Description

The sensors provide excellent results even with difficult-to-detect objects, e.g. small or thin parts, wires or bright metals.
A variety of types cover a wide range of individual requirements and installation situations. Thus, devices are available with N.C. or N.O. functions, with NPN or PNP switching outputs, and cable or plug connection.

The enclosure rating is IP66.

Features

■ Easy-to-use and tough

- Wide range of models
- Wide operating voltage range
- Short circuit protected
- Ideal for a variety of applications
- With a metal connector that can be tightened securely and a cord protector
- Enclosure rating of IP66, water-proof and oil-drip proof
- Fast response

Specification

Item		Standard
Differential travel		10\% max. of sensing distance
Target		Ferrous metal (The sensing distance decreases with non-ferrous metal.)
Power supply voltage (operating voltage range)		$12 \sim 24$ VDC. Ripple (p~p): 10\% max. (10~30 VDC)
Current consumption (DC 3-wire)		10 mA max.
Output type		See Product selection
Control output	Load current (See note 1.) Residual voltage	200 mA max. (32 VDC max.) 1 V max. (under load current of 200 mA with cable length of 2 m)
Operation mode (with sensing object approaching)		See Product selection
Protection circuit		Output reverse polarity protection, Power source circuit reverse polarity protection, Surge suppressor, Short-circuit protection
Ambient air temperature		Operating: $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, Storage: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (with no icing or condensation)
Temperature influence (See note 1.)		$\pm 10 \%$ max. of sensing distance at $23^{\circ} \mathrm{C}$ within temperature range of $-25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ $\pm 15 \%$ max. of sensing distance at $23^{\circ} \mathrm{C}$ within temperature range of $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Ambient humidity		Operating: 35% to 95%, Storage: 35% to 95%
Voltage influence		$\pm 1 \%$ max. of sensing distance in rated voltage range $\pm 15 \%$
Insulation resistance		$50 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC) between current carry parts and case
Dielectric strength		1,000 VAC at $50 / 60 \mathrm{~Hz}$ for 1 min between current carry parts and case
Vibration resistance		10 to $55 \mathrm{~Hz}, 1.5 \mathrm{~mm}$ double amplitude for 2 hours each in X, Y and Z directions
Shock resistance		$1,000 \mathrm{~m} / \mathrm{s}^{2}, 10$ times each in x, Y and Z directions
Standards and listings		IEC60529: IP66, Degree of protection EN60947-5-2: EMC

[^0]
Product selection

TS	\square	$-\square$	\square
	-	\square	5

1. Housing outline

TS: Inductive thread round
S : Inductive square
CS: Inductive thread round connector

2. Dimension of sensing face

TS CS type series
12: diameter 12 mm
18: diameter 18 mm
30: diameter 30 mm

S type series

17: square $17 \mathrm{~mm} \times 17 \mathrm{~mm}$
18: square $18 \mathrm{~mm} \times 18 \mathrm{~mm}$
18L: square $18 \mathrm{~mm} \times 18 \mathrm{~mm}$
25: square $25 \mathrm{~mm} \times 25 \mathrm{~mm}$
30: square $30 \mathrm{~mm} \times 30 \mathrm{~mm}$
40 : square $40 \mathrm{~mm} \times 40 \mathrm{~mm}$

3. Sensing distance

Numeral: Sensing distance:
E.g. $02=2 \mathrm{~mm}, 16=16 \mathrm{~mm}$
4. Output stage

N: NPN open collector DC mode
P: PNP open collector DC mode
5. Output function

1: N.O. normally open
2: N.C. normally close

Example: Inductive thread round housing, M12, $\mathrm{Sn}=5 \mathrm{~mm}$, NPN-DC, normally open, TS12-05N-1 Inductive square $18 \times 18 \mathrm{~mm}, \mathrm{Sn}=5 \mathrm{~mm}, \mathrm{NPN}-\mathrm{DC}$, normally open.
S18-05N-1

Output stage diagram

PROXIMITY SWITCH

Ordering information

Inductive thread Round metal body type

PROXIMITY SWITCH

Ordering information

Inductive thread Round metal body type

PROXIMITY SWITCH

Ordering information

Inductive thread Round metal body type

PROXIMITY SWITCH

Ordering information

Inductive Square Plastic body type

Technical specifications

Sensing distance: (Sn)

"Sensing distance" refers to the distance at which the proximity switch operates (or releases) as measured, from the reference position (or reference plane) by moving the target in the specified manner.
The item "sensing distance" under "specifications" indicates the value(s) when measured with the standard target.

Effective distance:

"Effective distance" refers to the distance from the sensing surface to the passing position of the target which permits the proximity switch to operate without any malfunctions due to temperature or voltage fluctuation.
The item "effective distance" under "specifications" indicates the value(s) when measured with the standard target.

