

MULTILAYER CERAMIC CAPACITORS for AUTOMOTIVE

To ensure safe drive

SAMSUNG ELECTRO-MECHANICS

Premium Capacitors for Automotive Applications

1 SERIES CODE

CL = Multilayer Ceramic Capacitors

2 SIZE CODE

Code	inch(mm) Code inch(mm)		Code	inch(mm)	
05	0402(1005)	21	0805(2012)	32	1210(3225)
10	0603(1608)	31	1206(3216)		·

3 DIELECTRIC CODE

Class I

Symbol	EIA Code	Operation Temperature Range(°C)	Temperature Coeffcient(ppm / °C)
С	C0G	-55 ~ +125	0 ± 30

Class II

Symbol	EIA Code	Operation Temperature Range(°C)	Capacitance Change(ΔC %)
В	X7R	-55 ~ +125	± 15
Y	X7S	-55 ~ +125	± 22
Z	X7T	-55 ~ +125	-33 ~ +22

4 CAPACITANCE CODE

Capacitance expressed in pF. 2 significant digits plus number of zeros. example) 106=10×10⁶=10,000,000pF

For Values < 10pF, Letter R denotes decimal point example) 1R5 = 1.5pF

5 TOLERANCE CODE

Capacitance Tolerance

Code	Capacitance Tolerance	TC	Capacitance series	Remark
С	± 0.25pF	COG	E-12 series*	under 5pF
D	± 0.5pF	COG	E-12 series*	5pF < Cp < 10pF
J	± 5%	COG	E-12 series	≥10pF
K	± 10%	X7R/X7S	E-6 series	
М	± 20%	X7R/X7S	E-6 series	

* E-24 series is also available

* This code has only typical specifications. Please refer to individual specifications.

Code					Capacitance Step								
E-3		1.0				2	.2			4.7			
E-6	1.0 1.5		2	.2	3	.3	4	.7	6.8				
E-12	1.0	1.2	1.5	1.8	2.2	2.7	3.3	3.9	4.7	5.6	6.8	8.2	
E 24	1.0	1.1	1.2	1.3	2.2	2.4	2.7	3.0	4.7	5.1	5.6	6.2	
E-24	1.5	1.6	1.8	2.0	3.3	3.6	3.9	4.3	6.8	7.5	8.2	9.1	

6 RATED VOLTAGE CODE

R = 4V Q = 6.3V P = 10V O = 16V A = 25V B = 50V C = 100V

7 THICKNESS CODE

Size mm(inch)	Code	Thickness*	Tolerance
1005(0402)	5	0.50	± 0.05
1005(0402)	6	0.50	± 0.20
1609(0602)	8	0.80	± 0.10
1608(0603)	9	0.90	± 0.10
	F	1.25	± 0.10
2012(0805)	Q	1.25	± 0.15
	Y	1.25	± 0.20
2216(1206)	Н	1.60	± 0.20
3216(1206)	K	1.60	± 0.30
3225(1210)	J	2.50	± 0.20
5225(1210)	V	2.50	± 0.30

* In case of High Bending Strength, ESD protection capacitors, Please refer to individual specifications. * This code has only typical specifications. Please refer to individual specifications.

8 DESIGN CODE

Code	Inner electrode	Termination	Plating material	Design	
1	Ni	Cu	Ni_Sn 100%	Standard	
V	Ni	Cu/Metal Epoxy	Ni_Sn 100%	Standard	
W	Ni	Cu/Metal Epoxy	Ni_Sn 100%	Open Mode	
Х	Ni	Cu/Metal Epoxy	Ni_Sn 100%	Float Mode	

9 PRODUCT CODE OR SIZE CONTROL CODE

P = Automotive product meet AEC - Q200.

10 CONTROL CODE

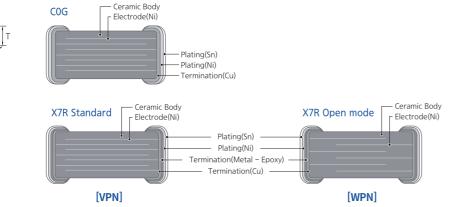
N = Standard J = High Bending Strength E = ESD Protection

11 PACKAGING CODE

Code	Туре	Code	Туре
С	Cardbord Tape, 7"reel	E	Embossed Tape, 7"reel
D/L	Cardbord Tape, 13"reel (Quantity option)	F	Embossed Tape, 13"reel

% If you want to know the code or quantity in detail, please see page 21 In order to move to the page directly. please click here $\ensuremath{^\dagger}$

 Feature
 - Automotive protocol


 Image: Second state of the second st

Automotive products are manufactured in state of the art facilities recommend for registration to ISO 9001 & IATF 16949.
Automotive products meet AEC-Q200 requirements.
Automotive products are RoHS compliant.
Automotive products meet JEDEC-020-D requirements.
X7R dielectric components have BME and metal-epoxy terminations with a Ni/Sn plated overcoat.
C0G dielectric components contain BME and copper terminations with a Ni/Sn plated overcoat. Size 0603/0805/1206 is suitable for flow and reflow soldering.
Size 0402 and smaller (≤0402) and 1210 and bigger (≥1210) is suitable for reflow soldering.

Application

Structure and Dimensions

- Automotive Electronic Equipment (Powertrain, Safety, Body & Chassis, Convenience, Infotainment)

Dimension(mm) Size Code EIA Code W BW Т 1.00±0.05 0.50±0.05 0.50±0.05 05 0402 0.25±0.10 10 0603 1.60±0.10 0.80±0.10 0.80±0.10 0.30±0.20 2.00±0.10 1.25±0.10 1.25±0.10 21 0805 0.5+0.2/-0.3 2.00±0.15 1.25±0.15 1.25±0.15 31 1206 3.20±0.20 1.60±0.20 1.60±0.20 0.5±0.3 2.00±0.20 2.50±0.20 32 1210 3.20±0.30 0.6±0.3 2.50±0.20

Automotive Capacitance Table (C0G)

ci - i - i	T I. 1. I	Rated					Capacitance nF 1 2.2 4.7 10 220 4 4.7 10 220 47 100 220 1 2.2 4.7 10 22 47 100 220 1 4.7 10 22 47 100 220 1 4.7 10 22 47 100 220 1 4.7 10 22 47 100 220 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td< th=""></td<>						
Size inch (mm) Thickness (mm) 0402 (1005) 0.50 0603 (1608) 0.80		Voltage	pF				nF						
	(Vdc)	100	220	470	1	2.2	4.7	, 10	22	47	100	220	
0402	0.50	50											
(1005)	(1005) 0.50	100											
0603	0.90	50		1 1 1	0 1 1 1 1			0 1 1 1 1					
(1608)	0.80	100		270				0 1 1 1 1 1			- - - - -		
0805	0805 0.60	50						;					
(2012)	0.85 1.25	100											

Automotive Co	nacitanco Tab	le (X7R/X7S/X7T)
Αυτοπιστίνει τα	Datitalite Iau	

c'	T I. 1. 1	Rated						Capac	itance					
Size inch (mm)	Thickness (mm)	Voltage (Vdc)				۱F						ıF		
()	()	(Vdc)	10	22	47	100	220	470	1	2.2	4.7	10	22	47
		10			:		X7S	X7S	X7S					
0.402		16			:		X7S							
0402 (1005)	0.50	25			-									
		50												
		100												
		6.3			1					-	X7T			
		10								X7S				
0603	0.80	16												
(1608)	0.00	25												
		50												
		100												
	1.25	6.3										X7S		
		10								1		X7S		
0805		16						1		1	- - -	X7S		:
(2012)		25												
(2012)		50												
		100												
	1.60	10												
	1.15													
1206		16												
(3216)		25												
	1.60	50												
		100												
		6.3												X7S
		10												X7S
1210		16												
(3225)	2.50	25											X7S	
		50												
		100												

SAMSUNG ELECTRO-MECHANICS

Product Line up (Automotive Capacitors_ C0G)

No.	Thickness Max. (mm)	Rated Voltage (Vdc)	тсс	Capacitance	Capacitance Tolerance	Part Number	Remark
1	0.55	50	COG	1pF	±0.25pF	CL05C010CB51PN	
2	0.55	50	COG	1.2pF	±0.25pF	CL05C1R2CB51PN	
3	0.55	50	COG	1.2pF	±0.1%	CL05C1R2BB51PN	
4	0.55	50	COG	1.5pF	±0.25pF	CL05C1R5CB51PN	
5	0.55	50	COG	1.5pF	±0.1%	CL05C1R5BB51PN	
6	0.55	50	COG	1.8pF	±0.1%	CL05C1R8BB51PN	
7	0.55	50	COG	2pF	±0.1%	CL05C020BB51PN	
8	0.55	50	COG	2.2pF	±0.25pF	CL05C2R2CB51PN	
9	0.55	50	COG	3pF	±0.25pF	CL05C030CB51PN	
10	0.55	50	COG	3.3pF	±0.1%	CL05C3R3BB51PN	
11	0.55	50	COG	3.9pF	±0.25pF	CL05C3R9CB51PN	
12	0.55	50	COG	4pF	±0.25pF	CL05C040CB51PN	
13	0.55	50	COG	4.7pF	±0.25pF	CL05C4R7CB51PN	
14	0.55	50	COG	5pF	±0.25pF	CL05C050CB51PN	
15	0.55	50	COG	5pF	±0.5pF	CL05C050DB51PN	
16	0.55	50	COG	5.6pF	±0.25pF	CL05C5R6CB51PN	
17	0.55	50	COG	6pF	±0.25pF	CL05C060CB51PN	
18	0.55	50	COG	6pF	±0.5pF	CL05C060DB51PN	
19	0.55	50	COG	6.8pF	±0.5pF	CL05C6R8DB51PN	
20	0.55	50	COG	6.8pF	±0.25pF	CL05C6R8CB51PN	
21	0.55	50	COG	8pF	±0.5pF	CL05C080DB51PN	
22	0.55	50	COG	8.2pF	±0.25pF	CL05C8R2CB51PN	
23	0.55	50	COG	8.2pF	±0.1%	CL05C8R2BB51PN	
24	0.55	50	COG	9pF	±0.25pF	CL05C090CB51PN	
25	0.55	50	COG	9pF	±0.5pF	CL05C090DB51PN	
26	0.55	50	COG	10pF	±2%	CL05C100GB51PN	
27	0.55	50	COG	10pF	±5%	CL05C100JB51PN	
28	0.55	50	COG	12pF	±5%	CL05C120JB51PN	
29	0.55	50	COG	15pF	±5%	CL05C150JB51PN	
30	0.55	50	COG	18pF	±5%	CL05C180JB51PN	
31	0.55	50	COG	20pF	±2%	CL05C200GB51PN	
32	0.55	50	COG	22pF	±5%	CL05C220JB51PN	
33	0.55	50	COG	27pF	±5%	CL05C270JB51PN	
34	0.55	50	COG	20pF	±5%	CL05C200JB51PN	
35	0.55	50	COG	33pF	±5%	CL05C330JB51PN	
36	0.55	50	COG	39pF	±5%	CL05C390JB51PN	
37	0.55	50	COG	47pF	±5%	CL05C470 B51PN	
38	0.55	50	COG	56pF	±5%	CL05C560JB51PN	
39	0.55	50	COG	68pF	±5%	CL05C680JB51PN	
40	0.55	50	COG	68pF	±1%	CL05C680FB51PN	
41	0.55	50	COG	82pF	±5%	CL05C820JB51PN	
42	0.55	50	COG	100pF	±5%	CL05C101JB51PN	
43	0.55	50	COG	120pF	±5%	CL05C121 B51PN	
44	0.55	50	COG	150pF	±5%	CL05C151JB51PN	
45	0.55	50	COG	150pF	±1%	CL05C151FB51PN	
46	0.55	50	COG	220pF	±5%	CL05C221JB51PN	
47	0.55	100	COG	2.2pF	±0.25pF	CL05C2R2CC51PN	
48	0.55	100	COG	4.7pF	±0.25pF	CL05C4R7CC51PN	
49	0.55	100	COG	10pF	±5%	CL05C100JC51PN	
50	0.55	100	COG	12pF	±5%	CL05C120 C51PN	
51	0.55	100	COG	15pF	±5%	CL05C120JC51PN	
52	0.55	100	COG	18pF	±5%	CL05C180JC51PN	
53	0.55	100	COG	22pF	±5%	CL05C220JC51PN	
55	0.55	100	COG	22pF 27pF	±5%	CL05C220JC51PN CL05C270JC51PN	
54 55	0.55	100	COG	33pF	±5%	CL05C270JC51PN CL05C330JC51PN	
55	0.55	100	COG	33pF 39pF	±5%	CL05C390JC51PN	
50	0.55	100	COG		±5% ±5%	CL05C390JC51PN CL05C470JC51PN	
				47pF			
58	0.55	100	COG	56pF	±5%		
59 60	0.55 0.55	100	COG COG	68pF	±5%		
	0.55	100	LUG	82pF	±5%	CL05C820JC51PN	

