltage	$\mathrm{V}_{\text {O(on) }}$	$\mathrm{I}_{0} / \mathrm{I}_{1}=10 \mathrm{~mA} / 0.5 \mathrm{~mA}$	-	0.1	0.3	V
Input current	1	$\mathrm{V}_{1}=5 \mathrm{~V}$	-	-	0.18	mA
Output current	$\mathrm{I}_{\text {(off) }}$	$\mathrm{V}_{\mathrm{CC}}=50 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}$	-	-	0.5	$\mu \mathrm{A}$
DC current gain	G_{1}	$\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$	68	-	-	-
Input resistance	R_{1}	-	32.9	47	61.1	k Ω
Resistance ratio	$\mathrm{R}_{2} / \mathrm{R}_{1}$	-	0.8	1	1.2	-
Transition frequency	$\mathrm{f}_{\mathrm{T}}{ }^{\text {* }}$	$\begin{aligned} & V_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=-5 \mathrm{~mA} \\ & \mathrm{f}=100 \mathrm{MHz} \end{aligned}$	-	250	-	MHz

- Electrical characteristics($\mathrm{Ta}=25^{\circ} \mathrm{C}$) <For DTr2(PNP)>

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
Input voltage	$\mathrm{V}_{\text {I(off) }}$	$\mathrm{V}_{\mathrm{CC}}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-100 \mu \mathrm{~A}$	-	-	-0.5	V
	$\mathrm{~V}_{\text {I(on) }}$	$\mathrm{V}_{\mathrm{O}}=-0.3 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-2 \mathrm{~mA}$	-3.0	-	-	
Output voltage	$\mathrm{V}_{\mathrm{O}(\text { on })}$	$\mathrm{I}_{\mathrm{O}} / \mathrm{I}_{\mathrm{I}}=-10 \mathrm{~mA} /-0.5 \mathrm{~mA}$	-	-0.1	-0.3	V
Input current	I_{I}	$\mathrm{V}_{\mathrm{I}}=-5 \mathrm{~V}$	-	-	-0.18	mA
Output current	$\mathrm{I}_{\mathrm{O}(\text { off })}$	$\mathrm{V}_{\mathrm{CC}}=-50 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$	-	-	-0.5	$\mu \mathrm{~A}$
DC current gain	G_{I}	$\mathrm{V}_{\mathrm{O}}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-5 \mathrm{~mA}$	68	-	-	-
Input resistance	R_{1}	-	32.9	47	61.1	$\mathrm{k} \Omega$
Resistance ratio	$\mathrm{R}_{2} / \mathrm{R}_{1}$	-	0.8	1	1.2	-
Transition frequency	$\mathrm{f}_{\mathrm{T}}{ }^{* 1}$	$\mathrm{V}_{\mathrm{CE}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=5 \mathrm{~mA}$ $\mathrm{f}=100 \mathrm{MHz}$	-	250	-	MHz

*1 Characteristics of built-in transistor
*2 Each terminal mounted on a reference footprint
*3 120 mW per element must not be exceeded.

- Electrical characteristic curves $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)<$ For DTr1(NPN)>

Fig. 1 Input voltage vs. output current (ON characteristics)

OUTPUT CURRENT : I [A$]$

Fig. 3 Output current vs. output voltage

OUTPUT VOLTAGE : $\mathrm{V}_{\mathrm{o}}[\mathrm{V}]$

Fig. 2 Output current vs. input voltage (OFF characteristics)

INPUT VOLTAGE : $\mathrm{V}_{\text {I(off) }}[\mathrm{V}]$

Fig. 4 DC current gain vs. output current

OUTPUT CURRENT : $\mathrm{I}_{\mathrm{O}}[\mathrm{A}]$
-Electrical characteristic curves $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)<$ For $\mathrm{DTr}(\mathrm{NPN})>$

Fig. 5 Output voltage vs. output current

OUTPUT CURRENT : $\mathrm{I}_{\mathrm{O}}[\mathrm{A}]$

- Electrical characteristic curves $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)<$ For DTr2(PNP) $>$

Fig. 6 Input voltage vs. output current (ON characteristics)

OUTPUT CURRENT : I o $[\mathrm{A}]$

Fig. 7 Output current vs. input voltage (OFF characteristics)

INPUT VOLTAGE : $\mathrm{V}_{\mathrm{I}(\text { off })}[\mathrm{V}]$

- Electrical characteristic curves $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)<$ For DTr2(PNP)>

Fig. 8 Output current vs. output voltage

OUTPUT VOLTAGE : V_{O} [V]

Fig. 9 DC current gain vs. output current

OUTPUT CURRENT : $\mathrm{I}_{\mathrm{O}}[\mathrm{A}]$

Fig. 10 Output voltage vs. output current

OUTPUT CURRENT : $\mathrm{I}_{\mathrm{O}}[\mathrm{A}]$
-Dimensions (Unit : mm)

DIM	MILIMETERS		INCHES					
	MIN	MAX	MIN	MAX				
A	0.45	0.55	0.018	0.022				
A1	0.00	0.10	0.000	0.004				
b	0.17	0.27	0.007	0.011				
c	0.08	0.18	0.003	0.007				
D	1.50	1.70	0.059	0.067				
E	1.10	1.30	0.043	0.051				
e	0.50						0.020	
HE	1.50	1.70	0.059	0.067				
L	0.10	0.30	0.004	0.012				
Lp	-	0.35	-	0.014				
x	-	0.10	-	0.004				
y	-	0.10	-	0.004				

