

Zero-Drift, Rail-to-Rail I/O CMOS Operational Amplifiers

Features

• Low Offset Voltage: ±1uV (TYP)

• Input Offset Drift: ±0.005uV/°C

High Gain Bandwidth Product: 1.6MHz

• Rail-to-Rail Input and Output

• High Gain, CMRR, PSRR:130dB

• High Slew Rate: 0.7V/us

Low Noise: 1.3uVp-p (0.01Hz~10Hz)

• Low Power Consumption: 180uA /op amp

• Overload Recovery Time:2us

Low Supply Voltage: +2.5 V to +5.5 V

• No External Capacitors Required

Extended Temperature: -40°C to +125°C

Applications

Temperature Sensors

Medical/Industrial Instrumentation

• Pressure Sensors

Battery-Powered Instrumentation

Active Filtering

Weight Scale Sensor

Strain Gage Amplifiers

Power Converter/Inverter

Description

The RS8538, RS8539 series of CMOS operational amplifiers use auto-zero techniques to simultaneously provide very low offset voltage (5uV max) and near-zero drift over time and temperature. This family of amplifiers has ultralow noise, offset and power.

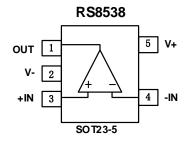
This miniature, high-precision operational amplifiers offer high input impedance and rail-to-rail input and rail-to-rail output swing. With high gain-bandwidth product of 1.6MHz and slew rate of 0.7V/us. Single or dual supplies as low as +2.5V ($\pm 1.25V$) and up to +5.5V ($\pm 2.75V$) may be used.

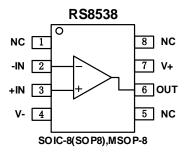
The RS8538/RS8539 are specified for the extended industrial and automotive temperature range (-40°C to 125°C). The RS8538 single amplifier is available in 5-lead SOT23, 8-lead MSOP and 8-lead SOIC packages, The RS8539 dual amplifier is available in 8-lead SOIC and 8-lead MSOP narrow surface mount packages.

Device Information (1)

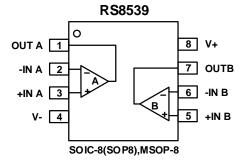
PART NUMBER	PACKAGE	BODY SIZE (NOM)	
	SOT23-5	2.90mm×1.60mm	
RS8538	SOIC-8 (SOP8)	4.90mm×3.90mm	
	MSOP-8	3.00mm×3.00mm	
RS8539	SOIC-8 (SOP8)	4.90mm×3.90mm	
	MSOP-8	3.00mm×3.00mm	

⁽¹⁾ For all available packages, see the orderable addendum at the end of the data sheet.




Revision HistoryNote: Page numbers for previous revisions may different from page numbers in the current version.

Version	Change Date	Change Item			
C.1	2022/05/17	Update Package Qty on Page 2@RevB.3 Added TAPE AND REEL INFORMATION Added APPLICATION NOTE			


Pin Configuration and Functions (Top View)

Pin Description

		PIN		
NAME	RS8531	RS8531	I/O	DESCRIPTION
	SOT23-5	SOIC-8 (SOP8)/ MSOP8		
-IN	4	2	I	Negative (inverting) input
+IN	3	3	I	Positive (noninverting) input
NC	-	1,5,8	-	No internal connection (can be left floating)
OUT	1	6	0	Output
V-	2	4		Negative (lowest) power supply
V+	5	7	-	Positive (highest) power supply

Pin Description

NAME	PIN	1/0	DESCRIPTION			
NAME SOIC-8 (SOP8)/ MSO	SOIC-8 (SOP8)/ MSOP8	1/0	DESCRIPTION			
-INA	2	I	Inverting input, channel A			
+INA	3	I	Noninverting input, channel A			
-INB	6	I	Inverting input, channel B			
+INB	5	I	Noninverting input, channel B			
OUTA	1	0	Output, channel A			
OUTB	7	0	Output, channel B			
V-	4	-	Negative (lowest) power supply			
V+	8	-	Positive (highest) power supply			

SPECIFICATIONS

Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted) (1)

		MIN	MAX	UNIT
	Supply, Vs=(V+) - (V-)		7	
Voltage	Signal input pin (2)	(V-)-0.5	(V+) +0.5	V
	Signal output pin (3)	(V-)-0.5	(V+) +0.5	
	Signal input pin (2)	-10	10	mA
Current	Signal output pin (3)	-55	55	mA
	Output short-circuit (4)	Contin	uous	
	Operating range, T _A	-40	125	
Temperature	Junction, T _J	-40	150	°C
	Storage, T _{stg}	-65	150	

⁽¹⁾ Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.