Product Line up (Automotive Capacitors_ C0G)

■ Size : 1.60×0.80mm (inch : 0603)

No.	Thickness Max. (mm)	Rated Voltage (Vdc)	тсс	Capacitance	Capacitance Tolerance	Part Number	Remark
1	0.90	50	COG	1pF	±0.25pF	CL10C010CB81PN 🗆	
2	0.90	50	COG	1.2pF	±0.25pF	CL10C1R2CB81PN	
3	0.90	50	COG	1.2pF	±0.1%	CL10C1R2BB81PN	
4	0.90	50	COG	1.5pF	±0.25pF	CL10C1R5CB81PN	
5	0.90	50	COG	1.8pF	±0.25pF	CL10C1R8CB81PN	
6	0.90	50	COG	1.8pF	±0.1%	CL10C1R8BB81PN	
7	0.90	50	COG	2pF	±0.25pF	CL10C020CB81PN	
8	0.90	50	COG				
9	0.90	50	COG	2.2pF	±0.25pF	CL10C2R2CB81PN CL10C2R7CB81PN CL10C2R7CB81PN	
10		50	COG	2.7pF	±0.25pF		
	0.90	50	COG	3pF	±0.25pF	CL10C030CB81PN	
11 12	0.90	50	COG	3.3pF	±0.25pF	CL10C3R3CB81PN	
	0.90			4pF	±0.25pF	CL10C040CB81PN	
13	0.90	50	COG	4pF	±0.5pF	CL10C040DB81PN	
14	0.90	50	COG	4.7pF	±0.25pF	CL10C4R7CB81PN	
15	0.90	50	COG	5pF	±0.25pF	CL10C050CB81PN	
16	0.90	50	COG	5.6pF	±0.25pF	CL10C5R6CB81PN	
17	0.90	50	COG	5.6pF	±0.5pF	CL10C5R6DB81PN	
18	0.90	50	COG	6pF	±0.25pF	CL10C060CB81PN	
19	0.90	50	COG	6pF	±0.5pF	CL10C060DB81PN	
20	0.90	50	COG	6.8pF	±0.25pF	CL10C6R8CB81PN	
21	0.90	50	COG	7pF	±0.5pF	CL10C070DB81PN	
22	0.90	50	COG	8pF	±0.5pF	CL10C080DB81PN	
23	0.90	50	COG	8.2pF	±0.25pF	CL10C8R2CB81PN	
24	0.90	50	COG	9pF	±0.5pF	CL10C090DB81PN	
25	0.90	50	COG	10pF	±0.25pF	CL10C100CB81PN	
26	0.90	50	COG	10pF	±0.5pF	CL10C100DB81PN	
27	0.90	50	COG	10pF	±5%	CL10C100JB81PN	
28	0.90	50	COG	12pF	±5%	CL10C120JB81PN	
29	0.90	50	COG	15pF	±5%	CL10C150JB81PN	
30	0.90	50	COG	18pF	±5%	CL10C180JB81PN	
31	0.90	50	COG	20pF	±5%	CL10C200JB81PN	
32	0.90	50	COG	22pF	±5%	CL10C220JB81PN	
33	0.90	50	COG	27pF	±5%	CL10C270JB81PN	
34	0.90	50	COG	33pF	±5%	CL10C330JB81PN	
35	0.90	50	COG	39pF	±1%	CL10C390FB81PN	
36	0.90	50	COG	39pF	±5%	CL10C390 B81PN	
37	0.90	50	COG	47pF	±1%	CL10C470FB81PN	
38	0.90	50	COG	47pF	±5%	CL10C470JB81PN	
39	0.90	50	COG	56pF	±5%	CL10C560JB81PN	
40	0.90	50	COG	75pF	±5%	CL10C750JB81PN	
41	0.90	50	COG	82pF	±5%	CL10C820JB81PN	
41	0.90	50	COG	91pF	±5%	CL10C910 B81PN []	
42	0.90	50	COG	100pF	±5% ±1%	CL10C910JB81PN []	
43	0.90	50	COG	100pF	±1% ±5%	CL10C101JB81PN	
44	0.90	50	COG	120pF	±5%	CL10C101JB81PN D	
45 46		50	COG	-	±5% ±5%	CL10C121JB81PN []	
	0.90			150pF		~	
47	0.90	50	COG	180pF	±5%	CL10C181JB81PN	
48	0.90	50	COG	220pF	±5%	CL10C221JB81PN	
49	0.90	50	COG	270pF	±5%	CL10C271JB81PN	
50	0.90	50	COG	300pF	±5%	CL10C301JB81PN	
51	0.90	50	COG	330pF	±5%	CL10C331JB81PN	
52	0.90	50	COG	390pF	±5%	CL10C391JB81PN	
53	0.90	50	COG	470pF	±5%	CL10C471JB81PN	
54	0.90	50	COG	560pF	±5%	CL10C561JB81PN	
55	0.90	50	COG	680pF	±5%	CL10C681JB81PN	
56	0.90	50	COG	68pF	±5%	CL10C680JB81PN	
57	0.90	50	COG	820pF	±5%	CL10C821JB81PN	
58	0.90	50	COG	1nF	±5%	CL10C102JB81PN	
59	0.90	100	COG	5.6pF	±0.25pF	CL10C5R6CC81PN	
60	0.90	100	COG	10pF	±5%	CL10C100JC81PN 🗆	
61	0.90	100	COG	12pF	±5%	CL10C120JC81PN 🗆	

Product Line up (Automotive Capacitors_ C0G)

Size : 1	■ Size : 1.60×0.80mm (inch : 0603)								
No.	Thickness Max. (mm)	Rated Voltage (Vdc)	тсс	Capacitance	Capacitance Tolerance	Part Number	Remark		
62	0.90	100	COG	15pF	±5%	CL10C150JC81PN			
63	0.90	100	COG	18pF	±5%	CL10C180JC81PN			
64	0.90	100	COG	20pF	±5%	CL10C200JC81PN			
65	0.90	100	COG	27pF	±5%	CL10C270JC81PN			
66	0.90	100	COG	39pF	±5%	CL10C390JC81PN			
67	0.90	100	COG	47pF	±5%	CL10C470JC81PN			
68	0.90	100	COG	50pF	±5%	CL10C500JC81PN			
69	0.90	100	COG	56pF	±5%	CL10C560JC81PN			
70	0.90	100	COG	82pF	±5%	CL10C820JC81PN			
71	0.90	100	COG	100pF	±5%	CL10C101JC81PN			
72	0.90	100	COG	120pF	±5%	CL10C121JC81PN			
73	0.90	100	COG	150pF	±5%	CL10C151JC81PN			
74	0.90	100	COG	180pF	±5%	CL10C181JC81PN			
75	0.90	100	COG	220pF	±5%	CL10C221JC81PN			

■ Size : 2.00×1.25mm (inch : 0805)

No.	Thickness Max. (mm)	Rated Voltage (Vdc)	тсс	Capacitance	Capacitance Tolerance	Part Number	Remark
1	1.35	50	COG	1nF	±5%	CL21C102JBF1PN	
2	1.35	50	COG	1.8nF	±5%	CL21C182JBF1PN	
3	1.35	50	COG	2.2nF	±5%	CL21C222JBF1PN	
4	1.35	50	COG	3.3nF	±5%	CL21C332JBF1PN	
5	1.35	50	COG	4.7nF	±5%	CL21C472JBF1PN	
6	1.35	50	COG	6.8nF	±5%	CL21C682JBF1PN	
7	1.35	50	COG	8.2nF	±5%	CL21C822JBF1PN	
8	1.35	50	COG	10nF	±5%	CL21C103JBF1PN	
9	1.35	100	COG	1nF	±5%	CL21C102JCF1PN	

Product Line up (Automotive Capacitors_X7R/X7S/X7T)

■ Size : 1.00×0.50mm (inch : 0402)

