

Supply Voltage Supervisor with Watchdog and Manual Reset

FEATURES

- Operating Voltage Range:1.0V to 5.5V
- Low Power Consumption:40µA (Max)
- Precision Supply-Voltage Monitor: 2.63V, 2.93V, 3.08V, 4.00V
- Debounced TTL/CMOS Compatible Manual-Reset Input
- Guaranteed RESET Valid at V_{cc}=1.0V
- 200ms Reset Pulse Width
- Voltage Monitor for Power-Fail or Low-Battery Warning
- Operating Temperature Range: -40°C to +85°C
- Available in Green Package: SOT23-5

APPLICATIONS

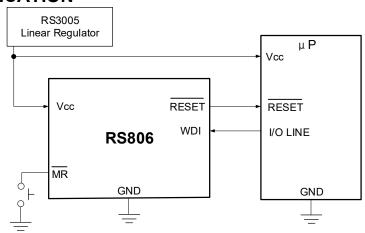
- Computers
- SOC , DSP or Micro controllers
- Embedded Systems
- Industrial Equipment
- Intelligent Instruments
- Critical µP Power Monitoring
- Wireless Communications Systems

DESCRIPTION

The RS806 microprocessor (μP) supervisory circuits reduce the complexity and number of components required to monitor power-supply and battery function in μP systems. This device significantly improves system reliability and accuracy compared to separate ICs or discrete components.

The RS806 provide four functions:

- 1) A reset output during power-up, power-down, and brownout conditions. The reset output remains operational with V_{CC} as low as 1.0V.
- 2) RESET output that goes low if the watchdog input has not been toggled within 1.6 seconds (typ).
- 3) A 1.2V threshold detector for power-fail warning, low-battery detection, or for monitoring a power supply.
- 4) An active-low manual-reset input.

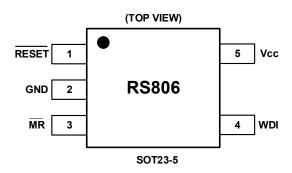

The RS806 is available in Green SOT23-5 package. It operates over an ambient temperature range of -40°C to +85°C.

Device Information (1)

PART NUMBER	PACKAGE	BODY SIZE (NOM)
RS806	SOT23-5	2.92mm x 1.60mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

TYPICAL APPLICATION



Revision HistoryNote: Page numbers for previous revisions may different from page numbers in the current version.

Version	Change Date	Change Item
A.1	2021/08/09	Initial version completed

PIN CONFIGURATIONS

PIN DESCRIPTION

PIN	NAME	FUNCTION				
SOT23-5	NAME	FUNCTION				
1	RESET	Active-Low Reset Output pulses low for 200ms when triggered, and stays low whenever V_{CC} is below the reset threshold. It remains low for 200ms after V_{CC} rises above the reset threshold or $\overline{\text{MR}}$ goes from low to high.				
2	GND	Ground, reference for all signals.				
3	MR	Manual-Reset Input triggers a reset pulse when pulled below 0.8V. This active-low input has an internal pull-up resistance. It can be driven from a TTL or CMOS logic line as well as shorted to ground with a switch.				
runs out and reset goes low. Floating W WDI impedance three-state buffer disables the watchdog timer clears whenever reset is as		Watchdog Input. If WDI remains high or low 1.6sec, the internal watchdog timer runs out and reset goes low. Floating WDI or connecting WDI to a high-impedance three-state buffer disables the watchdog feature. The internal watchdog timer clears whenever reset is asserted, WDI is three-stated, or WDI sees a rising or falling edge.				
5	V _{CC}	3 3 3				

Specifications

Absolute Maximum Ratings (1)

over operating free-air temperature range (unless otherwise noted) (1)(2)

			MIN	MAX	UNIT
Vcc	Supply voltage range		-0.5	6.0	V
Vı	V _i Input voltage range ⁽²⁾				V
Vo	Vo Voltage range applied to any output in the high-impedance or power-off state				٧
Vo	Voltage range applied to any output in the high or low sta	-0.5	V _{CC} +0.5	V	
I _{IK}	K Input clamp current V₁<0			-20	mA
Іок	Output clamp current	V ₀ <0		-20	mA
lo	Continuous output current			±20	mA
	Continuous current through V _{CC} or GND			±20	mA
TJ	Junction temperature		-65	150	°C
T _{stg}	T _{stg} Storage temperature		-65	150	°C
T _A	Operating temperature		-40	85	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- (2) The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.
- (3) The value of V_{CC} is provided in the *Recommended Operating Conditions table*.