ESD Ratings

			VALUE	UNIT
V(EOD)	Electrostatic discharge	Human-body model (HBM)	±5000	V
V _(ESD)	Lieutostatic discriarge	Machine Model (MM)	±400	V

Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
Supply voltage, Vs= (V+) - (V-)	Single-supply	2.5		5.5	\/
Supply voltage, Vs= (V+) - (V-)	Dual-supply	±1.25		±2.75	V

Thermal Information: RS8538

		R			
	THERMAL METRIC	5PINS	8P	UNIT	
		SOT23-5	SOIC-8	MSOP8	
R _{OJA}	Junction-to-ambient thermal resistance	273.8	116	165	°C/W
R _{OJC (top)}	Junction-to-case (top) thermal resistance	126.8	60	53	°C/W
R _{OJB}	Junction-to-board thermal resistance	85.9	56	87	°C/W
Ψ _{JT}	Junction-to-top characterization parameter	10.9	12.8	4.9	°C/W
ΨЈВ	Junction-to-board characterization parameter	84.9	98.3	85	°C/W
R _{OJC (bot)}	Junction-to-case (bottom) thermal resistance	N/A	N/A	N/A	°C/W

⁽²⁾ Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.5V beyond the supply rails should be current-limited to 10mA or less.

⁽³⁾ Output terminals are diode-clamped to the power-supply rails. Output signals that can swing more than 0.5V beyond the supply rails should be current-limited to ±55mA or less.

⁽⁴⁾ Short-circuit to ground, one amplifier per package.

Thermal Information: RS8539

	THERMAL METRIC	8PI	UNIT	
		SOIC-8	MSOP8	
R _{OJA}	Junction-to-ambient thermal resistance	116	165	°C/W
R _{OJC (top)}	Junction-to-case (top) thermal resistance	60	53	°C/W
R _{OJB}	Junction-to-board thermal resistance	56	87	°C/W
Ψ _{JT}	Junction-to-top characterization parameter	12.8	4.9	°C/W
ΨЈВ	Junction-to-board characterization parameter	98.3	85	°C/W
R _{OJC (bot)}	Junction-to-case (bottom) thermal resistance	N/A	N/A	°C/W

PACKAGE/ORDERING INFORMATION

Orderable Device	Package Type	Pin	Channel	Op Temp(°C)	Device Marking ⁽¹⁾	Package Qty
RS8538XF	SOT23-5	5	1	-40°C ~125°C	8538	Tape and Reel,3000
RS8538XK	SOIC-8 (SOP8)	8	1	-40°C ~125°C	RS8538	Tape and Reel,4000
RS8538XM	MSOP-8	8	1	-40°C ~125°C	RS8538	Tape and Reel,4000
RS8539XK	SOIC-8 (SOP8)	8	2	-40°C ~125°C	RS8539	Tape and Reel,4000
RS8539XM	MSOP-8	8	2	-40°C ~125°C	RS8539	Tape and Reel,4000

NOTE:

⁽¹⁾ There may be additional marking, which relates to the lot trace code information (data code and vendor code), the logo or the environmental category on the device.

ELECTRICAL CHARACTERISTICS

Boldface limits apply over the specified temperature range, $T_A = -40$ °C to +125°C.

(At $T_A = +25^{\circ}C$, $V_S=5V$, $R_L = 10k\Omega$ connected to $V_S/2$, and $V_{OUT} = V_S/2$, unless otherwise noted.)

