

2-Bit Bidirectional Voltage-Level Translator for Open-Drain and Push-Pull Application

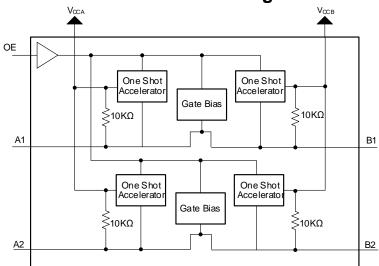
FEATURES

- No Direction-Control
- Data Rates
 24Mbps (Push-Pull)
 2Mbps (Open-Drain)
- 1.65V to 5.5V on A ports and 2.3V to 5.5V on B Ports (V_{CCA}≤V_{CCB})
- V_{CC} Isolation: If Either V_{CC} is at GND, Both Ports are in the High-Impedance State
- No Power-Supply Sequencing Required: Either V_{CCA} or V_{CCB} can be Ramped First
- I_{OFF}: Supports Partial-Power-Down Mode Operation
- Extended Temperature: -40°C to +85°C

APPLICATIONS

- I²C/ SMBus
- UART
- GPIO

DESCRIPTION

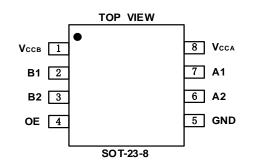

This two-bit non-inverting translator is a bidirectional voltage-level translator and can be used to establish digital switching compatibility between mixed-voltage systems. It uses two separate configurable power-supply rails, with the A ports supporting operating voltages from 1.65V to 5.5V while it tracks the $V_{\rm CCA}$ supply, and the B ports supporting operating voltages from 2.3V to 5.5V while it tracks the $V_{\rm CCB}$ supply. This allows the support of both lower and higher logic signal levels while providing bidirectional translation capabilities between any of the 1.8V, 2.5V, 3.3V and 5V voltage nodes.

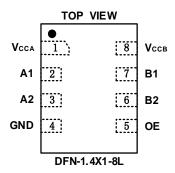
When the output-enable (OE) input is low, all I/Os are placed in the high-impedance state, which significantly reduces the power-supply quiescent current consumption. OE has an internal pull-down current source, as long as V_{CCA} is powered.

To ensure the high-impedance state during power up or power down, OE should be tied to GND through a pull-down resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.

The RS0102 is available in Green SOT-23-8 packages. It operates over an ambient temperature range of -40°C to +85°C.

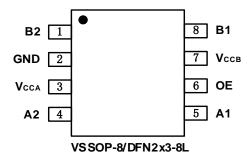
Functional Block Diagram




Revision HistoryNote: Page numbers for previous revisions may different from page numbers in the current version.

VERSION	Change Date	Change Item
A.1	2020/10/15	Initial version completed
A.2	2021/01/09	Add Moisture Sensitivity Level information Fix mistake in RS0102YVS8 PACKAGE value from 4000 to 3000
A.3	2021/08/16	Add "Typical Characteristics" Page 14
A.4	2021/11/01	1.Change Recommended Operating Conditions in Page 7@A.3Version. 2.Add TAPE AND REEL INFORMATION

PIN CONFIGURATIONS


PIN DESCRIPTION

Р	IN		T)(DE (1)	FUNCTION
SOT-23-8	DFN-1.4X1-8L	NAME	TYPE (1)	FUNCTION
1	8	Vccв	Р	B Ports Supply Voltage.2.3V ≤ V _{CCB} ≤ 5.5V.
2	7	B1	I/O	Input/output B1. Reference to V _{CCB} .
3	6	B2	I/O	Input/output B2. Reference to V _{CCB} .
4	5	OE	I	Output Enable (Active High). Pull OE low to place all outputs in 3-state mode. Referenced to V _{CCA} .
5	4	GND	_	Ground.
6	3	A2	I/O	Input/output A2. Reference to V _{CCA} .
7	2	A1	I/O	Input/output A1. Reference to V _{CCA} .
8	1	V _{CCA}	Р	A Port Supply Voltage.1.65V ≤ V _{CCA} ≤ 5.5V and V _{CCA} ≤ V _{CCB} .

⁽¹⁾ I=input, O=output, I/O=input and output, P=power

PIN CONFIGURATIONS

PIN DESCRIPTION

- III			
PIN	NAME	TYPE (1)	FUNCTION
VSSOP-8/DFN2*3-8L	INAIVIE	ITPE	FONCTION
1	B2	I/O	Input/output B2. Reference to V _{CCB} .
2	GND	-	Ground.
3	V _{CCA}	Р	A Port Supply Voltage.1.65V ≤ V _{CCA} ≤ 5.5V and V _{CCA} ≤ V _{CCB}
4	A2	I/O	Input/output A2. Reference to Vcca.
5	A1	I/O	Input/output A1. Reference to Vcca.
6	OE	ı	Output Enable (Active High). Pull OE low to place all outputs in 3-state mode. Referenced to V_{CCA} .
7	V _{CCB}	Р	B Ports Supply Voltage.2.3V \leq V _{CCB} \leq 5.5V.
8	B1	I/O	Input/output B1. Reference to V _{CCB} .