No.	Thickness Max. (mm)	Rated Voltage (Vdc)	тсс	Capacitance	Capacitance Tolerance	Part Number	Remarl
1	0.55	6.3	X7S	220nF	±10%	CL05Y224KQ5VPN 🗆	
2	0.55	6.3	X7S	470nF	±10%	CL05Y474KQ5VPN 🗆	
3	0.70	6.3	X7S	1uF	±10%	CL05Y105KQ6VPN 🗆	
4	0.55	6.3	X7S	2.2uF	±10%	CL05Y225KQ5VPN	
5	0.55	10	X7R	33nF	±10%	CL05B333KP5VPN 🗆	
6	0.55	10	X7R	100nF	±10%	CL05B104KP5VPN	
7	0.55	10	X7S	220nF	±10%	CL05Y224KP5VPN	
8	0.55	10	X7R	220nF	±10%	CL05B224KP5VPN	
9	0.55	10	X7R	220nF	±20%	CL05B224MP54PN	
10	0.55	10	X7S	470nF	±10%	CL05Y474KP5VPN	
11	0.70	10	X7S	1uF	±10%	CL05Y105KP6VPN	
12	0.55	16	X7R	1nF	±10%	CL05B102KO5VPN	
13	0.55	16	X7R	1.5nF	±10%	CL05B152KO5VPN	
14	0.55	16	X7R	2.2nF	±10%	CL05B222KO5VPN	
15	0.55	16	X7R	3.3nF	±10%	CL05B332KO5VPN	
16	0.55	16	X7R	4.7nF	±10%	CL05B472KO5VPN	
17	0.55	16	X7R	6.8nF	±10%	CL05B682KO5VPN	
18	0.55	16	X7R	10nF	±10%	CL05B103KO5VPN	
19	0.55	16	X7R	22nF	±10%	CL05B223KO5VPN	
20	0.55	16	X7R	33nF	±10%	CL05B333K054PN	
21	0.55	16	X7R	47nF	±10%	CL05B473KO5VPN	
22	0.55	16	X7R	68nF	±10%	CL05B683KO5VPN	
23	0.55	16	X7R	82nF	±10%	CL05B823KO5VPN	
24	0.55	16	X7R	100nF	±10%	CL05B104K05VPN	
25	0.55	16	X7S	220nF	±10%	CL05Y224KO5VPN	
26	0.55	25	X7R	1nF	±10%	CL05B102KA5VPN	
27	0.55	25	X7R	1.5nF	±10%	CL05B152KA5VPN	
28	0.55	25	X7R	2.2nF	±10%	CL05B222KA5VPN	
29	0.55	25	X7R	3.3nF	±10%	CL05B332KA5VPN	
30	0.55	25	X7R	4.7nF	±10%	CL05B472KA5VPN	
31	0.55	25	X7R	6.8nF	±10%	CL05B682KA5VPN	
32	0.55	25	X7R	10nF	±10%	CL05B103KA5VPN	
33	0.55	25	X7R	22nF	±10%	CL05B223KA5VPN	
34	0.55	25	X7R	33nF	±10%	CL05B333KA5VPN	
35	0.55	25	X7R	47nF	±10%	CL05B473KA5VPN	
36	0.55	50	X7R	330pF	±10%	CL05B331KB5VPN	
37	0.55	50	X7R	470pF	±10%	CL05B471KB5VPN	
38	0.55	50	X7R	560pF	±10%	CL05B561KB5VPN	
39	0.55	50	X7R X7R	680pF	±10%	CL05B681KB5VPN	
40	0.55	50	X7R X7R	1nF	±10%	CL05B102KB5VPN	
41	0.55	50	X7R	1.2nF	±10%	CL05B122KB5VPN	
42	0.55	50	X7R	1.5nF	±10%	CL05B152KB5VPN	
43	0.55	50	X7R X7R	1.8nF	±10%	CL05B182KB5VPN	
44	0.55	50	X7R X7R	2.2nF	±10%	CL05B222KB5VPN	
44	0.55	50	X7R X7R	2.7nF	±10%	CL05B272KB5VPN	
46	0.55	50	X7R X7R	3.3nF	±10%	CL05B332KB5VPN	
40	0.55	50	X7R X7R	3.3nF	±5%	CL05B332JB5VPN	
47	0.55	50	X7R X7R	4.7nF	±3%	CL05B352JB5VPN C	
40	0.55	50	X7R X7R	5.6nF	±10%	CL05B562KB5VPN	
50	0.55	50	X7R X7R	6.8nF	±10%	CL05B562KB5VPN	
50	0.55	50	X7R X7R	6.8nF	±10%	CL05B682KB54PN	
52 53	0.55	50	X7R X7P	8.2nF	±10%		
	0.55	50	X7R	10nF	±10%		
54	0.55	50	X7R	15nF	±10%	CL05B153KB5VPN	
55	0.55	50	X7R	22nF	±10%		
56	0.55	50	X7R	47nF	±10%	CL05B473KB5VPN	
57	0.55	100	X7R	2.2nF	±10%	CL05B222KC5VPN	
58	0.55	100	X7R	1nF	±10%	CL05B102KC5VPN	

-		
10 1	MSU	
	111130	
		-

Product Line up (Automotive Capacitors_X7R/X7S/X7T)

Size : 1.60×0.80mm (inch : 0603) Rated Thickness Capacitance Capacitance No. TCC Part Number Remark Voltage Max. (mm) Tolerance (Vdc) 6.3 X7R CL10B105KQ8VPN 0.90 1uF ±10% 1.00 6.3 X7T 4.7uF ±20% CL10Z475MQ9VPN 2 0.90 10 X7R 220nF ±10% CL10B224KP8VPN 3 4 0.90 10 X7R 470nF ±10% CL10B474KP8VPN 5 0.90 10 X7R 680nF ±10% CL10B684KP8VPN 6 0.90 10 X7R 1uF ±10% CL10B105KP8VPN 7 0.90 10 X7S 2.2uF ±10% CL10Y225KP84PN 8 0.90 16 X7R 68nF ±10% CL10B683KO8WPN 9 0.90 X7R 100nF ±10% CL10B104KO8WPN 16 10 0.90 16 X7R 150nF ±10% CL10B154KO8VPN 11 ±10% X7R 220nF CL10B224KO8VPN 0.90 16 12 0.90 16 X7R 270nF ±10% CL10B274KO8VPN 13 0.90 X7R 330nF 16 ±10% CL10B334KO8VPN 14 0.90 16 X7R 470nF ±10% CL10B474KO8VPN 15 ±10% 680nF 0.90 16 X7R CL10B684KO8VPN 16 0.90 16 X7R 1uF ±10% CL10B105KO8VPN 17 0.90 25 X7R 1nF ±10% CL10B102KA8WPN 18 0.90 25 X7R 1.5nF ±10% CL10B152KA8WPN 19 ±10% 0.90 25 X7R 2.2nF CL10B222KA8WPN 20 0.90 25 X7R 3.3nF ±10% CL10B332KA8WPN 4.7nF 21 0.90 25 X7R ±10% CL10B472KA8WPN 22 0.90 25 X7R 6.8nF ±10% CL10B682KA8WPN 23 ±10% X7R 10nF CL10B103KA8WPN 0.90 25 24 0.90 25 X7R 15nF ±10% CL10B153KA8WPN 25 0.90 22nF 25 X7R ±10% CL10B223KA8WPN 26 25 X7R 33nF CL10B333KA85PN 0.90 ±10% 27 ±10% 0.90 25 X7R 47nF CL10B473KA85PN 28 X7R 100nF ±10% 0.90 25 CL10B104KA8WPN 29 100nF 0.90 25 X7R ±10% CL10B104KA8VPN 30 25 0.90 X7R 150nF ±10% CL10B154KA8VPN 31 0.90 25 X7R 220nF ±10% CL10B224KA8VPN 32 0.90 25 X7R 330nF ±10% CL10B334KA8VPN 33 470nF 0.90 25 X7R ±10% CL10B474KA8VPN 34 0.90 25 X7R 680nF ±10% CL10B684KA8VPN 35 0.90 25 X7R 1uF ±10% CL10B105KA8VPN 36 0.90 50 X7R 220pF ±10% CL10B221KB8WPN 37 0.90 50 X7R 470pF ±10% CL10B471KB8WPN 38 0.90 50 X7R ±10% CL10B102KB8WPN 1nF 39 0.90 50 X7R 1nF ±5% CL10B102JB8WPN 40 0.90 50 X7R 1.5nF ±10% CL10B152KB8WPN 41 0.90 50 X7R 1.8nF ±10% CL10B182KB8WPN 42 0.90 50 X7R 2.2nF ±10% CL10B222KB8WPN 43 0.90 50 X7R 2.7nF ±10% CL10B272KB8WPN ±10% 44 50 X7R 3.3nF CL10B332KB8WPN 0.90 45 0.90 50 X7R 3.9nF ±10% CL10B392KB8WPN 46 0.90 50 X7R 4.7nF ±10% CL10B472KB8WPN 47 0.90 50 X7R 4.7nF ±5% CL10B472JB8WPN CL10B472JB8VPN 48 50 4.7nF 0.90 X7R ±5% 49 0.90 50 X7R 5.6nF ±10% CL10B562KB8WPN 50 50 0.90 X7R 6.8nF ±10% CL10B682KB8WPN 51 0.90 50 X7R 8.2nF ±10% CL10B822KB8WPN 52 ±10% CL10B103KB8WPN 50 10nF 0.90 X7R 53 0.90 50 X7R 15nF ±10% CL10B153KB8WPN 54 0.90 50 X7R 22nF ±10% CL10B223KB8WPN 55 0.90 50 X7R 27nF ±10% CL10B273KB8WPN 56 0.90 50 X7R 33nF ±10% CL10B333KB8WPN 57 X7R 39nF ±10% 0.90 50 CL10B393KB8WPN 58 50 0.90 47nF X7R ±10% CL10B473KB8WPN 59 0.90 50 X7R 56nF ±10% CL10B563KB8WPN 60 50 0.90 X7R 68nF ±10% CL10B683KB8WPN

Product Line up (Automotive Capacitors_X7R/X7S/X7T)

■ Size : 1.60×0.80mm (inch : 0603)

No.	Thickness Max. (mm)	Rated Voltage (Vdc)	тсс	Capacitance	Capacitance Tolerance	Part Number	Remark
62	0.90	50	X7R	100nF	±10%	CL10B104KB8WPN 🗆	
63	0.90	50	X7R	150nF	±10%	CL10B154KB8VPN	
64	0.90	50	X7R	220nF	±10%	CL10B224KB8VPN	
65	0.90	100	X7R	220pF	±10%	CL10B221KC8WPN	
66	0.90	100	X7R	270pF	±10%	CL10B271KC8WPN	
67	0.90	100	X7R	330pF	±10%	CL10B331KC8WPN	
68	0.90	100	X7R	470pF	±10%	CL10B471KC8WPN	
69	0.90	100	X7R	560pF	±10%	CL10B561KC8WPN	
70	0.90	100	X7R	680pF	±10%	CL10B681KC8WPN	
71	0.90	100	X7R	1nF	±10%	CL10B102KC8WPN	
72	0.90	100	X7R	1.5nF	±10%	CL10B152KC8WPN	
73	0.90	100	X7R	2.2nF	±10%	CL10B222KC8WPN	
74	0.90	100	X7R	3.3nF	±10%	CL10B332KC8WPN	
75	0.90	100	X7R	4.7nF	±10%	CL10B472KC8WPN	
76	0.90	100	X7R	6.8nF	±10%	CL10B682KC8WPN	
77	0.90	100	X7R	10nF	±10%	CL10B103KC8WPN	
78	0.90	100	X7R	15nF	±10%	CL10B153KC8WPN	
79	0.90	100	X7R	22nF	±10%	CL10B223KC8WPN	
80	0.90	100	X7R	33nF	±10%	CL10B333KC8WPN	
81	0.90	100	X7R	47nF	±10%	CL10B473KC8WPN 🗆	
82	0.90	100	X7R	68nF	±10%	CL10B683KC8WPN	
83	0.90	100	X7R	100nF	±10%	CL10B104KC8VPN	

