High-Speed USB 2.0 (480-Mbps)
 1:2 Multiplexer/Demultiplexer Switch

FEATURES

- -3dB Bandwidth: 550 MHz

- Ron is Typically 6Ω
- Fast Switching Times:
ton 20ns
toff 15ns
- Break-Before-Make Switching
- Low Power Consumption (1 $\mu \mathrm{A}$ Maximum)
- Rail-to-Rail Input and Output Operation
- Extended Industrial Temperature Range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- MicroSIZE PACKAGES: MSOP-10

APPLICATIONS

- Routes Signals for USB 1.0, 1.1, and 2.0
- MP3 and Other Personal Media Players
- Portable Instrumentation
- USB Switching
- Digital Cameras
- Set-Top Box
- Cell Phones
- PDAs

DESCRIPTION

The RS2227 is a high-speed, low-power double-pole/double-throw (DPDT) analog switch with single Enable. It is designed to operate from 1.8 V to 5.5 V .

The RS2227 has a bus-switch enable pin, $\overline{\mathrm{OE}}$, that can place the signal paths in high impedance. This allows the user to isolate the bus when it is not in use and consume less current.

The RS2227 is a high-bandwidth switch specially designed for the switching of high-speed USB2.0 signals in handset and consumer applications, such as cell phones, digital cameras, and notebooks with hubs or controllers with limited USB I/Os.

The RS2227 is available MSOP-10 package. It operates over an ambient temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Functional Block Diagram

PIN CONFIGURATIONS

PIN DESCRIPTION

NAME	PIN	FUNCTION
V+	1	Power Supply
GND	5	Ground
S	2	Select Input
$\overline{\text { OE }}$	10	Output Enable
HSD1+, HSD2+	7,9	
HSD1-, HSD2-	6,8	
D+, D-	3,4	

FUNCTION TABLE

$\overline{\mathbf{O E}}$	\mathbf{S}	HSD1+, HSD1-	HSD2+, HSD2-
0	0	ON	OFF
0	1	OFF	ON
1	X	OFF	OFF

[^0]
ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Analog, Digital Voltage Range ${ }^{(2)} \ldots-0.3$ to (V+) + 0.3V	
Continuous Current HSDn or Dn........................ $\pm 100 \mathrm{~mA}$	
Peak Current HSDn or Dn............................... $\pm 150 \mathrm{~mA}$	
Storage Temperature $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Operating Temperature $40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Junction Temperature.. $150^{\circ} \mathrm{C}$	
Lead Temperature (Soldering, 10s) $260^{\circ} \mathrm{C}$ ESD Susceptibility	
HBM ..3000V	

(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.
(2) Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.3 V beyond the supply rails should be current-limited to 10 mA or less.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PACKAGE/ORDERING INFORMATION

PRODUCT	ORDERING NUMBER	TEMPERATURE RANGE	PACKAGE LEAD	PACKAGE MARKING	PACKAGE OPTION
RS2227	RS2227XN	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$	MSOP-10	RS2227	Tape and Reel,3000