DADAMETED	OVMDOL	COMPITION	RS8	538, RS	8539	LINUT
PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNIT
OFFSET VOLTAGE	'		1			
Input Offset Voltage	Vos	V _{CM} = V _S /2	-5	±1	5	uV
Input Offset Voltage Average Drift	Vos Tc			±0.005	±0.05	uV/°C
Power-Supply Rejection Ratio	PSRR	V_S = +2.5V to +5.5V, V_{CM} = 0	110	130		dB
Channel Separation, dc				0.1		uV/V
INPUT BIAS CURRENT						
Input Bias Current	IB	V _{CM} = V _S /2		±50		pА
Input Offset Current	los			±10		pА
NOISE PERFORMANCE						
Input Voltage Noise	e _n p-p	f= 0.01Hz to 10Hz		1.3		uVpp
Input Voltage Noise	e _n p-p	f= 0.01Hz to 1Hz		0.4		uVpp
Input Voltage Noise Density	en	f= 1KHz		60		nV/√Hz
Input Current Noise Density	in	f= 10Hz		8		fA/√Hz
INPUT VOLTAGE RANGE						
Common-Mode Voltage Range	Vсм		(V-) -0.1		(V+) +0.1	V
Common-Mode Rejection Ratio	CMRR	$(V-) -0.1V < V_{CM} < (V+)+ 0.1V$	110	130		dB
INPUT CAPACITANCE						
Differential				1		pF
Common-Mode				5		pF
Open-Loop Gain						
Open-Loop Voltage Gain	A _{OL}	R _L = $10K\Omega$, V _O = $0.3V$ to $4.7V$, T _A = $-40^{\circ}C$ to $125^{\circ}C$	110	130		dB
DYNAMIC PERFORMANCE						
Slew Rate	SR	G= +1		0.7		V/us
Gain-Bandwidth Product	GBW			1.6		MHz
Overload Recovery Time	toR			2		us
OUTPUT CHARACTERISTICS						
Output Voltage High	V _{OH}	R_L =100 K Ω to GND	4.99	4.998		V
Output voltage riigii	VOH	R_L =10 K Ω to GND	4.95	4.98		V
Output Voltage Low	VoL	R_L =100 K Ω to V+		1	10	mV
Output voltage LOW	V OL	R_L =10 K Ω to V+		10	30	IIIV
Short-Circuit Current	Isc			40		mA
POWER SUPPLY						
Operating Voltage Range	Vs		2.5		5.5	V
Quiescent Current/ Amplifier	IQ			180	260	uA

TYPICAL CHARACTERISTICS

At $T_A = +25$ °C, $V_S = 5V$, $R_L = 10k\Omega$ connected to $V_S/2$, $V_{OUT} = V_S/2$, unless otherwise noted.

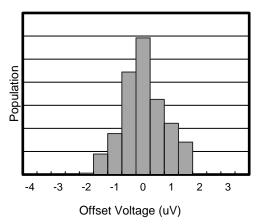


Figure 1. Offset Voltage Production Distribution

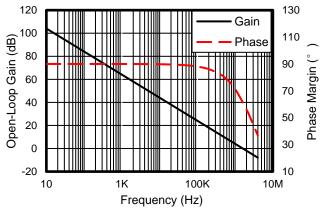


Figure 3. Open-Loop Gain and Phase vs Frequency

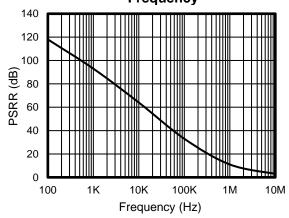


Figure 5. Power-Supply Rejection Ratio vs Frequency

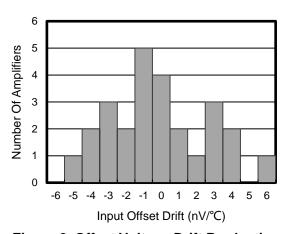


Figure 2. Offset Voltage Drift Production Distribution

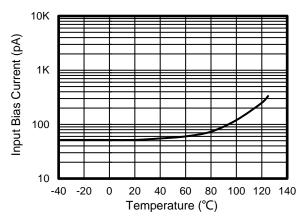


Figure 4. Input Bias Current vs Temperature

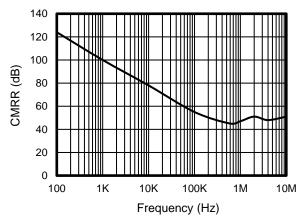


Figure 6. Common-Mode Rejection Ratio vs Frequency

TYPICAL CHARACTERISTICS

At $T_A = +25$ °C, $V_S = 5V$, $R_L = 10k\Omega$ connected to $V_S/2$, $V_{OUT} = V_S/2$, unless otherwise noted.