61

0.90

50

X7R

82nF

±10%

CL10B823KB8WPN

SAMSUNG

Product Line up (Automotive Capacitors_X7R/X7S/X7T)

No.	Thickness Max. (mm)	Rated Voltage (Vdc)	тсс	Capacitance	Capacitance Tolerance	Part Number	Remark
1	1.40	6.3	X7R	4.7uF	±10%	CL21B475KQQVPN 🗆	
2	1.40	6.3	X7S	10uF	±10%	CL21Y106KQQVPN	
3	1.35	10	X7R	1uF	±10%	CL21B105KPFVPN	
4	1.35	10	X7R	2.2uF	±10%	CL21B225KPFVPN	
5	1.40	10	X7R	4.7uF	±10%	CL21B475KPQVPN	
6	1.40	10	X7S	10uF	±10%	CL21Y106KPQVPN	
7	1.35	16	X7R	150nF	±10%	CL21B154KOFVPN	
8	1.35	16	X7R	220nF	±10%	CL21B224KOFVPN	
9	1.35	16	X7R	270nF	±10%	CL21B274KOFVPN	
10	1.35	16	X7R	330nF	±10%	CL21B334KOFVPN	
11	1.35	16	X7R	390nF	±10%	CL21B394KOFVPN	
12	1.35	16	X7R	470nF	±10%	CL21B474KOFVPN	
13	1.35	16	X7R	680nF	±10%	CL21B684KOFVPN	
14	1.35	16	X7R	1uF	±10%	CL21B105KOFVPN	
15	1.35	16	X7R	2.2uF	±10%	CL21B225KOFVPN	
16	1.40	16	X7R	2.2uF	±10%	CL21B225KOQVPN	
17	1.40	16	X7R	3.3uF	±10%	CL21B335KOQVPN	
18	1.40	16	X7R	4.7uF	±10%	CL21B475KOQVPN	
19	1.40	16	X7S	10uF	±10%	CL21Y106KOQ4PN	
20	1.35	25	X7R	150nF	±10%	CL21B154KAFVPN	
21	1.35	25	X7R	220nF	±10%	CL21B224KAFVPN	
22	1.35	25	X7R	330nF	±10%	CL21B334KAFVPN	
23	1.35	25	X7R	470nF	±10%	CL21B474KAFVPN	
24	1.35	25	X7R	560nF	±10%	CL21B564KAFVPN	
25	1.35	25	X7R	1uF	±10%	CL21B105KAFVPN	
26	1.35	25	X7R	2.2uF	±10%	CL21B105IQ1 VPN	
27	1.35	50	X7R	100nF	±10%	CL21B104KBFWPN	
28	1.35	50	X7R	120nF	±10%	CL21B124KBFVPN	
29	1.35	50	X7R X7R	150nF	±10%	CL21B154KBFVPN	
30	1.35	50	X7R	180nF	±10%	CL21B184KBFVPN	
31	1.35	50	X7R	220nF	±10%	CL21B104KBFVPN	
32	1.35	50	X7R	330nF	±10%	CL21B224KBFVPN	
33	1.35	50	X7R	470nF	±10%	CL21B334KBFVPN	
34	1.35	50	X7R	680nF	±10% ±10%	CL21B474KBFVPN	
34	1.35	50	X7R X7R	1uF	±10% ±10%	CL21B084KBFVPN	
35	1.35	100	X7R X7R	22nF	±10% ±10%	CL21B105KBFVPN	
36	1.35		X7R X7R				
		100 100	X/R X7R	47nF	±10%	CL21B473KCFWPN	
38 39	1.35 1.40	100	X/R X7R	100nF 220nF	±10% ±10%	CL21B104KCFWPN CL21B224KCQVPN	

Product Line up (Automotive Capacitors_X7R/X7S/X7T)

Size : 3.20×1.60mm (inch : 1206)

No.	Thickness	Rated Voltage	тсс	Capacitance	Capacitance	Part Number	Remark
1101	Max. (mm)	(Vdc)	100		Tolerance		Remark
1	1.80	10	X7R	4.7uF	±10%	CL31B475KPHVPN 🗆	
2	1.80	10	X7R	10uF	±10%	CL31B106KPHVPN	
3	1.80	16	X7R	2.2uF	±10%	CL31B225KOHVPN	
4	1.80	16	X7R	4.7uF	±10%	CL31B475KOHVPN 🗆	
5	1.80	16	X7R	6.8uF	±10%	CL31B685KOHVPN	
6	1.90	16	X7R	10uF	±10%	CL31B106KOKVPN	
7	1.80	16	X7R	10uF	±10%	CL31B106KOHVPN	
8	1.80	25	X7R	2.2uF	±10%	CL31B225KAHVPN 🗆	
9	1.80	25	X7R	3.3uF	±10%	CL31B335KAHVPN	
10	1.80	25	X7R	4.7uF	±10%	CL31B475KAHVPN 🗆	
11	1.90	25	X7R	10uF	±10%	CL31B106KAKVPN 🗆	
12	1.80	25	X7R	10uF	±10%	CL31B106KAHVPN	
13	1.80	50	X7R	330nF	±10%	CL31B334KBHWPN	
14	1.80	50	X7R	470nF	±10%	CL31B474KBHWPN 🗆	
15	1.80	50	X7R	680nF	±10%	CL31B684KBHWPN	
16	1.80	50	X7R	1uF	±10%	CL31B105KBHWPN	
17	1.80	50	X7R	1.5uF	±10%	CL31B155KBHVPN	
18	1.80	50	X7R	2.2uF	±10%	CL31B225KBHVPN	
19	1.80	50	X7R	4.7uF	±10%	CL31B475KBHVPN 🗆	
20	1.80	100	X7R	470nF	±10%	CL31B474KCHWPN	
21	1.80	100	X7R	1uF	±10%	CL31B105KCHVPN	

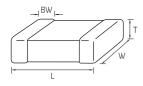
Size : 3.20×2.50mm (inch : 1210)

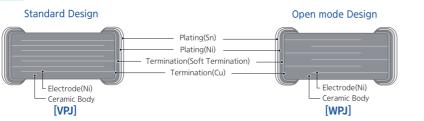
No.	Thickness Max. (mm)	Rated Voltage (Vdc)	тсс	Capacitance	Capacitance Tolerance	Part Number	Remark
1	2.80	6.3	X7S	47uF	±20%	CL32Y476MQVVPN 🗆	
2	2.70	10	X7R	22uF	±10%	CL32B226KPJVPN 🗆	
3	2.80	10	X7S	47uF	±20%	CL32Y476MPVVPN 🗆	
4	2.70	16	X7R	22uF	±10%	CL32B226KOJVPN 🗆	
5	2.70	16	X7R	22uF	±20%	CL32B226MOJVPN	
6	2.70	25	X7R	4.7uF	±10%	CL32B475KAJVPN 🗆	
7	2.70	25	X7R	10uF	±10%	CL32B106KAJVPN 🗆	
8	2.80	25	X7S	22uF	±10%	CL32Y226KAVVPN	
9	2.70	50	X7R	1uF	±10%	CL32B105KBJ4PN 🗆	
10	2.70	50	X7R	3.3uF	±10%	CL32B335KBJVPN 🗆	
11	2.70	50	X7R	4.7uF	±10%	CL32B475KBJVPN 🗆	
12	2.70	50	X7R	6.8uF	±10%	CL32B685KBJVPN	
13	2.70	50	X7S	6.8uF	±10%	CL32Y685KBJVPN	
14	2.70	50	X7S	10uF	±10%	CL32Y106KBJ4PN 🗆	
15	2.70	100	X7R	2.2uF	±10%	CL32B225KCJVPN	

Special Automotive Capacitors

High Bending Strength

ESD Protection

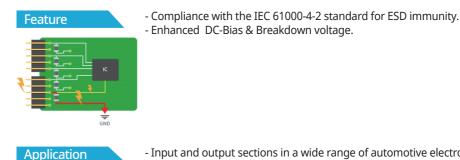



- AEC-Q200 qualified, 5mm bending strength guaranteed. - Strong thermo-mechanical properties. - Soft termination has been tested according to the VW 80808-2.

Application

- Critical circuits and battery line circuits. (Prevent a module/sub-system failure in the event of a cracked/shorted capacitor)

Structure and Dimensions



Size Code	EIA Code		Dimens	ion(mm)		
Size Coue	EIA Code	L	W	Т	BW	
05	0402	1.00±0.10	0.50±0.05	0.50±0.05	0.25±0.10	
10	0603	1.60±0.20	0.80±0.10	0.80±0.10	0.30±0.20	
21	0805	2.00+0.30	1.25+0.20	0.85±0.10	0.5+0.2/-0.3	
21	0805	2.00±0.50	1.25±0.20	1.25±0.20		
31	1206	3.20±0.30	1.60±0.30	1.60±0.30	0.5±0.3	
32	1210	3.20±0.40	2.50±0.30	2.50±0.30	0.6±0.3	

High Bending Strength Capacitance Table (X7R/X7S)

		Rated						Capac	itance					
Size inch (mm)	Thickness (mm)	Voltage			n	F					U	ıF		
(11111)	((((((((((((((((((((((((((((((((((((((((Vdc)	10	22	47	100	220	470	1	2.2	4.7	10	22	47
		10					X7S	X7S	X7S					
0402	0.50	16												
(1005)	0.50	25												
		50											-	
		16											0 1 1 1	
0603	0.90	25												
(1608)	0.80	50												-
		100											-	
		10										Ē	0 1 1 1	1
0005		16										E		
0805 (2012)	1.25	25									[
(2012)		50												
		100					[
		10												
1206	1.60	16											[1
(3216)	1.00	25											[
		50										E		
		6.3												X7S
1210		10												X7S
1210 (3225)		16												
(5225)		25											X7S	
		50												

Structure and Dimensions

Size Code	EIA Code		Dimension(mm)				
Size Coue	EIA Coue	L	W	Т	BW		
10	0603	1.70±0.10	0.90±0.10	0.90±0.10	0.30±0.20		

ESD Protection Capacitance Table (X7R)

		Rated											
Size inch (mm)	Thickness (mm)	Voltage						nF					
((((((((((((((((((((((((((((((((((((((((min)	(Vdc)	1	1.5	2.2	3.3	4.7	6.8	10	15	22	33	47
0603(1608)	0.80	100											

- Input and output sections in a wide range of automotive electronics.