SPECIFICATIONS

Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted) (1)

SYMBOL	PARAMETER	PARAMETER			
V _{CCA}	Supply Voltage Range	-0.3	6.0	V	
Vccв	Supply Voltage Range		-0.3	6.0	V
V _I (2)	Input Voltage Bange	A port	-0.3	6.0	V
VI(-/	Input Voltage Range	B port	-0.3	6.0	V
Vo ⁽²⁾	Voltage range applied to any output in the high-	A port	-0.3	6.0	V
VO(=)	impedance or power-off state	B port	-0.3	6.0	V
V _O ⁽²⁾⁽³⁾	Voltage range applied to any output in the high or	A port	-0.3	V _{CCA} +0.3	V
VOCAC	low state	B port	-0.3	V _{CCB} +0.3	1 V
lıĸ	Input clamp current	V _I <0		-50	mA
lok	Output clamp current	Vo<0		-50	mA
lο	Continuous output current			±50	mA
	Continuous current through VCCA, VCCB or GND		±100	mA	
TJ	Junction Temperature			150	°C
T _{stg}	Storage temperature		-65	+150	

⁽¹⁾ Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions*. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

ESD Ratings

			VALUE	UNIT
V _(ESD) Electrostatic discharge	Human-body model (HBM)	±5000	V	
	Machine Model (MM)	±400	V	

⁽²⁾ The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

⁽³⁾ The value of V_{CCA} and V_{CCB} are provided in the recommended operating conditions table.

PACKAGE/ORDERING INFORMATION

PRODUCT	ORDERING NUMBER	TEMPERATURE RANGE	PACKAGE LEAD	PACKAGE MARKING	MSL ⁽²⁾	PACKAGE OPTION
	RS0102YH8	-40°C ~+85°C	SOT23-8	0102	MSL3	Tape and Reel,3000
RS0102	RS0102YUTDS8	-40°C ~+85°C	DFN1.4x1-8L	0102	MSL3	Tape and Reel,5000
K50102	RS0102YVS8	-40°C ~+85°C	VSSOP8	0102	MSL3	Tape and Reel,3000
	RS0102YTDB8	-40°C ~+85°C	DFN2x3-8L	0102	MSL3	Tape and Reel,3000

NOTE:

⁽¹⁾ There may be additional marking, which relates to the lot trace code information(data code and vendor code), the logo or the environmental category on the device.

⁽²⁾ MSL, The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications.

Recommended Operating Conditions

Vcci is the supply voltage associated with the input port. Vcco is the supply voltage associated with the output port.

PARAMETER		CONDITIONS	MIN	TYP	MAX	UNIT
Supply voltage (1)	V _{CCA}	Vcca			5.5	V
Supply voltage 💛	V _{CCB}		2.3		5.5] V
	A-port I/Os	V _{CCA} = 1.65 V to 1.95 V V _{CCB} = 2.3 V to 5.5 V	V _{CCI} - 0.2		V _{CCI}	V
High-level input voltage	A-port i/Os	$V_{CCA} = 2.3 \text{ V to } 5.5 \text{ V}$ $V_{CCB} = 2.3 \text{ V to } 5.5 \text{ V}$	Vccı - 0.4		Vccı	V
(V _{IH})	B-port I/Os	$V_{CCA} = 1.65 \text{ V to } 5.5 \text{ V}$ $V_{CCB} = 2.3 \text{ V to } 5.5 \text{ V}$	Vccı - 0.4		Vccı	V
	OE input	$V_{CCA} = 1.65 \text{ V to } 5.5 \text{ V}$ $V_{CCB} = 2.3 \text{ V to } 5.5 \text{ V}$	V _{CCA} × 0.8		5.5	V
	A-port I/Os	V _{CCA} = 1.65 V to 5.5 V V _{CCB} = 2.3 V to 5.5 V	0		0.15	V
Low-level input voltage (V _{IL})	B-port I/Os	$V_{CCA} = 1.65 \text{ V to } 5.5 \text{ V}$ $V_{CCB} = 2.3 \text{ V to } 5.5 \text{ V}$	0		0.15	V
,	OE input	$V_{CCA} = 1.65 \text{ V to } 5.5 \text{ V}$ $V_{CCB} = 2.3 \text{ V to } 5.5 \text{ V}$	0		V _{CCA} × 0.25	V
Input transition rise or fall rate(Δt/Δv)		A-port I/Os push-pull driving			10	ns/V
		B-port I/Os push-pull driving			10	ns/V
		Control input			10	ns/V
T _A Operating free-air temp	perature		-40		85	°C

⁽¹⁾ V_{CCA} must be less than or equal to V_{CCB}.
(2) The maximum V_{IL} value is provided to ensure that a valid V_{OL} is maintained. The V_{OL} value is V_{IL} plus the voltage drop across the pass gate transistor.