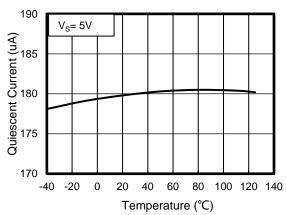


Figure 7. Quiescent Current vs Temperature

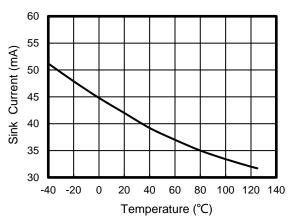


Figure 9. Sink Current vs Temperature

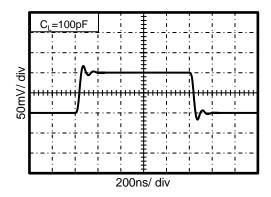


Figure 11. Small-Signal Step Response

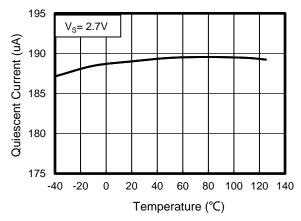


Figure 8. Quiescent Current vs Temperature

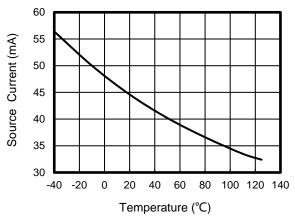


Figure 10. Source Current vs Temperature

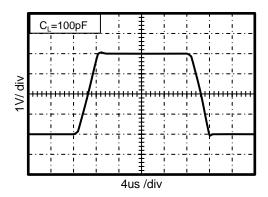


Figure 12. Large-Signal Step Response

TYPICAL CHARACTERISTICS

At $T_A = +25$ °C, $V_S = 5V$, $R_L = 10k\Omega$ connected to $V_S/2$, $V_{OUT} = V_S/2$, unless otherwise noted.

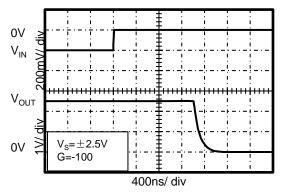


Figure 13. Positive Overvoltage Recovery

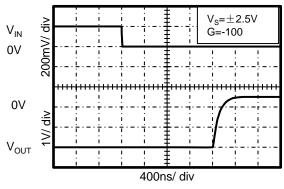


Figure 14. Negative Overvoltage Recovery

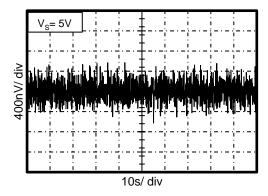


Figure 15. 0.01Hz to 10Hz Noise

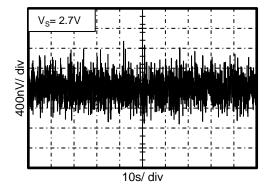


Figure 16. 0.01Hz to 10Hz Noise

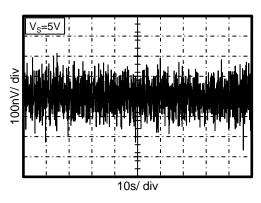


Figure 17. 0.01Hz to 1Hz Noise

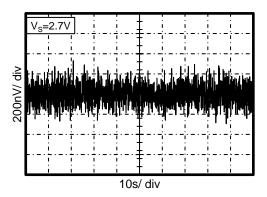


Figure 18. 0.01Hz to 1Hz Noise

Detailed Description

Overview

The RS8538, RS8539 series op amps are unity-gain stable and free from unexpected output phase reversal. They use auto-zeroing techniques to provide low offset voltage and very low drift over time and temperature.

Good layout practice mandates use of a 0.1µF capacitor placed closely across the supply pins.

For lowest offset voltage and precision performance, circuit layout and mechanical conditions should be optimized. Avoid temperature gradients that create thermoelectric (Seebeck) effects in thermocouple junctions formed from connecting dissimilar conductors. These thermally-generated potentials can be made to cancel by assuring that they are equal on both input terminals.

- Use low thermoelectric-coefficient connections (avoid dissimilar metals).
- Thermally isolate components from power supplies or other heat-sources.
- Shield op amp and input circuitry from air currents, such as cooling fans.

Following these guidelines will reduce the likelihood of junctions being at different temperatures, which can cause thermoelectric voltages of $0.1\mu\text{V/°C}$ or higher, depending on materials used.

OPERATING VOLTAGE

The RS8538, RS8539 series op amps operate over a power-supply range of ± 2.5 V to ± 5.5 V (± 1.25 V to ± 2.75 V). Supply voltages higher than 7V (absolute maximum) can permanently damage the amplifier. Parameters that vary over supply voltage or temperature are shown in the Typical Characteristics section of this data sheet.