- Plating(Sn) — Plating(Ni) – Termination(Metal – Epoxy) Termination(Cu)

Special Automotive Capacitors

Product Line up (High Bending Strength Capacitors)

■ Size : 1.00×0.50mm (inch : 0402)

No.	Thickness Max. (mm)	Rated Voltage (Vdc)	тсс	Capacitance	Capacitance Tolerance	Part Number	Remark
1	0.55	16	X7R	10nF	±10%	CL05B103KO5VPJ 🗆	
2	0.55	16	X7R	22nF	±10%	CL05B223KO5VPJ	
3	0.55	16	X7R	47nF	±10%	CL05B473KO5VPJ	
4	0.55	16	X7R	100nF	±10%	CL05B104KO5VPJ 🗆	
5	0.55	25	X7R	22nF	±10%	CL05B223KA5VPJ	
6	0.55	25	X7R	10nF	±10%	CL05B103KA5VPJ	
7	0.55	50	X7R	10nF	±10%	CL05B103KB5VPJ 🗆	
8	0.55	50	X7R	22nF	±10%	CL05B223KB5VPJ 🗆	

■ Size : 1.60×0.80mm (inch : 0603)

No.	Thickness Max. (mm)	Rated Voltage (Vdc)	тсс	Capacitance	Capacitance Tolerance	Part Number	Remark
1	0.90	6.3	X7R	1uF	±10%	CL10B105KQ8VPJ	
2	0.90	10	X7R	1uF	±10%	CL10B105KP8VPJ	
3	0.90	16	X7R	47nF	±10%	CL10B473KO8VPJ	
4	0.90	16	X7R	470nF	±10%	CL10B474KO8VPJ 🗆	
5	0.90	16	X7R	1uF	±10%	CL10B105KO8VPJ	
6	0.90	25	X7R	47nF	±10%	CL10B473KA8VPJ 🗆	
7	0.90	25	X7R	100nF	±10%	CL10B104KA8VPJ	
8	0.90	25	X7R	1uF	±10%	CL10B105KA8VPJ	
9	0.90	50	X7R	1nF	±10%	CL10B102KB8WPJ	
10	0.90	50	X7R	1.5nF	±10%	CL10B152KB8WPJ	
11	0.90	50	X7R	2.2nF	±10%	CL10B222KB8WPJ	
12	0.90	50	X7R	4.7nF	±10%	CL10B472KB8WPJ	
13	0.90	50	X7R	22nF	±10%	CL10B223KB8VPJ	
14	0.90	50	X7R	33nF	±10%	CL10B333KB8VPJ	
15	0.90	50	X7R	47nF	±10%	CL10B473KB8VPJ 🗆	
16	0.90	50	X7R	68nF	±10%	CL10B683KB8VPJ	
17	0.90	50	X7R	100nF	±10%	CL10B104KB8VPJ	
18	0.90	50	X7R	220nF	±10%	CL10B224KB8VPJ	
19	0.90	100	X7R	1nF	±10%	CL10B102KC8WPJ	
20	0.90	100	X7R	2.2nF	±10%	CL10B222KC8WPJ	
21	0.90	100	X7R	4.7nF	±10%	CL10B472KC8WPJ	
22	0.90	100	X7R	10nF	±10%	CL10B103KC8WPJ	
23	0.90	100	X7R	22nF	±10%	CL10B223KC8VPJ	
24	0.90	100	X7R	47nF	±10%	CL10B473KC8VPJ 🗆	

■ Size : 2.00×1.25mm (inch : 0805)

No.	Thickness Max. (mm)	Rated Voltage (Vdc)	тсс	Capacitance	Capacitance Tolerance	Part Number	Remark
1	1.45	10	X7R	1uF	±10%	CL21B105KPFVPJ 🗆	
2	1.45	16	X7R	1uF	±10%	CL21B105KOFVPJ	
3	1.45	16	X7R	2.2uF	±10%	CL21B225KOFVPJ	
4	1.45	16	X7R	4.7uF	±10%	CL21B475KOQVPJ	
5	1.45	25	X7R	220nF	±10%	CL21B224KAFVPJ 🗆	
6	1.45	25	X7R	1uF	±10%	CL21B105KAFVPJ 🗆	
7	1.45	25	X7R	10uF	±10%	CL21Y106KABVPJ 🗆	
8	1.45	50	X7R	15nF	±10%	CL21B153KBFWPJ	
9	1.45	50	X7R	22nF	±10%	CL21B223KBFWPJ	
10	1.45	50	X7R	47nF	±10%	CL21B473KBFWPJ	
11	1.45	50	X7R	100nF	±10%	CL21B104KBFWPJ	
12	1.45	50	X7R	220nF	±10%	CL21B224KBFVPJ	
13	1.45	50	X7R	330nF	±10%	CL21B334KBFVPJ	
14	1.45	50	X7R	470nF	±10%	CL21B474KBFVPJ	
15	1.45	50	X7R	1uF	±10%	CL21B105KBFVPJ	
16	1.45	50	X7R	4.7uF	±10%	CL21Y475KBYVPJ	
17	1.45	100	X7R	10nF	±10%	CL21B103KCCWPJ	
18	1.45	100	X7R	47nF	±10%	CL21B473KCFWPJ	
19	1.45	100	X7R	22nF	±10%	CL21B223KCFWPJ	
20	1.45	100	X7R	100nF	±10%	CL21B104KCFWPJ	

Product Line up (High Bending Strength Capacitors)

■ Size : 3.20×1.60mm (inch : 1206)

No.	Thickness Max. (mm)	Rated Voltage (Vdc)	тсс	Capacitance	Capacitance Tolerance	Part Number	Remark
1	1.90	10	X7R	4.7uF	±10%	CL31B475KPHVPJ 🗆	
2	1.90	16	X7R	4.7uF	±10%	CL31B475KOHVPJ	
3	1.90	16	X7R	10uF	±10%	CL31B106KOHVPJ	
4	1.90	25	X7R	4.7uF	±10%	CL31B475KAHVPJ 🗆	
5	1.90	25	X7R	10uF	±10%	CL31B106KAKVPJ	
6	1.90	25	X7R	10uF	±10%	CL31B106KAHVPJ 🗆	
7	1.90	50	X7R	1uF	±10%	CL31B105KBHVPJ 🗆	
8	1.90	50	X7R	2.2uF	±10%	CL31B225KBHVPJ	
9	1.90	50	X7R	4.7uF	±10%	CL31B475KBHVPJ 🗆	
10	1.90	50	X7R	10uF	±10%	CL31Y106KBKVPJ 🗆	

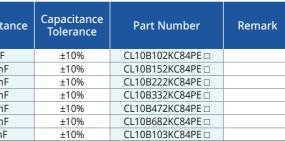
■ Size : 3.20×2.50mm (inch : 1210)

No.	Thickness Max. (mm)	Rated Voltage (Vdc)	тсс	Capacitance	Capacitance Tolerance	Part Number	Remark
1	2.85	6.3	X7S	47uF	±20%	CL32Y476MQVVPJ 🗆	
2	2.80	16	X7R	22uF	±10%	CL32B226KOJVPJ 🗆	
3	2.80	50	X7S	10uF	±10%	CL32Y106KBJVPJ 🗆	

Product Lineup (High Bending Strength Capacitors_Failsafe)

■ Size : 1.60×0.80mm (inch : 0603)

No.	Thickness Max. (mm)	Rated Voltage (Vdc)	тсс	Capacitance	Capacitance Tolerance	Part Number	Remark
1	0.90	100	X7R	10nF	±10%	CL10B103KC8XPJ 🗆	
2	0.90	100	X7R	22nF	±10%	CL10B223KC8XPJ 🗆	


■ Size : 2.00×1.25mm (inch : 0805)

No.	Thickness Max. (mm)	Rated Voltage (Vdc)	тсс	Capacitance	Capacitance Tolerance	Part Number	Remark
1	1.45	50	X7R	100nF	±10%	CL21B104KBFXPJ 🗆	
2	1.45	100	X7R	100nF	±10%	CL21B104KCFXPJ	

Product Lineup (ESD Protection Capacitors)

■ 1.60×0.80mm (inch : 0603)

No.	Thickness Max. (mm)	Rated Voltage (Vdc)	тсс	Capacita
1	1.00	100	X7R	1nF
2	1.00	100	X7R	1.5nl
3	1.00	100	X7R	2.2nl
4	1.00	100	X7R	3.3nl
5	1.00	100	X7R	4.7nl
6	1.00	100	X7R	6.8nl
7	1.00	100	X7R	10nF