Electrical Characteristics

PA	RAMETER	CONDITIONS	Vcca	V _{CCB}	TEMP	MIN	TYP	MAX	UNITS
Vона	Port A output high voltage	$I_{OH} = -20 \mu A$ $V_{IB} \ge V_{CCB} - 0.4V$	1.65V to 5.5V	2.3V to 5.5V	Full	V _{CCA} × 0.7		5.5	
Vola	Port A output low voltage	I _{OL} = 1mA V _{IB} ≤ 0.15 V	1.65V to 5.5V	2.3V to 5.5V	Full			0.3	V
Vонв	Port B output high voltage	I _{OH} = −20 μA V _{IA} ≥ V _{CCA} − 0.4 V	1.65V to 5.5V	2.3V to 5.5V	Full	V _{ССВ} × 0.7			V
Volb	Port B output low voltage	I _{OL} = 1mA V _{IA} ≤ 0.15 V	1.65V to 5.5V	2.3V to 5.5V	Full			0.3	
I _I	Input leakage	OE	1.65V to 5.5V	2.3V to 5.5V	+25°C			±1	μA
II.	current	OL	1.03 v to 3.3 v	2.5 10 5.5 1	Full			±1.5	μΛ
	Partial	A Ports	0V	0V to 5.5V	+25°C			±0.5	μA
l _{off}	power	ATORS	O V	0 10 3.5 1	Full			±1	μΛ
1011	down current	B Ports	0V to 5.5V	0V	+25°C			±0.5	μA
		2 1 0110	01 10 0.01	0,	Full			±1	μ, ,
loz	High- impedance State output current	A or B port OE=0V	1.65V to 5.5V	2.3V to 5.5V	+25°C Full			±0.5 ±1	μΑ
			1.65V to V _{CCB}	2.3V to 5.5V	Full			2.5	
Icca	V _{CCA} supply current	$V_1 = V_0 = \text{open}$ $I_0 = 0$	5.5V	0V	Full			2.5	μA
	Current	10 = 0	0V	5.5V	Full			-1	μπ
	.,	., .,	1.65V to V _{CCB}	2.3V to 5.5V	Full			10	
Іссв	V _{CCB} supply current	$V_1 = V_0 = \text{open}$ $I_0 = 0$	5.5V	0V	Full			-1	μΑ
	ourron	10 - 0	0V	5.5V	Full			1	
I _{CCA} + I _{CCB}	Combined supply current	$V_I = V_{CCI}$ or GND $I_O = 0$	1.65V to V _{CCB}	2.3V to 5.5V	Full			13	μΑ
I _{CCZA}	V _{CCA} supply current	V _I = V _{CCI} or 0V I _O = 0, OE=0V	1.65V to V _{CCB}	2.3V to 5.5V	Full			1	μA
Іссzв	V _{CCB} supply current	V _I = V _{CCI} or 0V I _O = 0, OE=0V	2.3V to 5.5V	2.3V to 5.5V	Full			1	μA
Cı	Input capacitance	OE	3.3V	3.3V	+25°C		2.5		pF
	Input-to- output	A port	3.3V	3.3V	+25°C		5		
Сю	internal capacitance	B port	3.3V	3.3V	+25°C		5		pF

⁽¹⁾ V_{CCI} is the V_{CC} associated with the input port. (2) V_{CCO} is the V_{CC} associated with the output port (3) V_{CCA} must be less than or equal to V_{CCB} .

Timing Requirements

Vcca=1.8V±0.15 V

		V _{CCB} =2.5V ±0.2V	V _{CCB} =3.3V ±0.2V	V _{CCB} =5V ±0.2V	LINUT
		TYP	TYP	TYP	UNIT
Data rate	Push-pull driving	21	22	24	Mhna
	Open-drain driving	2	2	2	Mbps
Pulse duration(t _w)	Push-pull driving (data inputs)	47	45	41	
	Open-drain driving (data inputs)	500	500	500	ns

V_{CCA}=2.5V±0.15 V

		V _{CCB} =2.5V ±0.2V	V _{CCB} =3.3V ±0.2V	V _{CCB} =5V ±0.2V	LINUT
		TYP	TYP	TYP	UNIT
Data sata	Push-pull driving	20	22	24	Mhna
Data rate	Open-drain driving	2	2	2	Mbps
Pulse duration(t _w)	Push-pull driving (data inputs)	50	45	41	20
	Open-drain driving (data inputs)	500	500	500	ns

V_{CCA}=3.3V±0.15 V

		V _{CCB} =3.3V ±0.2V	V _{CCB} =5V ±0.2V	LINUT
		TYP	TYP	UNIT
D-44-	Push-pull driving	23	24	Mhna
Data rate	Open-drain driving	2	2	Mbps
Pulse duration(t _w)	Push-pull driving (data inputs)	43	41	20
	Open-drain driving (data inputs)	500	500	ns

V_{CCA}=5V±0.15 V

		V _{CCB} =5V ±0.2V	LINUT
		ТҮР	UNIT
	Push-pull driving	24	Mana
Data rate	Open-drain driving	2	Mbps
Pulse	Push-pull driving (data inputs)	41	20
duration(tw)	Open-drain driving (data inputs)	500	ns

Switching Characteristics: $V_{CCA}=1.8V \pm 0.15V$

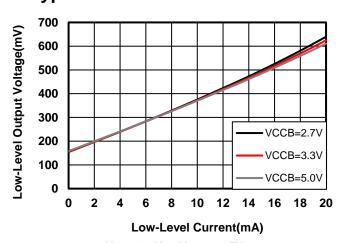
PARAMETER		CONDITIONS		V _{CCB} =2.5V±0.2V	V _{CCB} =3.3V±0.2V	V _{CCB} =5V±0.2V	LIMITO	
PAI	KAWEIEK	CONDITIONS		TYP	TYP	TYP	UNITS	
4	Propagation delay time	A-to-B	Push-pull driving	2.5	3.1	4.5	ns	
tphl	high-to-low output	A-10-B	Open-drain driving	26.1	26.4	26.6	115	
t _{PLH}	Propagation delay time	A-to-B	Push-pull driving	4.2	3.7	3.6	ns	
IPLH	low-to-high output	A-10-D	Open-drain driving	221	183	143	113	
t _{PHL}	Propagation delay time	B-to-A	Push-pull driving	2.1	2.0	2.2	ns	
IPHL	high-to-low output	B-10-A	Open-drain driving	26.1	26.1	26.2	113	
	Propagation delay time		Push-pull driving	1.8	1.6	1.5		
tplH	low-to-high output		Open-drain driving	173	89	66	ns	
t _{en}	Enable time	OE-to-A	or B	25	21	19	ns	
t_{dis}	Disable time	OE-to-A c	or B	1250	1250	1250	ns	
	Input rise	A port	Push-pull driving	6.9	6.1	5.6		
t _{rA}	time	rise time	Open-drain driving	118	39	13	ns	
	Input rise	B port	Push-pull driving	5.8	4.8	4.1		
t _{rB}	time	rise time	Open-drain driving	166	127	75	ns	
	Input fall	A port	Push-pull driving	3.0	2.8	2.7		
t _{fA}	time	fall time	Open-drain driving	1.9	1.7	1.6	ns	
	Input fall	B port	Push-pull driving	4.8	6.2	8.4		
t _{fB}	time	fall time	Open-drain driving	2.3	2.4	2.8	ns	
tsk(O)	Skew(time), output	Channel-t	o-Channel Skew	0.5	0.5	0.5	ns	
Massire	um date ==t=	Push-pull	driving	21	22	24		
iviaxiffi	um data rata	Open-drain driving		2	2	2	Mbps	