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}+=+1.8 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=+1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=+0.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V}_{+}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=$ $+25^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog I/O Voltage (HSD1+, HSD1-, HSD2+, HSD2-)	VIs		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	0		V+	V
On-Resistance	Ron	$\begin{aligned} & \mathrm{V}+=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IS}}=0 \mathrm{~V} \text { to } 0.4 \mathrm{~V} \text {, } \\ & \mathrm{l}_{\mathrm{D}}=8 \mathrm{~mA} \text {, Test Circuit } 1 \end{aligned}$	$+25^{\circ} \mathrm{C}$		6	10	Ω
			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			10.5	
On-Resistance Match Between Channels	$\Delta \mathrm{RoN}^{\prime}$	$\begin{aligned} & \mathrm{V}+=3.0 \mathrm{~V}, \mathrm{~V} \mathrm{IS}=0 \mathrm{~V} \text { to } 0.4 \mathrm{~V} \text {, } \\ & \mathrm{l}_{\mathrm{D}}=8 \mathrm{~mA} \text {, Test Circuit } 1 \end{aligned}$	$+25^{\circ} \mathrm{C}$		0.15	0.6	Ω
			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			1.6	Ω
On-Resistance Flatness	Rflat(on)	$\begin{aligned} & \mathrm{V}+=3.0 \mathrm{~V}, \mathrm{~V}_{\text {IS }}=0 \mathrm{~V} \text { to } 1.0 \mathrm{~V} \text {, } \\ & \mathrm{ID}=8 \mathrm{~mA} \text {, Test Circuit } 1 \end{aligned}$	$+25^{\circ} \mathrm{C}$		5	7	Ω
			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			8	
Power Off Leakage Current (D+, D-)	loff	$\begin{aligned} & \mathrm{V}+=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=0 \mathrm{~V} \text { to } 3.6 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{S}}, \mathrm{~V}_{\overline{\mathrm{OE}}}=0 \mathrm{~V} \text { or } 3.6 \mathrm{~V} \end{aligned}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			1	$\mu \mathrm{A}$
Increase in I+ per Control Voltage	Ісст	$\mathrm{V}+=4.3 \mathrm{~V}, \mathrm{~V}$ or $\mathrm{V}_{\overline{\mathrm{OE}}}=2.6 \mathrm{~V}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			40	$\mu \mathrm{A}$
Source Off Leakage Current	Insd2(OFF) InsD1(OFF)	$\begin{aligned} & \mathrm{V}+=3.6 \mathrm{~V}, \mathrm{~V}_{\text {IS }}=3.3 \mathrm{~V} / 0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{D}}=0.3 \mathrm{~V} / 3.3 \mathrm{~V} \end{aligned}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			1	$\mu \mathrm{A}$
Channel On Leakage Current	IHsD2(ON) IHSDi(ON)	$\begin{array}{\|l} \mathrm{V}+=3.6 \mathrm{~V}, \mathrm{~V}_{\text {IS }}=3.3 \mathrm{~V} / 0.3 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{D}}=0.3 \mathrm{~V} / 3.3 \mathrm{~V} \text { or floating } \end{array}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			1	$\mu \mathrm{A}$
DIGITAL CONTROL INPUTS ${ }^{(1)}$							
Input High Voltage	V_{IH}		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	1.6			V
Input Low Voltage	VIL		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			0.5	V
Input Leakage Current	In	$\mathrm{V}+=3.0 \mathrm{~V}, \mathrm{Vs}, \mathrm{V}_{\overline{\mathrm{OE}}}=0 \mathrm{~V}$ or $\mathrm{V}+$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			1	$\mu \mathrm{A}$

(1) All unused digital inputs of the device must be held at V Io or GND to ensure proper device operation.