DIM	MILIMETERS		INCHES	
	MIN	MAX	MIN	MAX
b2	-	0.37	-	0.015
e1	1.25		0.049	
I1	-	0.45	-	0.018

Dimension in mm / inches
-Dimensions (Unit : mm)

Pattern of terminal position areas
[Not a recommended pattern of soldering pads]

DIM	MILIMETERS		INCHES					
	MIN	MAX	MIN	MAX				
A	0.80	1.00	0.031	0.039				
A1	0.00	0.10	0.000	0.004				
A3	0.25		0.010					
b	0.15	0.30	0.006	0.012				
c	0.10	0.20	0.004	0.008				
D	1.90	2.10	0.075	0.083				
E	1.15	1.35	0.045	0.053				
e	0.65						0.026	
HE	2.00	2.20	0.079	0.087				
L1	0.20	0.50	0.008	0.020				
Lp	0.25	0.55	0.010	0.022				
Q	0.10	0.30	0.004	0.012				
x	-	0.10	-	0.004				
y	-	0.10	-	0.004				

DIM	MILIMETERS		INCHES	
	MIN	MAX	MIN	MAX
b2	-	0.40	-	0.016
e1	1.55		0.061	
I1	-	0.65	-	0.026

Dimension in mm / inches

Notes

1) The information contained herein is subject to change without notice.
2) Before you use our Products, please contact our sales representative and verify the latest specifications:
3) Although ROHM is continuously working to improve product reliability and quality, semiconductors can break down and malfunction due to various factors.
Therefore, in order to prevent personal injury or fire arising from failure, please take safety measures such as complying with the derating characteristics, implementing redundant and fire prevention designs, and utilizing backups and fail-safe procedures. ROHM shall have no responsibility for any damages arising out of the use of our Poducts beyond the rating specified by ROHM.
4) Examples of application circuits, circuit constants and any other information contained herein are provided only to illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.
5) The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM or any other parties. ROHM shall have no responsibility whatsoever for any dispute arising out of the use of such technical information.
6) The Products are intended for use in general electronic equipment (i.e. AV/OA devices, communication, consumer systems, gaming/entertainment sets) as well as the applications indicated in this document.
7) The Products specified in this document are not designed to be radiation tolerant.
8) For use of our Products in applications requiring a high degree of reliability (as exemplified below), please contact and consult with a ROHM representative : transportation equipment (i.e. cars, ships, trains), primary communication equipment, traffic lights, fire/crime prevention, safety equipment, medical systems, servers, solar cells, and power transmission systems.
9) Do not use our Products in applications requiring extremely high reliability, such as aerospace equipment, nuclear power control systems, and submarine repeaters.
10) ROHM shall have no responsibility for any damages or injury arising from non-compliance with the recommended usage conditions and specifications contained herein.
11) ROHM has used reasonable care to ensur the accuracy of the information contained in this document. However, ROHM does not warrants that such information is error-free, and ROHM shall have no responsibility for any damages arising from any inaccuracy or misprint of such information.
12) Please use the Products in accordance with any applicable environmental laws and regulations, such as the RoHS Directive. For more details, including RoHS compatibility, please contact a ROHM sales office. ROHM shall have no responsibility for any damages or losses resulting non-compliance with any applicable laws or regulations.
13) When providing our Products and technologies contained in this document to other countries, you must abide by the procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US Export Administration Regulations and the Foreign Exchange and Foreign Trade Act.
14) This document, in part or in whole, may not be reprinted or reproduced without prior consent of ROHM.

Thank you for your accessing to ROHM product informations.
More detail product informations and catalogs are available, please contact us.
ROHM Customer Support System
http://www.rohm.com/contact/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Bipolar Transistors - Pre-Biased category:

Click to view products by ROHM manufacturer:

Other Similar products are found below :
RN1607(TE85L,F) DTA124GKAT146 DTA144WETL DTA144WKAT146 DTC113EET1G DTC115TETL DTC115TKAT146 DTC124TETL DTC144ECA-TP DTC144VUAT106 MUN5241T1G BCR158WH6327XTSA1 NSBA114TDP6T5G NSBA143ZF3T5G NSBC114YF3T5G NSBC123TF3T5G SMUN5235T1G SMUN5330DW1T1G SSVMUN5312DW1T2G RN1303(TE85L,F)

RN4605(TE85L,F) TTEPROTOTYPE79 DDTC114EUAQ-7-F EMH15T2R SMUN2214T3G NSBC114TF3T5G NSBC143ZPDP6T5G NSVMUN5113DW1T3G SMUN5230DW1T1G SMUN5133T1G SMUN2214T1G DTC114EUA-TP NSBA144EF3T5G NSVDTA114EET1G 2SC2223-T1B-A 2SC3912-TB-E SMUN5237DW1T1G SMUN5213DW1T1G SMUN5114DW1T1G SMUN2111T1G NSVDTC144EM3T5G DTC124ECA-TP DTC123TM3T5G DTA114ECA-TP DTA113EM3T5G DCX115EK-7-F DTC113EM3T5G NSVMUN5135DW1T1G NSVMUN2237T1G SMUN5335DW1T2G

