# POWER SUPPLY MONITOR DEVICES ## EML22/UML23N #### Features - 1) Packaging Zener diode and small-signal amplifier transistor - Using outside connection able to use Power supply monitor device - When use Power supply monitor device, Temparature drift characteristics of detect voltage is about 150 ppm/°C. #### Applications Protection of over load of power supply. Packaging specifications and Marking | Туре | EML22 | UML23N | |------------------------------|-------|--------| | Package | EMT6 | UMT6 | | Marking | L22 | L23 | | Code | T2R | TR | | Basic ordering unit (pieces) | 8000 | 3000 | ### ●Dimensions (Unit: mm) ## ●Absolute maximum ratings (Ta=25°C) #### Tr | Parameter | Symbol | Limits | Unit | |---------------------------|-------------------|--------|------| | Collector-base voltage | $V_{CBO}$ | 60 | V | | Collector-emitter voltage | $V_{CEO}$ | 50 | V | | Emitter-base voltage | $V_{EBO}$ | 7 | V | | Collector current | I <sub>C</sub> | 150 | mA | | Power dissipation | P <sub>D</sub> *1 | 120 | mW | ## Di | Parameter | Symbol | Limits | Unit | |-------------------|-------------------|--------|------| | Power dissipation | P <sub>D</sub> *1 | 120 | mW | ### Tr and Di | Parameter | Symbol | Limits | Unit | |------------------------------|-------------------|-------------|------| | Power dissipation | P <sub>D</sub> *1 | 150 | mW | | Junction temperature | Tj | 150 | °C | | Range of storage temperature | Tstg | -55 to +150 | °C | <sup>\*1</sup> Mounted on reference land. ### ●Internal circuit ## ●Electrical characteristics (Ta = 25°C) #### Tr | Parameter | Symbol | Min. | Тур. | Max. | Unit | Conditions | |--------------------------------------|----------------------|------|------|------|------|---------------------------------------------------------| | Collector-emitter brekdown voltage | $BV_{CEO}$ | 50 | - | _ | V | I <sub>C</sub> =1mA | | Collector-base breakdown voltage | $BV_{CBO}$ | 60 | ı | - | V | I <sub>C</sub> =50μΑ | | Emitter-base breakdown voltage | $BV_{EBO}$ | 7 | ı | 1 | V | I <sub>E</sub> =50μΑ | | Collector cut-off current | I <sub>CBO</sub> | ı | ı | 100 | nA | V <sub>CB</sub> =60V | | Emitter cut-off current | I <sub>EBO</sub> | ı | ı | 100 | nA | V <sub>EB</sub> =7V | | Collector-emitter saturation voltage | $V_{\text{CE(sat)}}$ | _ | _ | 400 | mV | I <sub>C</sub> /I <sub>B</sub> =50mA/5mA | | DC current gain | h <sub>FE</sub> | 120 | - | 390 | _ | $V_{CE}=6V,I_{C}=1mA$ | | Transition frequency | f <sub>T</sub> | 1 | 180 | 1 | MHz | V <sub>CE</sub> =12V,I <sub>E</sub> =-2mA,<br>f=100MH z | | Output capacitance | C <sub>ob</sub> | _ | 2 | _ | pF | V <sub>CB</sub> =12V,I <sub>E</sub> =0A,<br>f=1MH z | ## Di | Parameter | Symbol | Min. | Тур. | Max. | Unit | Conditions | |-----------------|--------|------|------|------|------|----------------------| | Zener voltage | $V_Z$ | 6.58 | 6.80 | 7.00 | V | I <sub>Z</sub> =5mA | | Reverse current | $I_R$ | _ | _ | 0.5 | mA | V <sub>R</sub> =3.5V | #### •Electrical characteristic curves <Tr> Fig. 1 GROUNDED EMITTER PROPAGATION CHARACTERISTICS Fig. 2 GROUNDED EMITTER OUTPUT CHARACTERISTICS ( I ) Fig. 3 GROUNDED EMITTER OUTPUT CHARACTERISTICS (II) Fig.4 DC CURRENT GAIN vs. COLLECTOR CURRENT CHARACTERISTICS ( I ) Fig. 5 DC CURRENT GAIN vs. COLLECTOR CURRENT CHARACTERISTICS (II) Fig. 6 COLLECTOR SATURATION VOLTAGE vs. COLLECTOR CURRENT CHARACTERISTICS( I ) Fig. 7 COLLECTOR SATURATION VOLTAGE vs. COLLECTOR CURRENT CHARACTERISTICS(II) Fig. 8 COLLECTOR SATURATION VOLTAGE vs. COLLECTOR CURRENT CHARACTERISTICS(Ⅲ) Fig.9 Gain bandwidth product vs. emitter current Fig.10 Collector output capacitance vs. collector-base voltage Emitter input capacitance vs. emitter-base voltage Fig.11 Base-collector time constant vs. emitter current # <Tr+Di> Fig.15 ZENER CURRENT:lz(mA) Zz-lz CHARACTERISTICS Fig.16 Reference Voltage vs Temperature Characteristics #### Measurement circuits Fig 17 Reference Voltage vs Temperature Characteristics Mesurement Clrcuit #### Notes No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM Co.,Ltd. The content specified herein is subject to change for improvement without notice. The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request. Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production. Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage. The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information. The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices). The Products specified in this document are not designed to be radiation tolerant. While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons. Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual. The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing. If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law. Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us. ## ROHM Customer Support System http://www.rohm.com/contact/ ## **X-ON Electronics** Largest Supplier of Electrical and Electronic Components Click to view similar products for Bipolar Transistors - BJT category: Click to view products by ROHM manufacturer: Other Similar products are found below: 619691C MCH4017-TL-H BC546/116 BC557/116 BSW67A NTE158 NTE187A NTE195A NTE2302 NTE2330 NTE63 C4460 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA2126-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMMTA92QTA 2N2369ADCSM 2SC2412KT146S 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E US6T6TR 732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H 873787E IMZ2AT108 UMX21NTR EMT2T2R MCH6102-TL-E FP204-TL-E NJL0302DG 2N3583 2SA1434-TB-E 2SC3143-4-TB-E 2SD1621S-TD-E NTE103 30A02MH-TL-E NSV40301MZ4T1G NTE101 NTE13 NTE15