ESD Ratings

			VALUE	UNIT
V	Electrostatic discharge	Human-body model (HBM)	±6000	V
V _(ESD)	Electrostatic discharge	Machine model (MM)	±300	V

Thermal Information:

		RS806	
	THERMAL METRIC	5PINS	UNIT
		SOT23-5	
Reja	Junction-to-ambient thermal resistance	273.8	°C/W
R _{OJC(top)}	Junction-to-case(top) thermal resistance	126.8	°C/W
R _{OJB}	Junction-to-board thermal resistance	85.9	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	10.9	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	84.9	°C/W
ReJC(bot)	Junction-to-case(bottom) thermal resistance	N/A	°C/W

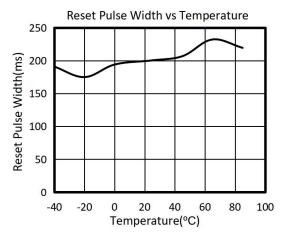
PACKAGE/ORDERING INFORMATION

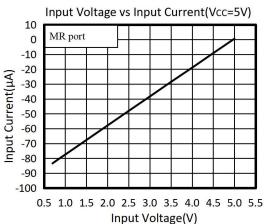
PRODUCT	ORDERING NUMBER	TEMPERATURE RANGE	PACKAGE LEAD	PACKAGE MARKING (1/2)	PACKAGE OPTION
	RS806-2.63YF5	-40°C ~+85°C	SOT23-5	RS806B	Tape and Reel,3000
DCCCC	RS806-2.93YF5	-40°C ~+85°C	SOT23-5	RS806C	Tape and Reel,3000
RS806	RS806-3.08YF5	-40°C ~+85°C	SOT23-5	RS806D	Tape and Reel,3000
	RS806-4.00YF5	-40°C ~+85°C	SOT23-5	RS806E	Tape and Reel,3000

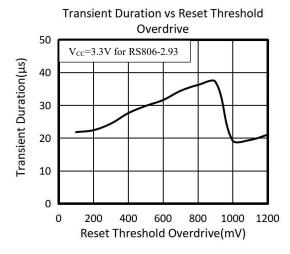
NOTE:

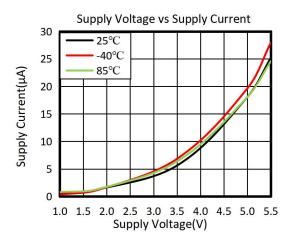
⁽¹⁾ There may be additional marking, which relates to the lot trace code information(data code and vendor code), the logo or the environmental category on the device.

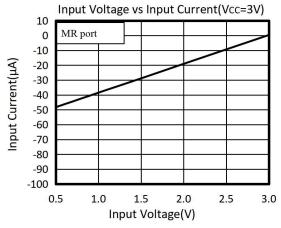
(2) B,C,D,E, represents different Reset Thresholds.

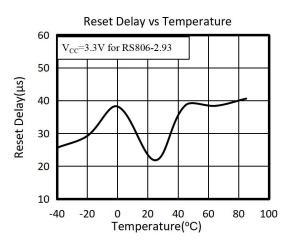

ELECTRICAL CHARACTERISTICS

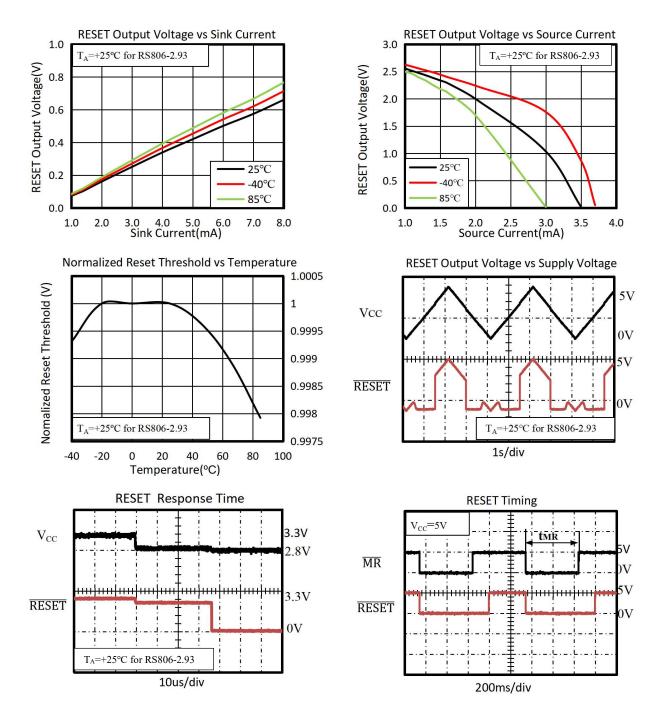

(V_{CC} = 2.7V to 5.5V for RS806-2.63; V_{CC} = 3V to 5.5V for RS806-2.93; V_{CC} = 3.16V to 5.5V for RS806-3.08; V_{CC} = 4.1V to 5.5V for RS806-4.00; T_A = -40°C to +85°C, unless otherwise noted, typical at 25°C.) (1)