APPLICATION NOTE

Typical Applications

Bidirectional Current-Sensing

This single-supply, low-side, bidirectional current-sensing solution detects load currents from -1A to 1A. The single-ended output spans from 110mV to 3.19V. This design uses the RS8538, RS8539 because of its low offset voltage and rail-to-rail input and output. One of the amplifiers is configured as a difference amplifier and the other provides the reference voltage.

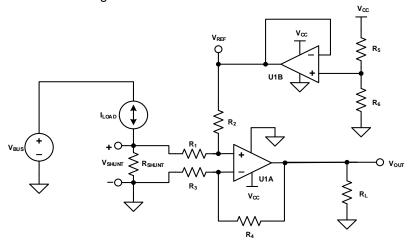


Figure 19. Bidirectional Current-Sensing Schematic

Design Requirements

This solution has the following requirements:

Supply voltage: 3.3V

• Input: -1 A to 1 A

• Output: 1.65V ±1.54V (110mV to 3.19V)

Detailed Design Procedure

The load current, I_{LOAD} , flows through the shunt resistor (R_{SHUNT}) to develop the shunt voltage, V_{SHUNT} . The shunt voltage is then amplified by the difference amplifier, which consists of U1A and R_1 through R_4 . The gain of the difference amplifier is set by the ratio of R_4 to R_3 . To minimize errors, set R_2 = R_4 and R_1 = R_3 . The reference voltage, V_{REF} , is supplied by buffering a resistor divider using U1B. The transfer function is given by Equation 1.

Vout=Vshunt × Gain Diff_Amp + VREF

Where

 $V_{SHUNT}=I_{LOAD}\times R_{SHUNT}$

$$Gain_{Diff_Amp} = \frac{R_4}{R_3}$$

$$V_{REF} = V_{CC} \times \left[\frac{R_6}{R_5 + R_6} \right] \tag{1}$$

There are two types of errors in this design: offset and gain. Gain errors are introduced by the tolerance of the shunt resistor and the ratios of R_4 to R_3 and, similarly, R_2 to R_1 . Offset errors are introduced by the voltage divider (R_5 and R_6) and how closely the ratio of R_4/R_3 matches R_2/R_1 . The latter value impacts the CMRR of the difference amplifier, which ultimately translates to an offset error. Because this is a low-side measurement, the value of V_{SHUNT} is the ground potential for the system load. Therefore, it is important to place a maximum value on V_{SHUNT} . In this design, the maximum value for V_{SHUNT} is set to 100 mV. Equation 2 calculates the maximum value of the shunt resistor given a maximum shunt voltage of 100 mV and maximum load current of 1 A.

$$R_{SHUNT(Max)} = \frac{V_{SHUNT(Max)}}{I_{LOAD(Max)}} = \frac{100 \text{ mV}}{1 \text{ A}} = 100 \text{ m}\Omega$$
 (2)

The tolerance of R_{SHUNT} is directly proportional to cost. For this design, a shunt resistor with a tolerance of 0.5% was selected. If greater accuracy is required, select a 0.1% resistor or better.

The load current is bidirectional; therefore, the shunt voltage range is -100 mV to 100 mV. This voltage is divided down by R_1 and R_2 before reaching the operational amplifier, U1A. Take care to ensure that the voltage present at the noninverting node of U1A is within the common-mode range of the device. Therefore, it is important to use an operational amplifier, such as the RS8538, and RS8539 that has a common-mode range that extends below the negative supply voltage. Finally, to minimize offset error, note that the RS8538, RS8539 has a typical offset voltage of $\pm 3\mu V$ ($\pm 20\mu V$ maximum). Given a symmetric load current of -1A to 1A, the voltage divider resistors (R_5 and R_6) must be equal. To be consistent with the shunt resistor, a tolerance of 0.5% was selected. To minimize power consumption, $10k\Omega$ resistors were used. To set the gain of the difference amplifier, the common-mode range and output swing of the RS8538, and RS8539 must be considered. Equation 3 and Equation 4 depict the typical common-mode range and maximum output swing, respectively of the RS8538, and RS8539 given a 3.3V supply.

$$-100 \text{mV} < V_{\text{CM}} < 3.4 \text{V}$$
 (3)

$$100 \text{mV} < V_{\text{OUT}} < 3.2 \text{V} \tag{4}$$

The gain of the difference amplifier can now be calculated as shown in Equation 5.