Correction coefficient:

Taking an electrical proximity switch as an example, the sensing distance of the electrical inductance proximity switch is shorter for a non-metal target. In this case, please refer to the following chart for correction of pick-up distance. (But the correction factor has no an absolute value).
For example: Sensing distance of copper: S30-10N-1-P-V
Standard sensing distance: (Sn) x 0.4
$($ Modulus of copper $)=10 \times 0.4=4 \mathrm{~mm}$

Switching frequency: (f)

"Response frequency" refers to the frequency of outputs from the proximity switch per second in response to the movement of each target when brought closer to the switch
The item "switching frequency" under "specifications" indicates the value(s) when measured with the standard target.

Delay in readiness

The output state of the sensor requires 100 ms to become ready after the power has been applied. During this time do not use the sensor output signal.

Environment and temperature effect

It refers to the change of sensing distance of the proximity switch when the environmental temperature changes between (-) 20 to (+) 70 Celsius degrees. The amount of change taken at (+) 23 Celsius degrees shall be regarded as standard sensing distance $\operatorname{Sn} x \pm 10 \%$ (change effect distance).

Environment and voltage effect:

It refers to the change of sensing distance of the proximity switch when the applied voltage changes from 10 to 30 VDC or from 24 to 240 VAC. The amount of changes is measured by the sensing distance taken at normal operating voltage $\mathrm{Sn} \times \pm$ 2.5\% (change effect distance).

MOUNTING CONDITION
 Shield type:

Since the sensing face of the proximity switch is a shield type, it can be buried in an iron or steel materials stockpile to prevent being effected by any surrounding metal objects.

Non shield type:

A space should be provided between the sensing face and the surrounding metals, or the sensing face should protrude to prevent surrounding interference.

Mutual interference

A minimum distance must be observed when identical cylindrical rectangular sensors are mounted opposite each other or in parallel.

Non-shield mountable sensors mounted parallel.

Shield mountable sensors mounted in parallel

Mounted opposite each other
d = Diameter of switch Sn = Sensing distance

Applications for sensor's switch

- Detection of luggage
- APPROPRIATE TYPE:

Retro-Reflective Photoelectric Switch

- Mechanical procedure control
- APPROPRLATE TYPE:

Type PS12 Proximity Switch

- Detection of resistor
- APPROPRIATE TYPE:

Capaive Proximily Switch

- Detection of wave in high speed rotation
- APPROPRIATE TYPE:

Inductive Proximity Switch

- Confirmation of tooling up-down position
- APPROPRIATE TYPE:

Induclive Proximily Switch

- Detection of electroly tic capacitor
- APPROPRIATE TYPE:

Inductive Proximity Switch

- Detection of steel ball
- APPROPRIATE TYPE: Inductive Proximity Switch

HIGHLY

- Detection of presenting cars in parking lot
- APPROPRIATE TYPE:

Thru-Beam Photoelectric Switch

- Positioning of processing parts
- APPROPRIATE TYPE: Inductive Proximity Switch

- Positioning of robot arm
- APPROPRLATE TYPE:

Inductive Proximity Switch

- Detection of powder/liqwid position control
- APPROPPIATE TYPE:

Copocitive Proximity Switch

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Proximity Sensors category:
Click to view products by Highly manufacturer:
Other Similar products are found below :
01.001.5653.1 $\frac{70.340 .1028 .0}{} \underline{70.360 .2428 .0} \underline{70.364 .4828 .0} \underline{70.810 .1053 .0} \underline{72.360 .1628 .0} \underline{73.363 .6428 .0} \underline{9221350022}$ 980659-1 QT-12 E2EX10D1NN E2E-X14MD1-G E2E-X2D1-G E2EX2ME2N E2E-X3D1-N 10M E2E-X4MD1-G E2FMX1R5D12M E2K-F10MC1 5M EI1204TBOSL-6 EI5515NPAP BSA-08-25-08 IC08ANC15PO-K IMM2582C 25.161.3253.0 25.332.0653.1 25.352.0653.0 25.352.0753.0 25.523.3253.0 9151710023 922FS1.5C-A4P-Z774 SC606ABV0S30 SM952A126100LE A1220EUA-T F3S-A162-U CL18 QT-08L 34.110.0010.0 TL-C2MF1-M3-E4 IA08BLF15NOM5 IA08BSF15NOM5 IA12ASF04DOM1 IMM32188C IS2 IS31SE5000-UTLS2-TR 34.110.0021.0 $\underline{34.110 .0022 .0}$ CA150-120VACDC VM18VA3000Q XS508BSCBL2 XS512BLNAM12

[^0]: Note : When using any model at an ambient temperature between $-40^{\circ} \mathrm{C}$ and $-25^{\circ} \mathrm{C}$ and a power voltage between 30 and 32 VDC, use a load current of 100 mA max.,