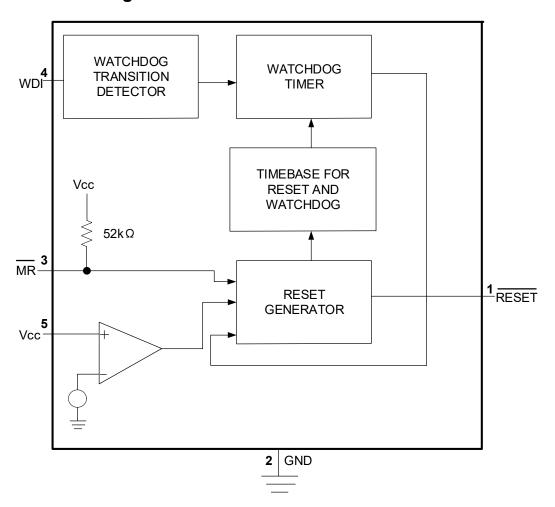

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
Supply Voltage	Vcc		1.0		5.5	V	
Supply Current	I _{SUPPLY}			20	40	μA	
		RS806-2.63	2.56	2.63	2.7		
Reset Threshold	W	RS806-2.93	806-2.93 2.86 2.93		3.0	V	
Reset Threshold	V_{RT}	RS806-3.08	3.0	3.08	3.16	V	
		RS806-4.00	3.9	4.0	4.1		
		RS806-2.63		12			
Reset Threshold		RS806-2.93		14		m\/	
Hysteresis		RS806-3.08		15		mV	
		RS806-4.00		20			
Reset Pulse Width t _R			100	200	350	ms	
V _{CC} to RESET delay	t _{RD}	V _{CC} =3.3V, RS806-2.93		30		μs	
Watchdog Timeout Period	t _{WD}		1.0	1.6	2.9	s	
WDI Pulse Width	t _{WP}	V _{IL} =0.4V, V _{IH} =V _{CC}	16			ns	
DECET Output valtage	High	I _{SOURCE} = 500uA	0.7xVcc			V	
RESET Output voltage	Low	I _{SINK} = 1.2mA			0.4		
	High	V _{CC} =5.0V	4.0				
WDI Input Threshold	Low	V _{CC} =5.0V			0.8	V	
WDI Input Threshold	High	V _{RST(MAX)} < V _{CC} < 3.6V	0.8xV _{CC}				
	Low	$V_{RST(MAX)} < V_{CC} < 3.6V$			0.6		
WDI Innut Current		WDI = V _{CC}	0.1		1		
WDI Input Current		WDI = 0V	-1	-0.1		μA	
MR Pull-Up Resistor				52		kΩ	
MR Pulse Width	t _{MR}			15		ns	
	High	Vcc=5.0V	4.0				
WD Innest Three heald	Low	V _{CC} =5.0V			0.6	1 ,,	
MR Input Threshold	High	V _{RST(MAX)} < V _{CC} < 3.6V	0.8xV _{CC}			V	
	Low	$V_{RST(MAX)} < V_{CC} < 3.6V$			0.15xV _{CC}	1	
MR to Reset Out Delay	t _{MD}			23		ns	




Typical Operating Characteristics







Typical Operating Characteristics

Function Block Diagram

Detailed Description Reset Output

A microprocessor's (μ P's) reset input starts the μ P in a known state. Whenever the μ P is in an unknown state, it should be held in reset. The RS806 assert reset during power-up and prevent code execution errors during power-down or brownout conditions.

On power-up, once V_{CC} reaches 1.0V, \overline{RESET} is a guaranteed logic low of 0.4V or less. As V_{CC} rises, \overline{RESET} stays low. When V_{CC} rises above the reset threshold, an internal timer release \overline{RESET} after about 200ms. \overline{RESET} pulses low whenever V_{CC} dips below the reset threshold. If brownout occurs in the middle of a previously initiated reset pulse, the pulse continues for at least another 100ms. On power-down, once V_{CC} falls below the reset threshold, \overline{RESET} stays low and is guaranteed to be 0.4V or less until V_{CC} drops below 1.0V.

Watchdog Timer

The RS806 watchdog circuit monitors the μP 's activity. If the μP does not toggle the watchdog input (WDI) within 1.6 sec (Minimum is 1.0 sec) and WDI is not three stated, \overline{RESET} goes low. As long as \overline{RESET} is asserted or the WDI input is three stated, the watchdog timer stays cleared and will not count. As soon as reset is released and WDI is driven high or low, the timer starts counting. Pulses as short as 50ns can be detected.

Typically, \overline{RESET} is not connected to the non-maskable interrupt input (NMI) of a μP . When V_{CC} drops below the reset threshold, \overline{RESET} goes low whether or not the watchdog timer has timed out yet. Normally this would trigger an NMI interrupt, but \overline{RESET} goes low simultaneously, and thus overrides the NMI interrupt.

