

# Metal Composite Power Inductor (Thin Film) Specification Sheet



# CIGT252010EH2R2MNE (2520 / EIA 1008)

## **APPLICATION**

Smart phones, Tablet, Wearable devices, Power converter modules, etc.



## FFATURES

Small power inductor for mobile devices
Low DCR structure and high efficiency inductor for power circuits.
Monolithic structure for high reliability
Free of all RoHS-regulated substances
Halogen free

# RECOMMENDED LAND PATTERN



|      | Unit : mm |
|------|-----------|
| TYPE | 2520      |
| А    | 1.2       |
| В    | 0.8       |
| С    | 2.0       |

# DIMENSION



| TYPE | Dimension [mm] |         |         |           |  |  |  |
|------|----------------|---------|---------|-----------|--|--|--|
| IIFL | L              | W       | T       | D         |  |  |  |
| 2520 | 2.5±0.2        | 2.0±0.2 | 1.0 max | 0.55±0.25 |  |  |  |

# DESCRIPTION

| Part no.           | Size Thickness [mm] (max) | Thickness  | Inductance | Inductance tolerance | DC Resist | ance [mΩ] | Rated DC Cu | rrent (Isat) [A] | Rated DC C | urrent (Irms)<br>A] |
|--------------------|---------------------------|------------|------------|----------------------|-----------|-----------|-------------|------------------|------------|---------------------|
| raitiio.           |                           | I IDHI I I | (%)        | Max.                 | Тур.      | Max.      | Тур.        | Max.             | Тур.       |                     |
| CIGT252010EH2R2MNE | 1008/2520                 | 1.0        | 2.2        | ±20                  | 77        | 67        | 2.5         | 2.7              | 2.61       | 2.81                |

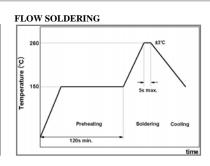
- \* Inductance : Measured with a LCR meter 4991A(Agilent) or equivalent (Test Freq. 1MHz, Level 0.1V)
- \* DC Resistance : Measured with a Resistance HI-TESTER 3541(HIOKI) or equivalent
- \* Maximum allowable DC current : Value defined when DC current flows and the initial value of inductance has decreased by 30% or when current flows and temperature has risen to 40 °C whichever is smaller. (Reference: ambient temperature is 25 °C±10)

(Isat) : Allowable current in DC saturation : The DC saturation allowable current value is specified when the decrease of

the initial inductance value at 30% (Reference: ambient temperature is 25  $^{\circ}\text{C} \pm 10)$ 

(Irms) : Allowable current of temperature rise : The temperature rise allowable current value is specified when temperature of the inductor is raised 40 ℃ by DC current. (Reference: ambient temperature is 25 ℃±10)

- \* Absolute maximum voltage : Absolute maximum voltage DC 20V.
- $^{\star}$  Operating temperature range : -40 to +125  $^{\circ}\text{C}$  (Including self-temperature rise)


# PRODUCT IDENTIFICATION

| <u>CIG</u> | <u>T</u> | <u>2520</u> | <u>10</u> | <u>EH</u> | 2R2 | <u>M</u> | <u>N</u> | <u>E</u> |
|------------|----------|-------------|-----------|-----------|-----|----------|----------|----------|
| (1)        | (2)      | (3)         | (4)       | (5)       | (6) | (7)      | (8)      | (9)      |

- (1) Power Inductor
- (3) Dimensior (2520: 2.5mm × 2.0mm)
- (5) Remark (Characterization Code)
- (7) Toleranc (M:±20%)
- (8) Internal Code
- (9) Packaging (C:paper tape, E:embossed tape)
- (2) Type (T: Metal Composite Thin Film Type)
- (4) Thicknes (10: 1.0mm)
- (6) Inductan (2R2: 2.2 uH)

# RECOMMENDED SOLDERING CONDITION

# REFLOW SOLDERING 280 230 230 100 max. Preheating Soldering Cooling 60s max. 60 ~ 120s time



| IRON SOLDERING     |             |  |  |
|--------------------|-------------|--|--|
| Temperature of     | 280 ℃ max.  |  |  |
| Soldering Iron Tip | 200 C max.  |  |  |
| Preheating         | 150℃min.    |  |  |
| Temperature        | 130 CIIIII. |  |  |
| Temperature        | ΔT≤130℃     |  |  |
| Differential       | Δ1 ≥130 C   |  |  |
| Soldering Time     | 3sec max.   |  |  |
| Wattage            | 50W max.    |  |  |