Switching Characteristics: $V_{CCA}=2.5V \pm 0.15V$

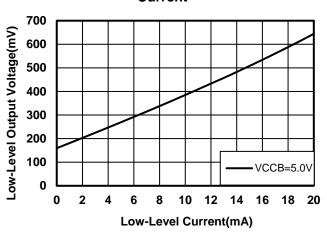
PARAMETER		CONDITIONS		V _{CCB} =2.5V±0.2V	V _{CCB} =3.3V±0.2V	V _{CCB} =5V±0.2V	UNITS	
PA	KAWEIEK		ONDITIONS	TYP	TYP	TYP	UNITS	
t _{PHL}	Propagation delay time	A-to-B	Push-pull driving	2.8	3.4	5.0	ns	
1PHL	output		Open-drain driving	26.3	26.5	26.6	113	
touu	Propagation delay time	A-to-B	Push-pull driving	2.7	2.5	2.4	ns	
IPLH	low-to-high output	A-10-D	Open-drain driving	198	169	131	115	
t	Propagation delay time	B-to-A	Push-pull driving	2.5	2.4	2.5	ns	
t _{PHL}	high-to-low output	D-IU-A	Open-drain driving	26.4	26.5	26.6	115	
4	Propagation delay time	B-to-A	Push-pull driving	2.1	2.0	1.9	no	
t _{PLH}	low-to-high output	D-IU-A	Open-drain driving	196	138	63	ns	
ten	Enable time	OE-to-A	or B	24	20	17	ns	
t _{dis}	Disable time	OE-to-A	or B	1250	1250	1250	ns	
	Input rise	A port	A port	Push-pull driving	3.4	2.9	2.7	
t rA	time	rise time	. I Open-drain		92	13	ns	
	Input rise	B port	Push-pull driving	4.7	3.5	2.7		
t _{rB}	time	rise time	Open-drain driving	160	124	81	ns	
	Input fall	A port	Push-pull driving	5.1	5.2	5.0		
t fA	time	fall time	Open-drain driving	2.1	2.0	1.8	ns	
	Input fall	B port	Push-pull driving	5.0	6.4	8.7		
t _{fB}	time	fall time	Open-drain driving	2.0	2.2	2.8	ns	
tsk(O)	Skew(time), output	Channel-to-channel skew		0.5	0.5	0.5	ns	
NA		Push-pull	driving	20	22	24	NAI	
iviaxim	num data rata	Open-drain driving		2	2	2	Mbps	

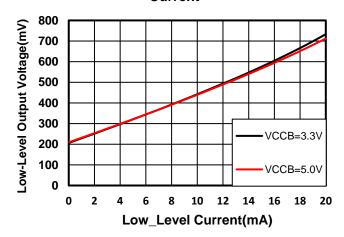
Switching Characteristics: V_{CCA} =3.3V ± 0.3V

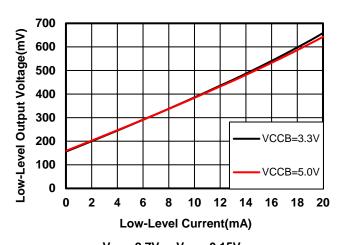
PARAMETER		CONDITIONS		V _{CCB} =3.3V±0.2V	V _{CCB} =5V±0.2V	LINITO			
Ρ/	AKAMETEK		CONDITIONS	TYP	TYP	UNITS			
tphL	Propagation delay time	A-to-B	Push-pull driving	3.6	5.1	ns			
VI III	high-to-low output	71.00	Open-drain driving	26.4	26.6	110			
tрцн	Propagation delay time	A-to-B	Push-pull driving	2.3	2.1	- ns			
IPLH	output	A-10-B	Open-drain driving	155	109	115			
t_{PHL}	Propagation delay time	B-to-A	Push-pull driving	3.1	3.3	ns			
UPHL .	nign-to-iow output	high-to-low	D-10-A	Open-drain driving	26.5	26.7	1115		
4	Propagation delay time	Propagation delay time		B-to-A	Push-pull driving	1.9	1.8	20	
tplH	low-to-high output	D-10-A	Open-drain driving	158	87	ns			
t _{en}	Enable time	OE-to-A or B		19	15	ns			
t _{dis}	Disable time	OE-to-A or B		1250	1250	ns			
	land the state of	A port rise	Push-pull driving	2.3	2.1				
t rA	Input rise time	time	Open-drain driving	117	48	ns			
	land the state of	B port rise	Push-pull driving	3.0	2.4				
t rB	Input rise time	time	Open-drain driving	117	75	ns			
4	Input fall time	Input fall time	Input fall time	A port fall	Push-pull driving	8.0	7.6	20	
t _{fA}	input fail time	time	Open-drain driving	2.2	2.1	ns			
+	Input fall time	B port fall	Push-pull driving	8.2	10.8	no			
t _{fB}	mput iali time	time	Open-drain driving	2.1	2.4	ns			
tsk(O)	Skew(time), output	Channel-to-channel skew		0.5	0.5	ns			
Maxim	um data rata	Push-pull driv	ing	23	24	Mhnc			
Maximum data rata		Open-drain dr	riving	2	2	Mbps			