If WDI is left unconnected, \overline{RESET} can be used as a low-line output. Since floating WDI disable the internal timer, \overline{RESET} goes low only when V_{CC} falls below the reset threshold, thus functioning as a low-line output.

Manual Reset

The manual-reset input (\overline{MR}) allows reset to be triggered by a push-button switch. \overline{MR} is TTL/CMOS logic compatible, so it can be driven by an external logic line. \overline{MR} can be used to force a watchdog timeout to generate a reset pulse in the RS806. Simply connect \overline{RESET} to \overline{MR} .

Applications Information

Ensuring a Valid RESET Output Down to Vcc=0V

When V_{CC} falls down below 1V, the RS806 \overline{RESET} output no longer sinks current, it becomes an open circuit. High-impedance CMOS logic inputs can drift to undetermined voltages if left un-driven. If a pull-down resistor is added to the \overline{RESET} pin, as shown in Figure 1, any stray charge or leakage currents will be drained to ground, holding \overline{RESET} low. Resistor value (R1) is not critical. It should be about $100 \text{K}\Omega$, large enough not to load \overline{RESET} and small enough to pull \overline{RESET} to ground.

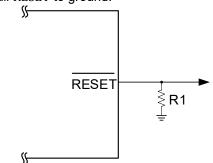


Figure 1. RESET Valid to Ground Circuit

Interfacing to µPs with Bidirectional Reset Pins

 μ Ps with bidirectional reset pins, can contend with the RS806 $\overline{\text{RESET}}$ output. If, for example, the $\overline{\text{RESET}}$ output is driven high and the μ P wants to pull it low, indeterminate logic levels may result. To correct this, connect a 4.7KΩ resistor between the $\overline{\text{RESET}}$ output and the μ P reset I/O, as in Figure 2. Buffer the $\overline{\text{RESET}}$ output to other system components.

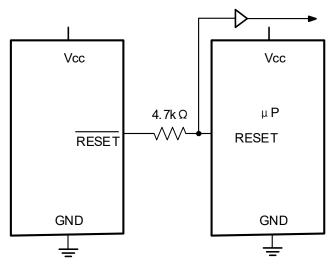
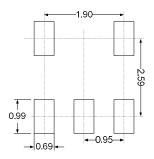
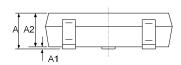
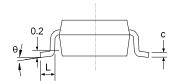
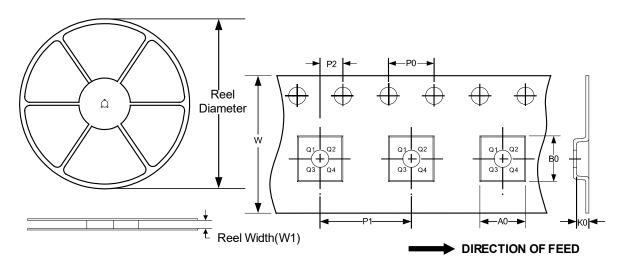



Figure 2. Buffered $\overline{\text{RESET}}$ to other system components




PACKAGE OUTLINE DIMENSIONS SOT23-5

RECOMMENDED LAND PATTERN (Unit: mm)


Council of	Dimensions I	n Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
А	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950	(BSC)	0.037		
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	

TAPE AND REEL INFORMATION

REEL DIMENSIONS

TAPE DIMENSION

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOT23-5	7"	9.5	3.20	3.20	1.40	4.0	4.0	2.0	8.0	Q3

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Supervisory Circuits category:

Click to view products by RUNIC manufacturer:

Other Similar products are found below:

CAT853STBI-T3 RT9818C-27GU3 DS1232L NCV302HSN45T1G STM6710FWB7F PT7M6127NLTA3EX XC6118C25AGR-G
ISL88011IH526Z-TK ISL88013IH529Z-TK ISL88705IP846Z ISL88706IP831Z ISL88708IB844Z ISL88708IP831Z TCM811MERCTR
X40420S14-A X40421S14-C X40430S14-A X40430S14I-A X40430S14I-B X40431S14-A X40431S14-B X40431S14-C X40431S14I-A
X40431S14I-B X40431S14I-C X4043P-2.7 X4043PI-2.7 X4043S8-2.7T1 X4043S8IZ-2.7 X4043S8IZT1 X4043S8T1 X4045P X4045PI
X4045PI-2.7 X4045S8-2.7T1 X4045S8IZ X4045S8T1 X4163P X4163P-2.7 X4163PI X4163PI-2.7 X4163S8 X4165P X4165P-2.7
X4165PI X4165PI-2.7 X4165S8I-2.7 X4283S8I X4323S8-2.7 X4323S8I-2.7