# **PACKAGING**

| Packaging Style | Quantity(pcs/reel) |
|-----------------|--------------------|
| Embossed Taping | 3000 pcs           |

| Item                                           | Specified Value                                                                                                  | 7                                                                                                                                                                                                                 | Fest Condition                                                                                                                 |  |  |
|------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--|--|
| Solderability                                  | More than 90% of terminal electrode should be soldered newly.                                                    | •                                                                                                                                                                                                                 | for 4±1 seconds, and preheated at , the specimen shall be immersed in seconds.                                                 |  |  |
| Resistance to Soldering                        | No mechanical damage. Remaining terminal Electrode: 75% min. Inductance change to be within ±20% to the initial. | After being dipped in flux for 4 $\pm$ 1 seconds, and preheated at 150 $\sim$ 180 $^{\circ}$ C for 2 $\sim$ 3 min, the specimen shall be immersed in solder at 260 $\pm$ 5 $^{\circ}$ C for 10 $\pm$ 0.5 seconds. |                                                                                                                                |  |  |
| Thermal Shock<br>(Temperature Cycle test)      | No mechanical damage Inductance change to be within ±20% to the initial.                                         | Repeat 100 cycles under the following conditions.<br>-40±3°C for 30 min → 85±3°C for 30 min                                                                                                                       |                                                                                                                                |  |  |
| High Temp. Humidity<br>Resistance Test         | No mechanical damage Inductance change to be within ±20% to the initial                                          | 85±2°C, 85%RH, for 500:<br>Measure the test items a<br>and humidity for 24 hours                                                                                                                                  | fter leaving at normal temperature                                                                                             |  |  |
| Low Temperature Test                           | No mechanical damage Inductance change to be within ±20% to the initial.                                         | Solder the sample on PC at -55±2°C for 500±12 ho Measure the test items a and humidity for 24hours                                                                                                                | urs. fter leaving at normal temperature                                                                                        |  |  |
| High Temperature Test                          | No mechanical damage Inductance change to be within ±20% to the initial.                                         | hours.                                                                                                                                                                                                            | B. Exposure at 125±2°C for 500±12 fter leaving at normal temperature                                                           |  |  |
| High Temp. Humidity Resistance<br>Loading Test | No mechanical damage<br>Inductance change to be within ±20% to the initial                                       |                                                                                                                                                                                                                   | Current for 500±12 hours. fter leaving at normal temperature s.                                                                |  |  |
| High Temperature Loading Test                  | No mechanical damage<br>Inductance change to be within ±20% to the initial                                       | Measure the test items a                                                                                                                                                                                          | 85±2°C, Rated Current for 500±12 hours.  Measure the test items after leaving at normal temperature and humidity for 24 hours. |  |  |
| Reflow Test                                    | No mechanical damage<br>Inductance change to be within ±20% to the initial                                       | Peak 260±5℃, 3 times                                                                                                                                                                                              |                                                                                                                                |  |  |
| Vibration Test                                 | No mechanical damage Inductance change to be within ±20% to the initial.                                         | B. Vibrate as apply 10~55Hz, 1.5mm each of three(X,Y,Z) axis (total 6                                                                                                                                             |                                                                                                                                |  |  |
|                                                | No mechanical damage                                                                                             | Bending Limit; 2mm<br>Test Speed; 1.0mm/sec.<br>Keep the test board at th<br>PCB thickness : 1.6mm                                                                                                                | e limit point in 5 sec.                                                                                                        |  |  |
| Bending Test                                   | 19                                                                                                               | 20<br>R340<br>46                                                                                                                                                                                                  | Unit :mm                                                                                                                       |  |  |
|                                                | No indication of peeling shall occur on the terminal electrode.                                                  | W(kgf)                                                                                                                                                                                                            | TIME(sec)                                                                                                                      |  |  |
| Terminal Adhesion Test                         | Z/////                                                                                                           | 0.5 10±1                                                                                                                                                                                                          |                                                                                                                                |  |  |
| Drop Test                                      | No mechanical damage Inductance change to be within ±20% to the initial.                                         | Random Free Fall test on concrete plate. 1 meter, 10 drops                                                                                                                                                        |                                                                                                                                |  |  |
| lpeak<br>(AC+DC Load Life)                     | No mechanical damage Inductance change to be within ±20% to the initial                                          | 85±2°C, 85%RH, Load(Ipeak) for 120 hours. (Frequncy:1MHz, Load(Ipeak):1.5hr on / 0.5hr off) Measure the test items after leaving at normal temperature and humidity for 24 hours. * Load(Ipeak) = Irms(max)×1.4   |                                                                                                                                |  |  |