Reliability Test Conditions

No.		Item		Performance			Test condition		
1		nd Post-Stres ectrical Test	s	-					
		Appeara	ince	No abnormal exterior appearance		Unpowered.	1000hrs@T = 125℃		
		Capacitance		Within±2.5% or ±0.25pF, (Whichever is larger)		onponered,	10001113@1 123 C		
		Change	Class II	Within±10%		Initial Measu			
2	High Temper- ature	Q	Class I	Capacitance \ge 30pF : Q \ge 1,000 $<$ 30pF : Q \ge 400 + 20 X C (C : Capacitance)		and leave th	heat treatment at $150^{\circ}C + 0 / -10$ e capacitor in ambient condition surement. Then perform the mea	for 24±2 hours	
	Exposure	Tanδ	Class II	Rated Voltage \geq 25V : 0.030 max \geq 16V : 0.050 max \geq 10V : 0.075 max	*1)		rement pacitor in ambient condition for surement. Then perform the mea		
		IR		More than 10,000M Ω or 500M Ω X μF (Whichever is smaller)		·			
		Appeara	ince	No abnormal exterior appearance		1000Cycles			
		Capacitance Change		Within±2.5% or ±0.25pF, (Whichever is larger)			irement heat treatment at 150°C +0 / -10 e capacitor in ambient condition		
			Class II	Within±10%		before meas	surement. Then perform the mea	surement.	
3	Temper- ature Cycling	Q	Class I	Capacitance ≥ 30pF : Q≥ 1,000 < 30pF : Q≥ 400 + 20 X C (C : Capacitance)			rement pacitor in ambient condition for s surement. Then perform the mea		
	cycling			Rated Voltage \geq 25V : 0.030 max		Step	Temperature(°C)	Time(min.)	
		Tanδ	Class II	≥ 16V : 0.050 max ≥ 10V : 0.075 max	*1)	1	Min. operating Temp.+0/ -3	30±3	
				∠ 10V . 0.0/3 IIIdX	- 1)	2	25±2	1	
		IR		More than 10,000MΩ or 500MΩ X μF (Whichever is smaller)	*1)	3	Max. operating Temp.+3/ - 0 25+2	30±3	
4	Destructive Physical Analysis		al	No defects or abnormalities		Per EIA 469	2312		
		Appearance		No abnormal exterior appearance		1000hrs 85°	C / 85%RH, Rated voltage and 1.3	3 ~ 1.5V,	
		Capacitance Class I		Within±2.5% or ±0.25pF, (Whichever is larger)		(add 100koh	,		
		Change	Class II	Within±12.5%			irement heat treatment at 150°C +0 / -10 e capacitor in ambient condition		
5	Biased Humidity	Q	Class I	Capacitance ≥ 30pF : Q≥ 200 < 30pF : Q≥ 100 + (10/3) X ((C : Capacitance)	Ĉ	before measurement. Then perform the measurement. Final Measurement			
		Tanδ	Class II	Rated Voltage ≥ 25V : 0.035 max ≥ 16V : 0.050 max ≥ 10V : 0.075 max	*1)	Perform the heat treatment at 150°C +0 / -10°C for 1 hour and leave the capacitor in ambient condition for 24±2 hours before measurement. Then perform the measurement			
		IR		More than 500MΩ or 25MΩ X μF (Whichever is smaller)	*1)				
		Appeara	ince	No abnormal exterior appearance		1000hrs @ T	A=125°C, 200% Rated Voltage, *2	2)	
		Capacitance	Classel	Within±3.0% or ±0.3pF, (Whichever is larger)		Initial Measu	irement		
		Change	Class II	Within±12.5%		and leave th	heat treatment at 150°C +0 / -10 e capacitor in ambient condition	for 24±2 hours	
6	High Temper- ature Operating Life	Q	Class I	Capacitance ≥ 30pF : Q≥ 350 ≥ 10pF : Q≥ 275 + (15 / 2) X < 10pF : Q≥ 200 + 10 X C (C : Capacitance)	C	before measurement. Then perform the measurement. Final Measurement Perform the heat treatment at 150°C +0 / -10°C for 1 hour and leave the capacitor in ambient condition for 24±2 hours			
	LITE	LifeRated Voltage $\geq 25V : 0.035 \text{ max}$ Tan δ Class II $\geq 16V : 0.050 \text{ max}$ $\geq 10V : 0.075 \text{ max}$		*1)	before meas	urement. Then perform the mea	surement.		
	IR			More than 1,000MΩ or 50MΩ X μF (Whichever is smaller)	*1)				
7	Ext	ternal Visual		No abnormal exterior appearance		Microscope	(x10)		
8				Within the specified dimensions		Using the ca	linors		

Performance No Item No abnormal exterior appearance Appearance Within±2.5% or ±0.25pF, Capacitance Class I (Whichever is larger) Change Class II Within±10% Capacitance \geq 30pF : Q \geq 1,000 < 30pF : Q \geq 400 + 20 Mechanical Q Class I 9 Shock (C : Capacitance) Rated Voltage ≥ 25V : 0.025 max ≥ 16V : 0.035 max Tanδ Class II \geq 10V : 0.050 max More than 10,000M\Omega or 500MΩ X μ F IR (Whichever is smaller) Appearance No abnormal exterior appearance Within±2.5% or ±0.25pF, Capacitance Class I (Whichever is larger) Change Class II Within±10% Capacitance \geq 30pF : Q \geq 1,000 < 30pF : Q \geq 400 + 20) (C : Capacitance) Q Class I 10 Vibration Rated Voltage ≥ 25V : 0.025 max ≥ 16V : 0.035 max ≥ 10V : 0.050 max Tanδ Class II More than 10,000M\Omega or 500MΩ X μF IR (Whichever is smaller) No abnormal exterior appearance Appearance Within±2.5% or ±0.25pF, Capacitance Class I (Whichever is larger) Change Class II Within±10% Capacitance \geq 30pF : Q \geq 1,000 \geq 30pF : Q \geq 400 + 20 Resistance Q Class I 11 to Solder (C : Capacitance) Heat Rated Voltage ≥ 25V : 0.025 max \geq 16V : 0.035 max \geq 10V : 0.050 max Tanδ Class II More than 10,000MΩ or 500MΩ X μ F IR (Whichever is smaller) Appearance No abnormal exterior appearance Within±2.5% or ±0.25pF, (Whichever is larger) Capacitance Class I Change Class II Within±10% Capacitance \geq 30pF : Q \geq 1,000 \geq 30pF : Q \geq 400 + 20 2 Q Class I 12 ESD (C : Capacitance) Rated Voltage ≥ 25V : 0.025 max ≥ 16V : 0.035 max ≥ 10V : 0.050 max Tanδ Class II More than 10,000MΩ or 500MΩ X μ F IR (Whichever is smaller) 95% of the terminations is to be solo 13 Solderability evenly and continuously Capacitance Within specified tolerance Capacitance \geq 30pF : Q \geq 1,000 $< 30 \text{pF} : Q \ge 400 + 20$ Q Class I (C : Capacitance) Rated Voltage ≥ 25V : 0.025 max ≥ 16V : 0.035 max ≥ 10V : 0.050 max Tanδ Class II More than 100,000<u>MΩ</u> or 1,000MΩ X μ Electrical Class I (Whichever is smaller) 14 Characteri IR@25°C zation More than 10,000M Ω or 500M Ω X μ F Class II (Whichever is smaller) More than 10,000M\Omega or 100MΩ X μF Class I (Whichever is smaller) IR@125°C More than 1,000MΩ or 10MΩ X µF Class II (Whichever is smaller) No dielectric breakdown or mechani Dielectric Strength breakdown

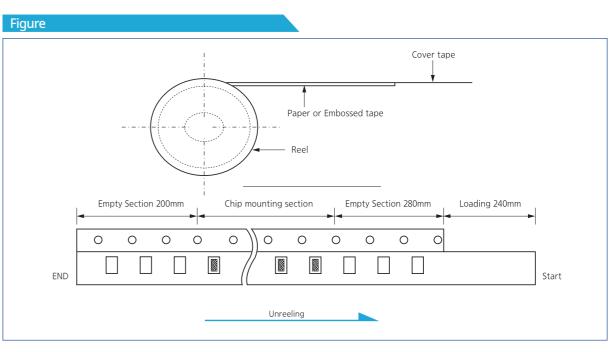
**1): Indicates typical specification. Please refer to individual specifications.

**1): Indicates typical specification. Please refer to individual specifications.

*2): Some of the parts are applicable in rated voltage × 150% or × 120%, Please refer to individual specifications.

SAMSUNG ELECTRO-MECHANICS SAMSUNG

		Test	condition					
		each direction	n should be applied					
			s of the test specim					
	Peak value 1,500G	Duration 0.5ms	Wave Half sine	Velocity 4.7m / sec				
XC	and leave the ca	t treatment at pacitor in amb	t 150°C +0 / -10°C pient condition for erform the measur	24±2 hours				
*1)	Final Measurem	ent .	t condition for 24					
*1)	boforo moscuro		erform the measur					
	Use 8"× 5" PCB (and 2 secure po within 2" from a	0.031" Thick 7 ints at corners ny secure poir	of 3 orientations, secure points on o s of opposite sides nt. Test from 10~20	. Parts mounted				
XC	Perform the hea and leave the ca	Initial Measurement Perform the heat treatment at $150^{\circ}C + 0 / -10^{\circ}C$ for 1 hour and leave the capacitor in ambient condition for 24 ± 2 hours before measurement. Then perform the measurement.						
*1)) Leave the capac	Final Measurement Leave the capacitor in ambient condition for 24±2 hours						
*1)		ment. Then pe	erform the measur	rement.				
	Solder pot : 260:							
	Perform the hea and leave the ca	Initial Measurement Perform the heat treatment at 150°C +0 / -10°C for 1 hour and leave the capacitor in ambient condition for 24±2 hours before measurement. Then perform the measurement.						
ХС	Final Measurem Leave the capac	Final Measurement Leave the capacitor in ambient condition for 24±2 hours before measurement. Then perform the measurement.						
*1))							
*1))							
	Initial Measurem Perform the hea and leave the ca	AEC - Q200 - 002 Initial Measurement Perform the heat treatment at 150°C +0 / -10°C for 1 hour and leave the capacitor in ambient condition for 24±2 hours before measurement. Then perform the measurement.						
ХС	and leave the ca	it treatment at pacitor in amb	t 150°C +0 / -10°C pient condition for	24±2 hours				
*1)		ment. men pe	erform the measur	ement.				
*1))							
lered	b) Steam aging f	for 8 hrs, Imm or 8 hrs, Imme	immerse in solder erse in solder for 5 erse in solder for 1 d rosin	5s at 235±5°C				
XC	* Capacitance sh	hall be measur	be measured at 25 red after the heat or 24±2hr at room	treatment of 150+0				
		Dacitance D00pF↓	Frequency 1\\\\\\ttrace{1}10\%	Voltage 0.5 ~ 5.0Vrms				
	1(000pF ↑	1MHz±10%	1.0+0.2Vrms				
*1)	<u> </u>	10μF↓ 10μE↑		0.5±0.1Vrms				
F	I.R. should be m	easured with a	a DC voltage not e					
	Dielectric Streng	1th : 250% of t	he rated voltage fo					
		charge curren		ч.				
cal	-							
cal	II I.R. should be m Rated Voltage @ Dielectric Streng	10µF↑ easured with a 25°C, @125°C jth : 250% of tl	for 60 ~ 120 sec.	xceeding or 1 ~ 5 sec				

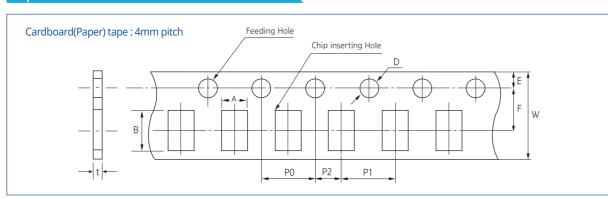

Reliability Test Conditions

No.		Item		Performance	Test condition		
		Appeara	ince	No abnormal exterior appearance	Bending to the limit for 60 seconds.		
15	Roard Elev	Capacitance	Class I	Within±5.0% or ±0.5pF, (Whichever is larger)	Limit : Class I - 3mm Class II - 2mm *1) (Substrate for board flex test) 40mm 40mm 100mm 100mm (unit : mm) Code(Inch) Dimension(mm) a b c		
2	bound nex	Change	Class II	Within±10%	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
		Appeara	ince	No abnormal exterior appearance	18N, for 60±1 sec.		
16	Terminal Strength	ngth Capacitance		Within±2.5% or ±0.25pF, (Whichever is larger)	* 0603(1608) -10N, 0402(1005) -2N Initial Measurement Perform the heat treatment at 150°C +0 / -10°C for 1 hour and leave the capacitor in ambient condition for 24±2 hours before measurement. Then perform the measurement.		
	(SMD)			Within±10%	Final Measurement Leave the capacitor in ambient condition for 24±2 hours before measurement. Then perform the measurement.		
17	В	eam Load		Destruction value should be exceed Chip Length ≤ 2.5 mm a) Chip Thickness > 0.5mm : 20N b) Chip Thickness ≤ 0.5 mm : 8N Chip Length ≥ 3.2 mm a) Chip Thickness ≥ 1.25 mm : 54.5N b) Chip Thickness ≤ 1.25 mm : 15N	Beam speed Chip Length ≤ 2.5mm, 0.50 \pm 0.05mm / sec. Chip Length ≥ 3.5mm, 2.50 \pm 0.25mm / sec.		
10	Capaci- tance Tempera-	Capacitance	Class I	0±30ppm / ℃	Capacitance shall be measured by the steps shown in the following table. Step Temperature(°C) 1 25±2 2 Min. operating temp.±2 3 25±2 4 Max. operating temp.±2 5 25±2		
18	Character- istics		Class II	Within±15%	Temperature Coefficient shall be calculated from the formula as below Temp. Coefficient = $\frac{C2 - C1}{C1 \times \Delta T} \times 10^{6}$ [ppm /°C] C1 : Capacitance at step 3 C2 : Capacitance at 125°C ΔT : 125°C - 25°C = 100°C • Class II Capacitance change shall be calculated from the formula as below $\Delta C = \frac{C2 - C1}{C1} \times 100(\%)$ C1 : Capacitance at step 3 C2 : Capacitance at step)2 or step 4		