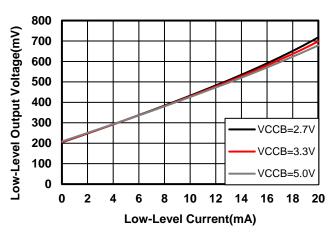


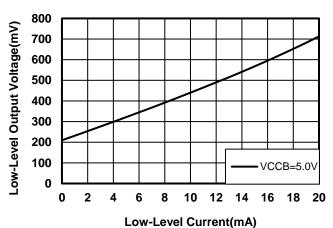
Switching Characteristics: V_{CCA} =5.0V ± 0.35V


D.	ADAMETER		CONDITIONS		LINITO	
Ρ/	ARAMETER		CONDITIONS	TYP	UNITS	
tphL	Propagation delay time	A-to-B	Push-pull driving	5.6	ns	
GF I I L	high-to-low output	71.0 5	Open-drain driving	26.8	110	
t _{PLH}	Propagation delay time	A-to-B	Push-pull driving	2.0	- ns	
tren	output	7.10 B	Open-drain driving	155	113	
t _{PHL}	Propagation delay time	B-to-A	Push-pull driving	5.8	ns	
YAL	output	Bion	Open-drain driving	27.5	113	
t PLH	Propagation delay time	B-to-A	Push-pull driving	1.8	ns	
TPLH	low-to-high output		D-10-A	Open-drain driving	160	113
t _{en}	Enable time	OE-to-A or B		17	ns	
t _{dis}	Disable time	OE-to-A or B	OE-to-A or B		ns	
t_{rA}	Input rise time	A port rise time	Push-pull driving	1.9	nc	
ιτΑ	input rise time	A port rise time	Open-drain driving	105	ns	
+ -	lancet via a tive -	B port rise time	Push-pull driving	2.3	no	
t _{rB}	Input rise time	b port rise time	Open-drain driving	95	ns	
t_{fA}	Input fall time	A port fall time	Push-pull driving	9.0	ne	
чА	input fail time	A port fail time	Open-drain driving	2.6	- ns	
t _{fB}	Input fall time	B port fall time	Push-pull driving	8.9	ns	
цВ	input fail time	b port fail time	Open-drain driving	2.5	115	
t _{SK(O)}	Skew(time), output	Channel-to-chan	Channel-to-channel skew		ns	
1avimus	n data rata	Push-pull driving		24	Mbps	
/iaxiiiiuli	i uala fala	Open-drain drivin	ng	2	IVIDPS	
		1		1	1	


Typical Characteristics

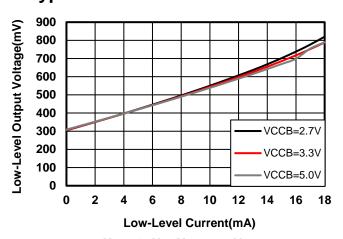

V_{CCA}=1.8V V_{IL(A)}=0.15V Figure1: Low-Level Output Voltage vs Low-Level Current


V_{CCA}=3.3V V_{IL(A)}=0.15V Figure3: Low-Level Output Voltage vs Low-Level Current

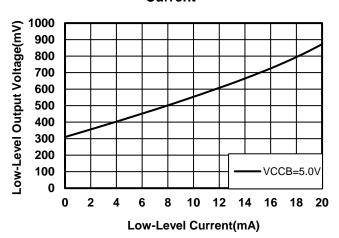

V_{CCA}=2.7V V_{IL(A)}=0.20V Figure5: Low-Level Output Voltage vs Low-Level Current

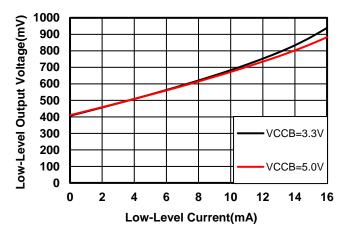
V_{CCA}=2.7V V_{IL(A)}=0.15V Figure2: Low-Level Output Voltage vs Low-Level Current

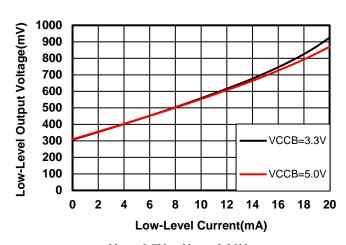
V_{CCA}=1.8V V_{IL(A)}=0.20V Figure4: Low-Level Output Voltage vs Low-Level Current

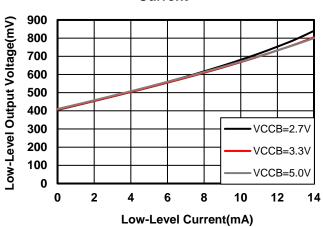


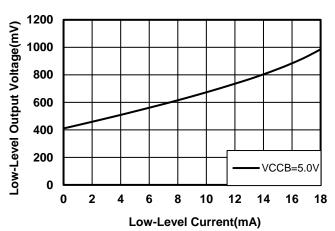
V_{CCA}=3.3V V_{IL(A)}=0.20V Figure6: Low-Level Output Voltage vs Low-Level Current


14 / 26 www.run-ic.com


Typical Characteristics

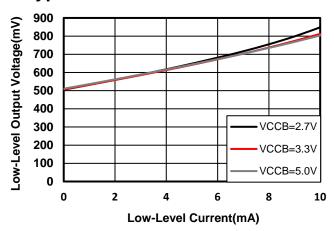

V_{CCA}=1.8V V_{IL(A)}=0.30V Figure7: Low-Level Output Voltage vs Low-Level Current