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}+=+1.8 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=+1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=+0.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V}+=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=$ $+25^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	TEMP	MIN	TYP	MAX	UNITS
DYNAMIC CHARACTERISTICS							
Turn-On Time	ton	$\begin{aligned} & V_{I S}=0.8 \mathrm{~V}, R_{L}=50 \Omega, \\ & C_{L}=10 \mathrm{pF} \text {, Test Circuit } 2 \end{aligned}$	$+25^{\circ} \mathrm{C}$		20		ns
Turn-Off Time	tofF		$+25^{\circ} \mathrm{C}$		15		ns
Break-Before-Make Time Delay	t_{D}	$\begin{aligned} & V_{I S}=0.8 \mathrm{~V}, R_{L}=50 \Omega, \\ & C_{L}=10 \mathrm{pF}, \text { Test Circuit } 3 \end{aligned}$	$+25^{\circ} \mathrm{C}$		4		ns
Propagation Delay	tpd	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$	$+25^{\circ} \mathrm{C}$		0.35		ns
Off Isolation	Oiso	Signal $=0 \mathrm{dBm}, \mathrm{R}_{\mathrm{L}}=50 \Omega$, $\mathrm{f}=250 \mathrm{MHz}$, Test Circuit 4	$+25^{\circ} \mathrm{C}$		-35		dB
Channel-to-Channel Crosstalk	$\mathrm{X}_{\text {talk }}$	Signal $=0 \mathrm{dBm}, \mathrm{R}_{\mathrm{L}}=50 \Omega$, $\mathrm{f}=250 \mathrm{MHz}$, Test Circuit 5	$+25^{\circ} \mathrm{C}$		-40		dB
-3dB Bandwidth	BW	Signal $=0 \mathrm{dBm}, \mathrm{R}_{\mathrm{L}}=50 \Omega$, $C_{L}=5 p F$, Test Circuit 6	$+25^{\circ} \mathrm{C}$		550		MHz
Channel-to-Channel Skew	tskew	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$	$+25^{\circ} \mathrm{C}$		0.05		ns
Charge Injection Select Input to Common I/O	Q	$\begin{aligned} & \mathrm{V}_{\mathrm{G}}=\mathrm{GND}, \mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}, \mathrm{R}_{\mathrm{G}}=0 \Omega, \\ & \mathrm{Q}=\mathrm{CLX}_{\mathrm{L}} \text { Vout, Test Circuit } 7 \end{aligned}$	$+25^{\circ} \mathrm{C}$		11		pC
$\begin{array}{\|l} \hline \text { HSD+, HSD-, D+, D- ON } \\ \text { Capacitance } \\ \hline \end{array}$	Con		$+25^{\circ} \mathrm{C}$		7		pF
POWER REQUIREMENTS							
Power Supply Range	V+		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	1.8		5.5	V
Power Supply Current	${ }_{+}$	$\mathrm{V}+=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{s}}, \mathrm{V}_{\overline{\mathrm{OE}}}=0 \mathrm{~V}$ or $\mathrm{V}+$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			1	$\mu \mathrm{A}$

Parameter Measurement Information

Test Circuit 1. ON-State Resistance (Ron)

Test Circuit 2. Turn-On (ton) and Turn-Off Time (toff)

Test Circuit 3. Break-Before-Make Time (to)

Channel To Channel Crosstalk $=-20 \times \log \frac{V_{\text {HSDn }}}{V_{\text {OUT }}}$
Test Circuit 5. Channel-to-Channel Crosstalk

Test Circuit 6. -3dB Bandwidth

APPLICATION NOTES

There are many USB applications in which the USB hubs or controllers have a limited number of USB I/Os. The RS2227 solution can effectively expand the limited USB I/Os by switching between multiple USB buses in order to interface them to a single USB hub or controller. RS2227 can also be used to connect a single controller to two USB connectors or controllers.
Design requirements of the USB 1.0, 1.1, and 2.0 standards should be followed. It is recommended that the digital control pins S and $\overline{\mathrm{OE}}$ be pulled up to $\mathrm{V}+$ or down to GND to avoid undesired switch positions that could result from the floating pin.

Figure 1. Application Diagram

PACKAGE OUTLINE DIMENSIONS

MSOP-10

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
A	0.820	1.100	0.032	0.043
A1	0.020	0.150	0.001	0.006
A2	0.750	0.950	0.030	0.037
b	0.180	0.280	0.007	0.011
c	0.090	0.230	0.004	0.009
D	2.900	3.100	0.114	0.122
e	$0.50(B S C)$			$0.020(B S C)$
E	2.900	3.100	0.114	0.122
E1	4.750	5.050	0.187	0.199
L	0.400	0.800	0.016	0.031
θ	0°	6°	0°	6°

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by RUNIC manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB MAX4762ETB+ NLAS5123MNR2G PI5A4157CEX PI5A4599BCEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQEX PI5A392AQE FSA634UCX NX3L1T5157GMZ ADG714BCPZ-REEL7 HT4051ARZ TC4066BP(N,F) DG302BDJ-E3 ADG854BCPZ-REEL7 PI5A100WE PI5A100QEX HV2733FG-G HV2701FG-G HV2301FG-G HV2301FG-G-M931 RS2117YUTQK10
 MAX333AEWP+ BU4066BC MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G NX3L4684TK,115 NX5L2750CGUX NLAS4157DFT2G NLAS4599DFT2G NLASB3157DFT2G NLAST4599DFT2G NLAST4599DTT1G

[^0]: X =Don't care