Packaging Specifications

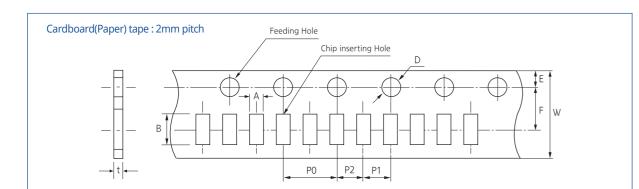
Packaging

This specification applies to taping of MLCC When customers require, the specification may be changed under the agreement.



Quantity							[unit : pcs]
Туре	Size Code Inch(mm)	Chip Thickness	Taping Type	Pitch	Plastic 7 inch reel	Plastic 10 inches reel	Plastic 13 inches reel
	0402 (01005)	0.2 mm	PAPER	2mm	20k	-	100K
	0603 (0201)	0.3 mm	PAPER	2mm	10K	-	50K
	1005 (0402)	0.5 mm	PAPER	2mm	10K	-	50K
	1608 (0603)	0.8 mm	PAPER	4mm	4K	10K	15K / 10K
2012	2012 (090E)	T≤0.85 mm	PAPER	4mm	4K	10K	15K / 10K
	2012 (0805)	T≥1.0 mm	EMBOSSED	4mm	2K	6K	10K
	3216 (1206)	T≤0.85 mm	PAPER	4mm	4K	10K	10K
MLCC		T≥1.0 mm	EMBOSSED	4mm	2K	4K	10K
	3225 (1210)	T≤1.6 mm	EMBOSSED	4mm	2K	4K	10K
	5225 (1210)	T≥2.0 mm	EMBOSSED	4mm	1K	4K	4K
	4520 (1000)	T≤1.6 mm	EMBOSSED	8mm	2k	-	8k
	4520 (1808)	T≥2.0 mm	EMBOSSED	8mm	1k	-	4k
	1500 (1010)		EMBOSSED	8mm	-	-	4K
4	4532 (1812)	T>2.0 mm	EMBOSSED	8mm	-	-	2К
	5750 (2220)	T≥2.5 mm	EMBOSSED	8mm	-	-	2К

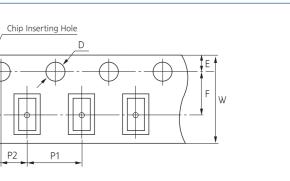
**1): Indicates typical specification. Please refer to individual specifications.
 If you want more detaiedl imformation, Please Visit Samsung Electro - mechanics website (www.semlcr.com)


Packaging Specifications

Tape Size

										[unit : mm]
Size Inch(mm)	А	В	w	F	E	P1	P2	PO	D	t
0603 (1608)	1.00 ±0.10	1.90 ±0.10								
0805 (2012)	1.55 ±0.10	2.30 ±0.10	8.00 ±0.30	3.50 ±0.05	1.75 ±0.10	4.00 ±0.10	2.00 ±0.05	4.00 ±0.10	Ф1.50 +0.10/-0	1.10 Below
1206 (3216)	2.05 ±0.10	3.60 ±0.10								

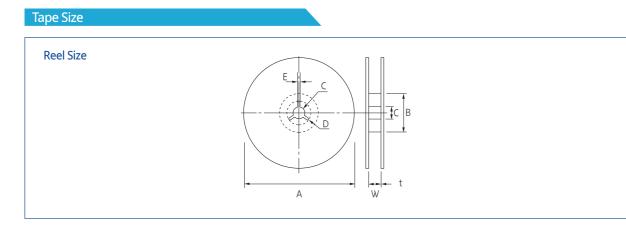
* The A, B in the table above are based on normal dimensions. The data may be changed with the special size tolerances.


										[unit : mm]
Size Inch(mm)	A	В	w	F	E	P1	P2	P0	D	t
1005 (0402)	0.25 ±0.02	0.46 ±0.02								0.25 ±0.02
0201 (0603)	0.38 ±0.03	0.68 ±0.03							Φ1.50	0.35 ±0.03
0402 (1005)	0.62 ±0.05	1.12 ±0.05	8.00 ±0.30	3.50 ±0.05	1.75 ±0.10	2.00 ±0.05	2.00 ±0.05	4.00 ±0.10	0.10 /-0.03	0.60 ±0.05
0204 (0510)	0.62 0.05 /-0.10	1.12 0.05 /-0.10								0.37 ±0.03

% The A, B in the table above are based on normal dimensions. The data may be changed with the special size tolerances.

Tape Size	
Embossed(Plastic) tape	Feeding Hole

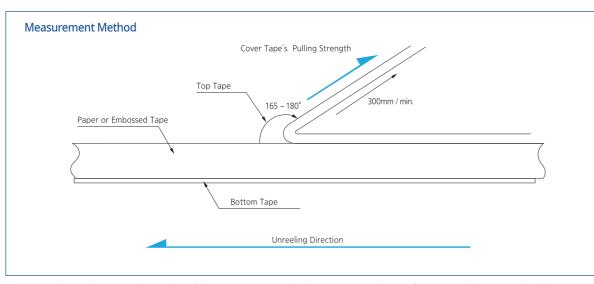
											[unit : mm]																																								
Size Inch(mm)	A	В	w	F	E	P1	P2	PO	D	t1	t0																																								
01005 (0402)	0.23 ±0.02	0.45 ±0.02	4.00 ±0.05	1.80 ±0.02	0.90 ±0.05	1.00 ±0.02	1.00 ±0.02	2.00 ±0.03	Ф0.80 ±0.04																																										
015008 (5025)	0.32 ±0.03	0.58 ±0.03				2.00 ±0.05		Ф1.50 0.1 /-0.03	0.35 Below	0.50 Below																																									
0603 (1608)	1.05 ±0.15	1.90 ±0.15		8.00 3.50 ±0.30 ±0.05						2.50 Below																																									
0805 (2012)	1.45 ±0.20	2.30 ±0.20				4.00 ±0.10																																													
1206 (3216)	1.90 ±0.20	3.50 ±0.20			1.75 ±0.10		±0.10																																												
1210 (3225)	2.80 ±0.20	3.60 ±0.20					2.00	4.00																																											
1808 (4520)	2.30 ±0.20	4.90 ±0.20					±0.05	±0.10	Ф1.50 0.10		0.60 Below																																								
1812 (4532)	3.60 ±0.20	4.90 ±0.20	12.0 ±0.30																																										8.00 ±0.10				/-0	3.80 Below	Delett
2220 (5750)	5.50 ±0.20	6.20 ±0.20																																																	
0204 (0510)	0.62 0.05 /-0.10	1.12 0.05 /-0.10	8.00 ±0.30	3.50 ±0.05		4.00 ±0.10				2.50 Below																																									
0306 (0816)	1.10 ±0.20	1.90 ±0.20	_0.00			20110				50.017																																									


% The A, B in the table above are based on normal dimensions. The data may be changed with the special size tolerances.

Packaging Specifications

[unit : mm]

Packaging Specifications



Symbol	Tape Width	А	В	С	D	E	w	t
	4mm	Φ178±2.0	ΜΙΝΦ50	Ф13±0.5	21±0.8	2.0±0.5	5±0.5	1.2±0.2
7"Reel	8mm	Φ178±2.0	ΜΙΝΦ50	Φ13±0.5	21±0.8	2.0±0.5	10±1.5	0.9±0.2
	12mm	Φ178±2.0	ΜΙΝΦ50	Φ13±0.5	21±0.8	2.0±0.5	13±0.5	1.2±0.2
10"Reel	8mm	Φ258±2.0	ΜΙΝΦ70	Φ13±0.5	21±0.8	2.0±0.5	10±1.5	1.8±0.2
13"Reel	8mm	Ф330±2.0	ΜΙΝΦ70	Φ13±0.5	21±0.8	2.0±0.5	10±1.5	1.8±0.2
13 Keel	12mm	Ф330±2.0	ΜΙΝΦ70	Φ13±0.5	21±0.8	2.0±0.5	13±0.5	2.2±0.2

Cover tape peel-off force

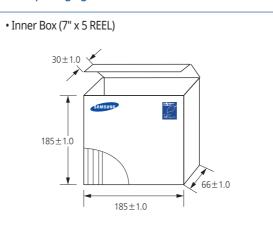
Peel-off force

 $10 \text{ g.f} \le \text{peel-off force} \le 70 \text{ g.f}$

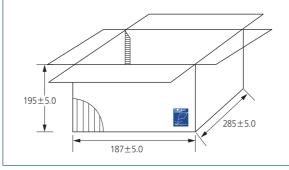
- Taping Packaging design : Packaging design follows IEC 60286-3 standard. (IEC 60286-3 Packaging of components for automatic handling - parts 3) * If the static electricity of SMT process causes any problems, please contact us.

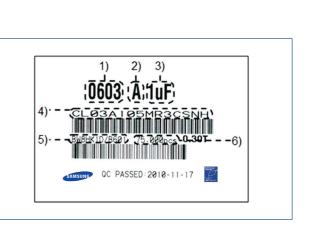
BOX package

Packaging Label

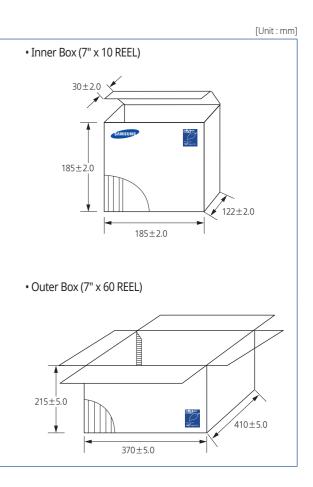

REEL & Box Type Label includes the information as below.