$$Gain_{Diff_Amp} = \frac{V_{OUT_Max} - V_{OUT_Min}}{R_{SHUNT} \times (I_{MAX} - I_{MIN})} = \frac{3.2 \text{ V} - 100 \text{ mV}}{100 \text{ m}\Omega \times [1 \text{ A} - (-1 \text{A})]} = 15.5 \frac{\text{V}}{\text{V}}$$
(5)

The resistor value selected for R_1 and R_3 was $1k\Omega$. $15.4k\Omega$ was selected for R_2 and R_4 because it is the nearest standard value. Therefore, the ideal gain of the difference amplifier is 15.4 V/V.

The gain error of the circuit primarily depends on R_1 through R_4 . As a result of this dependence, 0.1% resistors were selected. This configuration reduces the likelihood that the design requires a two-point calibration. A simple one-point calibration, if desired, removes the offset errors introduced by the 0.5% resistors.

Application Curve

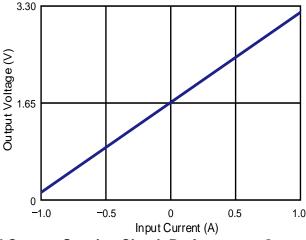


Figure 20. Bidirectional Current-Sensing Circuit Performance: Output Voltage vs Input Current

LAYOUT GUIDELINES

Attention to good layout practices is always recommended. Keep traces short. When possible, use a PCB ground plane with surface-mount components placed as close to the device pins as possible. Place a $0.1\mu F$ capacitor closely across the supply pins. These guidelines should be applied throughout the analog circuit to improve performance and provide benefits such as reducing the EMI (electromagnetic-interference) susceptibility.

Layout Example

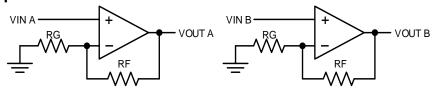


Figure 21. Schematic Representation

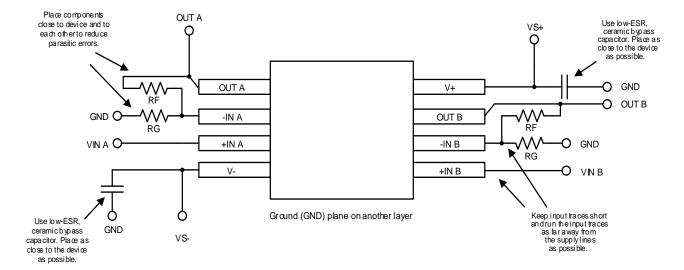
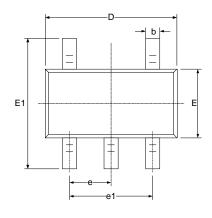
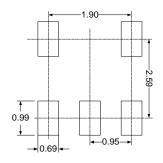
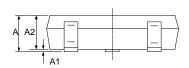
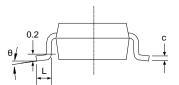
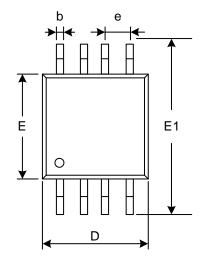




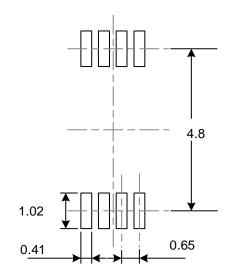
Figure 22. Layout Example



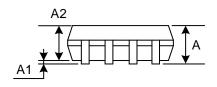

PACKAGE OUTLINE DIMENSIONS SOT23-5

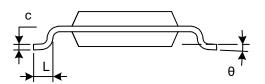
RECOMMENDED LAND PATTERN (Unit: mm)



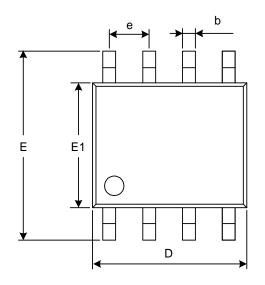


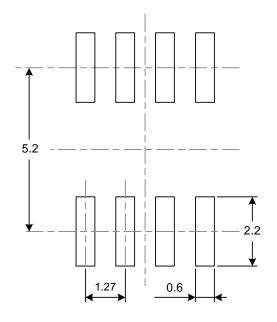
Oli al	Dimensions	n Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
А	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950	0.950(BSC)		(BSC)	
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	