# Metal Composite Power Inductor (Thin Film)

# **Data Sheet**



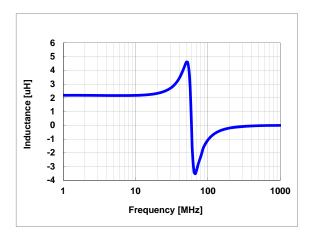
# 1. Model: CIGT252010EH2R2MNE

# 2. Description

| Part no.           | Size                 | Thickness | Inductance | Inductance tolerance | DC Resist | ance [mΩ] | Rated DC Cu | rrent (Isat) [A] | Rated DC C | ,    |
|--------------------|----------------------|-----------|------------|----------------------|-----------|-----------|-------------|------------------|------------|------|
|                    | [inch/mm] [mm] (max) | [uH]      | (%)        | Max.                 | Тур.      | Max.      | Тур.        | Max.             | Тур.       |      |
| CIGT252010EH2R2MNE | 1008/2520            | 1.0       | 2.2        | ±20                  | 77        | 67        | 2.5         | 2.7              | 2.61       | 2.81 |

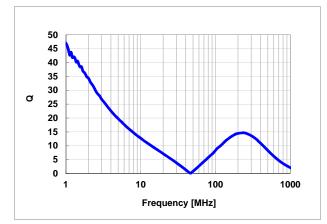
- \* Inductance : Measured with a LCR meter 4991A(Agilent) or equivalent (Test Freq. 1MHz, Level 0.1V)
- \* DC Resistance : Measured with a Resistance HI-TESTER 3541(HIOKI) or equivalent
- \* Maximum allowable DC current : Value defined when DC current flows and the initial value of inductance has decreased by 30% or when current flows and temperature has risen to 40 °C whichever is smaller. (Reference: ambient temperature is 25 °C±10)

(Isat): Allowable current in DC saturation: The DC saturation allowable current value is specified when the decrease of the initial inductance value at 30% (Reference: ambient temperature is 25 ℃±10)

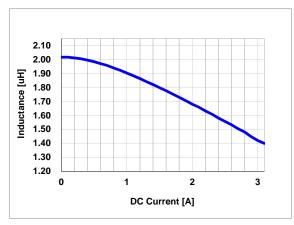

(Irms) : Allowable current of temperature rise : The temperature rise allowable current value is specified when temperature of the inductor is raised 40 ℃ by DC current. (Reference: ambient temperature is 25 ℃±10)

- \* Absolute maximum voltage : Absolute maximum voltage DC 20V.
- \* Operating temperature range: -40 to +125°C (Including self-temperature rise)

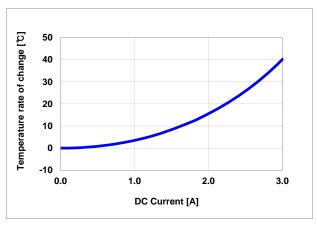
# 3. Characteristics data


# 1) Frequency characteristics (Ls)

Agilent E4294A +E4991A , 1MHz to 1,000MHz




# 2) Frequency characteristics (Q)


Agilent E4294A +E4991A , 1MHz to 1,000MHz



# 3) DC Bias characteristics (Typ.)



# 4)Temperature characteristics (Typ.)





# **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Fixed Inductors category:

Click to view products by Samsung manufacturer:

Other Similar products are found below:

CR43NP-680KC CR54NP-820KC CR54NP-8R5MC CTX32CT-100 70F224AI MGDQ4-00004-P MHL1ECTTP18NJ MHL1JCTTD12NJ
PE-51506NL PE-53601NL PE-53602NL PE-53630NL PE-53824SNLT PE-92100NL PG0434.801NLT PG0936.113NLT 9310-16 PM062N7 PM06-39NJ A01TK 1206CS-471XJ HC2-2R2TR HC2LP-R47-R HC3-2R2-R 1206CS-151XG RCH664NP-140L RCH664NP-4R7M
RCH8011NP-221L RCP1317NP-332L RCP1317NP-391L RCR1010NP-470M RCR110DNP-331L DH2280-4R7M DS1608C-106 ASPI4020HI-R10M-T B10TJ B82477P4333M B82498B3101J000 B82498B3680J000 ELJ-RE27NJF2 1812CS-153XJ 1812CS-183XJ 1812CS223XJ 1812LS-104XJ 1812LS-105XJ 1812LS-124XJ 1812LS-154XJ 1812LS-223XJ 1812LS-224XJ 1812LS-563XJ