V_{CCA}=3.3V V_{IL(A)}=0.30V Figure9: Low-Level Output Voltage vs Low-Level Current


V_{CCA}=2.7V V_{IL(A)}=0.40V Figure11: Low-Level Output Voltage vs Low-Level Current

V_{CCA}=2.7V V_{IL(A)}=0.30V Figure8: Low-Level Output Voltage vs Low-Level Current

V_{CCA}=1.8V V_{IL(A)}=0.40V Figure10: Low-Level Output Voltage vs Low-Level Current



V_{CCA}=3.3V V_{IL(A)}=0.40V Figure12: Low-Level Output Voltage vs Low-Level Current

15 / 26 www.run-ic.com

Typical Characteristics

V_{CCA}=1.8V V_{IL(A)}=0.50V Figure13: Low-Level Output Voltage vs Low-Level Current

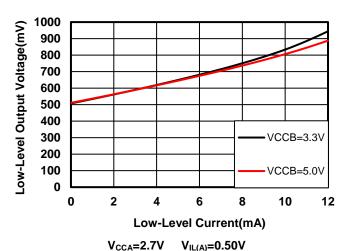
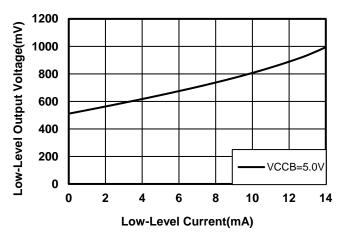



Figure14: Low-Level Output Voltage vs Low-Level
Current

V_{CCA}=3.3V V_{IL(A)}=0.50V Figure15: Low-level Output Voltage vs Low-Level Current

Parameter Measurement Information

Unless otherwise noted, all input pulses are supplied by generators having the following characteristics:

- PRR 10 MHz
- $Z_0 = 50 \Omega$
- $dv/dt \ge 1 V/ns$

Note: All input pulses are measured one at a time, with one transition per measurement.

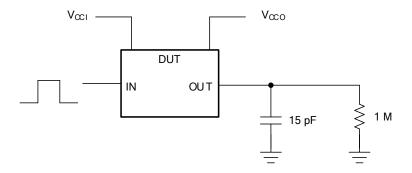


Figure 16. Data Rate, Pulse Duration, Propagation Delay, Output Rise And Fall Time Measurement Using A Push-Pull Driver

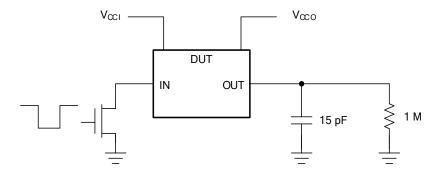


Figure 17. Data Rate, Pulse Duration, Propagation Delay, Output Rise And Fall Time Measurement Using An Open-Drain Driver

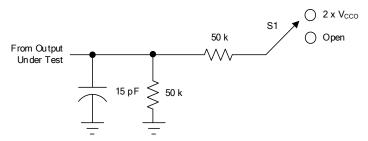
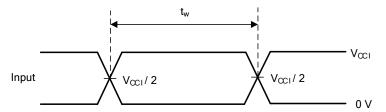


Figure 18. Load Circuit For Enable/Disable Time Measurement


Table 1. Switch Configuration For Enable/Disable Timing

TEST	S 1
t _{PZL} ⁽¹⁾ , t _{PLZ} ⁽²⁾	2 × Vcco
t _{PHZL} ⁽¹⁾ , t _{PZH} ⁽²⁾	Open

⁽¹⁾ t_{PZL} and t_{PZH} are the same as t_{en} .

⁽²⁾ t_{PLZ} and t_{PHZ} are the same as t_{dis} .

(1) All input pulses are measured one at a time, with one transition per measurement.

Figure 19. Voltage Waveforms Pulse Duration

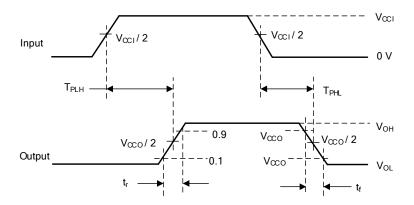


Figure 20. Voltage Waveforms Propagation Delay Times

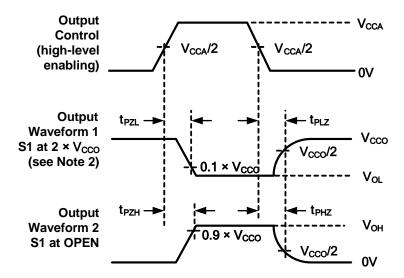


Figure 21. Voltage Waveforms Enable and Disable

Feature Description

Overview

The RS0102 device is a directionless voltage-level translator specifically designed for translating logic voltage levels. The A port is able to accept I/O voltages ranging from 1.65 V to 5.5 V, while the B port can accept I/O voltages from 2.3 V to 5.5 V. The device is a pass-gate architecture with edge-rate accelerators (one-shots) to improve the overall data rate. 10-k Ω pullup resistors, commonly used in open-drain applications, have been conveniently integrated so that an external resistor is not needed. While this device is designed for open-drain applications, the device can also translate push-pull CMOS logic outputs.

Architecture

The RS0102 architecture (see Figure 22) is an auto-direction-sensing based translator that does not require a direction-control signal to control the direction of data flow from A to B or from B to A. These two bidirectional channels independently determine the direction of data flow without a direction-control signal. Each I/O pin can be automatically reconfigured as either an input or an output, which is how this auto-direction feature is realized.