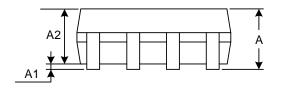

MSOP-8

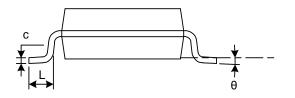
RECOMMENDED LAND PATTERN (Unit: mm)



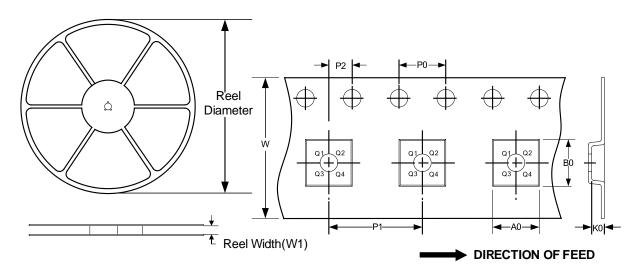


Symbol	Dimensions I	n Millimeters	Dimensions In Inches			
	Min Max		Min	Max		
А	0.820	1.100	0.032	0.043		
A1	0.020	0.150	0.001	0.006		
A2	0.750	0.950	0.030	0.037		
b	0.250	0.380	0.010	0.015		
С	0.090	0.230	0.004	0.009		
D	2.900	3.100	0.114	0.122		
е	0.650	(BSC)	0.026(BSC)			
E	2.900	3.100	0.114	0.122		
E1	4.750	5.050	0.187	0.199		
L	0.400	0.800	0.016	0.031		
θ	0°	6°	0°	6°		




SOIC-8 (SOP8)

RECOMMENDED LAND PATTERN (Unit: mm)



Symbol	Dimensions I	In Millimeters	Dimensions In Inches			
	Min Max		Min	Max		
А	1.350	1.750	0.053	0.069		
A1	0.100	0.250	0.004	0.010		
A2	1.350	1.550	0.053	0.061		
b	0.330	0.510	0.013	0.020		
С	0.170	0.250	0.007	0.010		
D	4.800	5.000	0.189	0.197		
е	1.270	(BSC)	0.050(BSC)			
Е	5.800	6.200	0.228	0.244		
E1	3.800	4.000	0.150	0.157		
L	0.400	1.270	0.016	0.050		
θ	0°	8°	0°	8°		

TAPE AND REEL INFORMATION REEL DIMENSIONS

TAPE DIMENSION

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOT23-5	7"	9.5	3.20	3.20	1.40	4.0	4.0	2.0	8.0	Q3
MSOP8	13"	12.4	5.20	3.30	1.50	4.0	8.0	2.0	12.0	Q1
SOIC-8 (SOP8)	13"	12.4	6.40	5.40	2.10	4.0	8.0	2.0	12.0	Q1

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Precision Amplifiers category:

Click to view products by RUNIC manufacturer:

Other Similar products are found below:

LM201AN MCP6V52-E/MS ADA4692-4ARUZ-RL EL8176FSZ ISL28158FHZ-T7 ISL28236FBZ ISL28236FBZ-T7 ISL28258FUZ

ISL28258FUZ-T7 ISL28276FBZ ISL28276IAZ ISL28276IAZ-T7 ISL28288FUZ NCS21914DR2G NCS21914DTBR2G RS8654XP

AD8615AUJZ-REEL HG2376M/TR MS8362M LT1013IS8#TRPBF ADA4610-4ARZ-R7 TP5591-TR AD8652ARZ-REEL AD8639ARZ-REEL ADA4622-2ARZ-RL LTC6241HVCS8#TRPBF LT6011IS8#TRPBF LT6230IS6-10#TRPBF LT6011IMS8#TRPBF

LTC6246CS6#TRMPBF LT6230CS6#TRPBF ADA4610-2BRZ-RL LTC2054HS5#TRPBF LT6235IGN#TRPBF LTC6362IDD#TRPBF

AD8625ARUZ-REEL LTC2050HVIS8#TRPBF AD8627AKSZ-REEL LT6220IS5#TRPBF LT6236IS6#TRPBF OP213ESZ-REEL

ADA4092-4ARUZ-RL CBM8532AMS8 CBM8628AST5 CBM8534AS14 CBM8608AS14 CBM8534ATS14 CBM8605AST5

CBM8629AS8 CBM8608ATS14