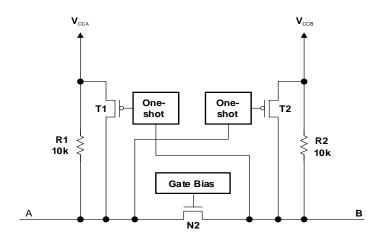


Figure 22. Architecture of a RS0102 Cell

The RS0102 employs two key circuits to enable this voltage translation:

- 1) An N-channel pass-gate transistor topology that ties the A-port to the B-port
- 2) Output one-shot (O.S.) edge-rate accelerator circuitry to detect and accelerate rising edges on the A or B Ports.

Input Driver Requirements

The continuous dc-current "sinking" capability is determined by the external system-level open-drain (or push-pull) drivers that are interfaced to the RS0102 I/O pins. Since the high bandwidth of these bidirectional I/O circuits is used to facilitate this fast change from an input to an output and an output to an input, they have a modest dc-current "sourcing" capability of hundreds of micro-Amps, as determined by the internal $10-k\Omega$ pullup resistors.

The fall time (t_{fA} , t_{fB}) of a signal depends on the edge-rate and output impedance of the external device driving RS0102 data I/Os, as well as the capacitive loading on the data lines.

Similarly, the t_{PHL} and max data rates also depend on the output impedance of the external driver. The values for t_{fA} , t_{fB} , t_{PHL} and maximum data rates in the data sheet assume that the output impedance of the external driver is less than 50 Ω .

Feature Description

Output Load Considerations

We recommend careful PCB layout practices with short PCB trace lengths to avoid excessive capacitive loading and to ensure that proper O.S. triggering takes place. PCB signal trace-lengths should be kept short enough such that the round-trip delay of any reflection is less than the one-shot duration. This improves signal integrity by ensuring that any reflection sees a low impedance at the driver. The O.S. circuits have been designed to stay on for approximately 30 ns. The maximum capacitance of the lumped load that can be driven also depends directly on the one-shot duration. With very heavy capacitive loads, the one-shot can time-out before the signal is driven fully to the positive rail. The O.S. duration has been set to best optimize trade-offs between dynamic ICC, load driving capability, and maximum bit-rate considerations. Both PCB trace length and connectors add to the capacitance that the RS0102 device output sees, so it is recommended that this lumped-load capacitance be considered to avoid O.S. retriggering, bus contention, output signal oscillations, or other adverse system-level affects.

Enable and Disable

The RS0102 device has an OE input that is used to disable the device by setting OE low, which places all I/Os in the Hi-Z state. The disable time (t_{dis}) indicates the delay between the time when OE goes low and when the outputs are disabled (Hi-Z). The enable time (t_{en}) indicates the amount of time the user must allow for the one-shot circuitry to become operational after OE is taken high.

Pullup or Pulldown Resistors on I/O Lines

Each A-port I/O has an internal $10-k\Omega$ pullup resistor to V_{CCA} , and each B-port I/O has an internal $10-k\Omega$ pullup resistor to V_{CCB} . If a smaller value of pullup resistor is required, an external resistor must be added from the I/O to V_{CCA} or V_{CCB} (in parallel with the internal $10-k\Omega$ resistors). Adding lower value pull-up resistors will affect V_{OL} levels, however. The internal pull-ups of the RS0102 are disabled when the OE pin is low.

Application Information

The RS0102 device can be used to bridge the digital-switching compatibility gap between two voltage nodes to successfully interface logic threshold levels found in electronic systems. It should be used in a point-to-point topology for interfacing devices or systems operating at different interface voltages with one another. Its primary target application use is for interfacing with open-drain drivers on the data I/Os such as I₂C or 1-wire, where the data is bidirectional and no control signal is available. The device can also be used in applications where a push-pull driver is connected to the data I/Os, but the RS0102 might be a better option for such push-pull applications.

Typical Application

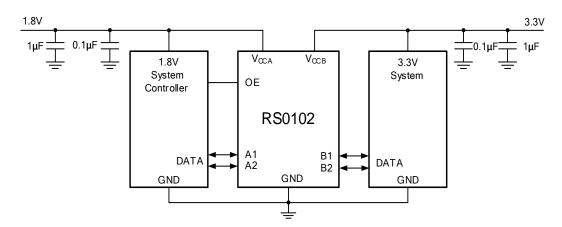
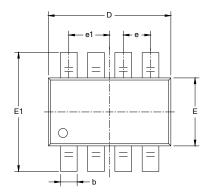
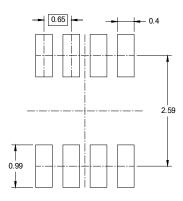
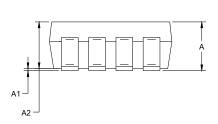
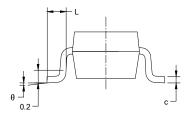
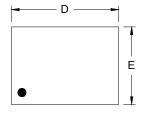




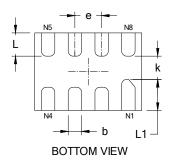
Figure 23. Typical Application Circuit

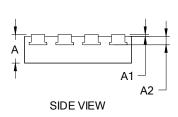


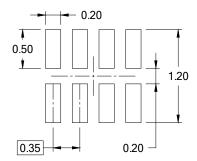

PACKAGE OUTLINE DIMENSIONS SOT-23-8

RECOMMENDED LAND PATTERN (Unit: mm)

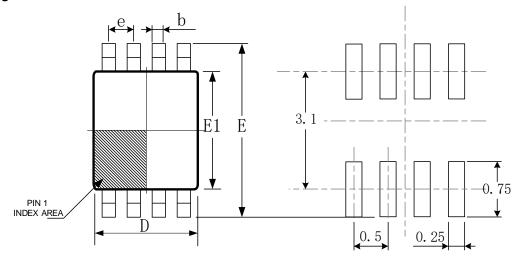



Complete al	Dimensions	n Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
А	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
Е	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.650	(BSC)	0.026(BSC)		
e1	0.975	(BSC)	0.038	(BSC)	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	

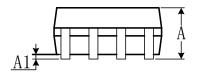


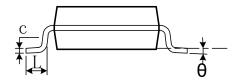

XTDFN-1.4x1-8L

TOP VIEW



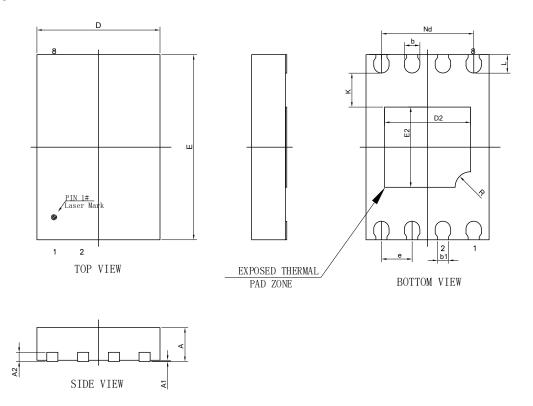
RECOMMENDED LAND PATTERN (Unit: mm)


Cumbal	Dimensions I	In Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
A	0.340	0.400	0.013	0.016	
A1	0.000	0.050	0.000	0.002	
A2	0.110	REF	0.004 REF		
D	1.350	1.450	0.053	0.057	
Е	0.950	1.050	0.037	0.041	
k	0.200	MIN	0.008	3 MIN	
b	0.150	0.200	0.006	0.008	
е	0.350 TYP 0.		0.014)14 TYP	
L	0.250	0.350	0.010	0.014	
L1	0.350	0.450	0.014	0.018	



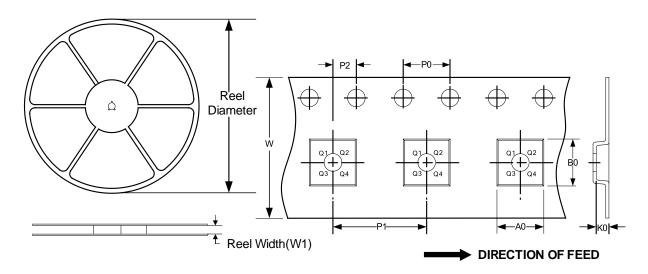
VSSOP-8

RECOMMENDED LAND PATTERN (Unit: mm)



Symbol	Dimensions I	n Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
А	0.600	0.900	0.024	0.085	
A1	0.000	0.100	0.000	0.004	
b	0.170	0.250	0.007	0.010	
С	0.100	0.200	0.004	0.008	
D	1.900	2.100	0.075	0.083	
е	0.500(BSC)		0.020	(BSC)	
E	3.000	3.200	0.118	0.126	
E1	2.200	2.400	0.087	0.095	
L	0.200	0.350	0.008	0.014	
θ	0°	6°	0°	6°	

DFN2x3-8L


Complete	Dimensions I	n Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
А	0.500	0.600	0.020	0.024	
A1	0.000	0.050	0.000	0.002	
A2	0.152	REF	0.006	REF	
D	1.900	2.100	0.075	0.083	
E	2.900	3.100	0.114	0.122	
D2	1.300	1.500	0.051	0.059	
E2	1.200	1.400	0.047	0.055	
е	0.500	BSC	0.020	BSC	
Nd	1.500	BSC	0.059	BSC	
b	0.200	0.300	0.008	0.012	
b1	0.180	REF	0.007	REF	
L	0.250	0.350	0.010	0.014	
R	0.200	0.300	0.008	0.012	
K	0.500	0.600	0.020	0.024	

TAPE AND REEL INFORMATION

REEL DIMENSIONS

TAPE DIMENSION

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOT23-8	7"	9.5	3.17	3.23	1.37	4.0	4.0	2.0	8.0	Q3
DFN1.4*1.0-8L	7"	9.5	1.2	1.6	0.5	4.0	4.0	2.0	8.0	Q1
VSSOP8	7"	9.5	2.25	3.35	1.40	4.0	4.0	2.0	8.0	Q3
DFN2*3-8L	7	9.5	2.30	3.30	0.95	4.0	4.0	2.0	8.0	Q2

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Translation - Voltage Levels category:

Click to view products by RUNIC manufacturer:

Other Similar products are found below:

NLSX4373DMR2G NLSX5012MUTAG NLSX0102FCT1G NLSX0102FCT2G PCA9306FMUTAG MC100EPT622MNG
NLSX3014MUTAG NLSX5011MUTCG NLVSX4373MUTAG NB3U23CMNTAG NLSX3013BFCT1G NLSX3012DMR2G
NLA9306MU3TCG NVT2001GMZ PI4ULS3V504AZMAEX 74AVCH1T45FW3-7 NLSX5011AMUTAG 74AXP1T34GWH
ST2149BQTR MC100ELT21DR2G MC100LVELT22MNRG MC10ELT20DR2G MC10EPT20MNR4G MC14504BFELG
NLSV4T3234FCT1G NLSX3378BFCT1G RS0104YQ RS0102YVS8 RS0202XM RS4T245XTSS16 RS1T45XH6 RS0101YUTDV6
RS8T245XTSS24-Q1 UM3208QA UM3208H UM3212V8 UM3304UE UM3304 UM3304QT UM3202H UM3301DA UM3308
AIPTS0108TA20.TR CD4049UBMT/TR RS0102YUTDS8 RS0104YTQE12 RS0204YUTQH12 RS0102YTDB8 RS0101YC6 RS0204YQ