1) Chip size 2) Temperature Characteristics 3) Nominal Capacitance 4) Model Name 5) LOT Number & Reel Number 6) Q'ty

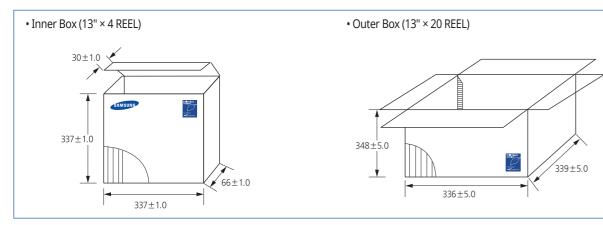

Box Packaging


1) Double packaging with the paper type of inner box and outer box. 2) Avoid any damages during transportation by car, airplane and ship. 3) Remark information of contents on inner box and outer box % If special packaging is required, please contact us.

7" Box packaging



• Outer Box (7" x 20 REEL)


SAMSUNG ELECTRO-MECHANICS

Packaging Specifications

Packaging Specifications

13" Box packaging

Chip Weight

Size(L/W) Inch(mm)	Size(T) (mm)	Temp.	Weight (mg/pc)	Size(L/W) Inch(mm)	Size(T) (mm)	Temp.	Weight (mg/pc)
	0.20	COG	0.082		0.30	COG	0.233
1005 (0402)	0.20	X7R	0.083	0201 (0603)	0.30	X7R	0.285
	0.20	X5R	0.093		0.30	X5R	0.317
	0.50	COG	1.182	0603 (1608)	0.80	COG	4.615
0402 (1005)	0.50	X7R	1.559		0.80	X7R	5.522
	0.50	X5R	1.560		0.80	X5R	5.932
	0.65	COG	7.192		1.25	COG	28.086
0805 (2012)	1.25	X7R	16.523	1206 (3216)	1.60	X7R	54.050
	1.25	X5R	16.408		1.60	X5R	45.600
1210	2.50	X7R	116.197	1808	1.25	COG	47.382
(3225)	2.50	X5R	121.253	(4520)	1.25	X7R	63.136
1812 (4532)	1.25	X7R	96.697	2220 (5750)	1.60	X7R	260.897

The weight of product is typical value per size, for more details, please contact us.

Application Manual

Product Characteristic data

1. Capacitance

The capacitance is the ratio of the change in an electric charge according to voltage change. Due to the fact that the capacitance may be subject to change with the measured voltage and frequency, it is highly recommended to measure the capacitance based on the following conditions.

1-1. Measure capacitance with voltage and frequency specified in this document. Regarding the voltage/frequency condition for capacitance measurement of each MLCC model, please make sure to follow a section "C. Reliability test Condition - Capacitance" in this document.

The following table shows the voltage and frequency condition according to the capacitance range.

[The voltage and frequency condition according to MLCC the capacitance range] ■ Class |

Capacitance	Frequency	Voltage	
\leq 1,000 pF	1 MHz ± 10%	0.5 ~ 5 Vrms	
> 1,000 pF	1 kHz ± 10%		

Class II

Capacitance	Frequency	Voltage
\leq 10 pF	1 kHz ± 10%	1.0 ± 0.2 Vrms
> 10 pF	120 Hz ± 20%	0.5 ± 0.1 Vrms
Exception*	1 kHz ± 10%	0.5 ± 0.1 Vrms

Capacitance shall be measured after the heat treatment of 150 + 0/-10°C for 1hr, leaving at room temperature for 24±2hr. (Class II)

- 1-2. It is recommended to use measurement equipment with the ALC (Auto Level Control) option. be lower than the setting voltage due to the equipment limitation. Note that when capacitance or measurement frequency is excessively high, the measurement equipment may show ALC off the output voltage of measurement equipment is the same as the setting voltage before measuring capacitance.
- 1-3. Capacitance value of high dielectric constant (Class II) MLCC changes with applied AC and DC voltage. Therefore, it is the actual circuit.
- 1-4. The capacitance is in compliance with the EIA RS-198-1-F-2002.

2. Tan δ (DF)

- 2-1. An ideal MLCC's energy loss is zero, but real MLCC has dielectric loss and resistance loss of electrode. DF (Dissipation Factor) is defined as the ratio of loss energy to stored energy and typically being calculated as percentage.
- 2-2. Quality factor (Q factor) is defined as the ratio of stored energy to loss energy. is so small whereas the loss characteristic of Class II MLCC is presented in DF.
- 2-3. It is recommended to use Class I MLCC for applications to require good linearity and low loss such as coupling circuit, filter circuit and time constant circuit.

The reason is that when capacitance or measurement frequency is high, the output voltage of measurement equipment can

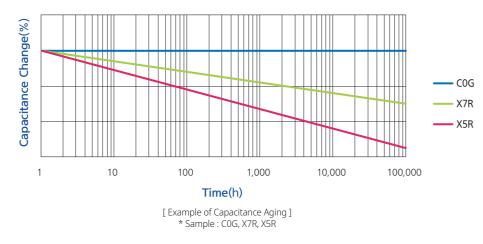
warning and provide a lower output voltage than the setting voltage even with ALC option selected. It is necessary to ensure

necessary to take into account MLCC's AC voltage characteristics and DC-bias voltage characteristics when applying MLCC to

The equation can be described as 1/DF. Normally the loss characteristic of Class I MLCC is presented in Q, since the DF value

3. Insulation Resistance

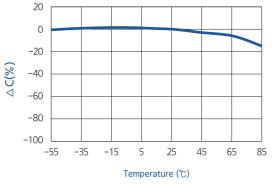
Ceramic dielectric has a low leakage current with DC voltage due to the high insulating properties. Insulation resistance is defined as the ratio of a leakage current to DC voltage.

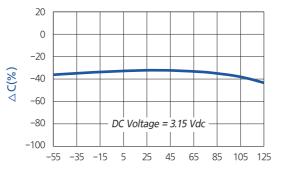

3-1. When applying DC voltage to MLCC, a charging current and a leakage current flow together at the initial stage of measurement.

While the charging current decreases, and insulation resistance (IR) in MLCC is saturated by time. Therefore, insulation resistance shall be measured 1 minute after applying the rated voltage.

4. Capacitance Aging

The aging characteristic is that the high dielectric (Class II) MLCC decreases capacitance value over time. It is also necessary to consider the aging characteristic with voltage and temperature characteristics when Class II MLCC is used in circuitry.


- 4-1. In general, aging causes capacitance to decrease linearly with the log of time as shown in the following graph. Please check with SEMCO for more details, since the value may vary between different models.
- 4-2. After heat treatment (150°C, 1hour), the capacitance decreased by aging is recovered, so aging should be considered again from the time of heat treatment.

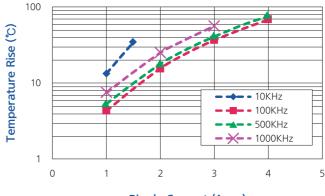

5. Temperature Characteristics of Capacitance (TCC)

Please consider temperature characteristics of capacitance since the electrical characteristics such as capacitance changes which is caused by a change in ceramic dielectric constant by temperature.

5-1. It is necessary to check the values specified in section "C. Reliability test Condition-Temperature Characteristics" for the temperature and capacitance change range of MLCC.

[Example of Temperature Characteristics (X5R)] * Sample : 10uF, Rated voltage 6.3V

[Example of Bias TCC] * Sample : 10uF, Rated voltage 6.3V since the applied temperature may change the capacitance of MLCC.


5-3. In addition, Bias TCC of MLCC should be taken into account when DC voltage is applied to MLCC.

6. Self-heating Temperature

It is necessary to design the system, with considering self-heating generated by the ESR (Equivalent Series Resistance) of MLCC when AC voltage or pulse voltage is applied to MLCC.

- through MLCC. Short-circuit may be occurred by the degradation of MLCC's insulating properties.
- the pulse voltage is within the range of rated voltage. Therefore, make sure to check the following conditions.
 - applied.

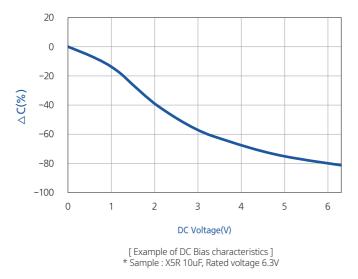
2) The rise in increase by self-heating of MLCC must not exceed 20°C

[Example of Ripple current] * Sample : X5R 10uF, Rated voltage 6.3V SAMSUNG

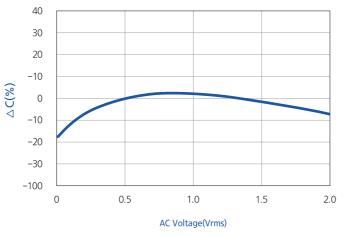
5-2. When selecting MLCC, it is necessary to consider the heat characteristics of a system, room temperature and TCC of MLCC,

6-1. When MLCC is used in an AC voltage or pulse voltage circuit, self-heating is generated when AC or pulse current flows

6-2. The reliability of MLCC may be affected by MLCC being used in an AC voltage or pulse voltage circuit, even the AC voltage or


1) The surface temperature of MLCC must stay within the maximum operating temperature after AC or Pulse voltage is

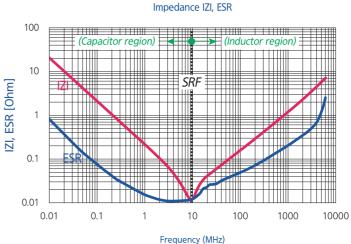
Ripple Current (Arms)


7. DC & AC Voltage Characteristics

It is required to consider voltage characteristics in the circuit since the capacitance value of high dielectric constant MLCC(Class II) is changed by applied DC & AC voltage.

7-1. Please ensure the capacitance change is within the allowed operating range of a system. In particular, when high dielectric constant type MLCC (Class II) is used in circuit with narrow allowed capacitance tolerance, a system should be designed with considering DC voltage, temperature characteristics and aging characteristics of MLCC.

7-2. It is necessary to consider the AC voltage characteristics of MLCC and the AC voltage of a system, since the capacitance value of high dielectric constant type MLCC (Class II) varies with the applied AC voltage.



[[] Example of AC voltage characteristics] * Sample : X5R 10uF, Rated voltage 6.3V

8. Impedance Characteristic

Electrical impedance (Z) of MLCC is the measurement of the opposition that MLCC presents to a current (I) when a voltage (V) is applied. It is defined as the ratio of the voltage to the current (Z=V/I). Impedance extends the concept of resistance to AC circuits and is a complex number consisting of the real part of resistance (R) and the imaginary part of reactance (X) as Z=R+iX. Therefore, it is required to design circuit with consideration of the impedance characteristics of MLCC based on the frequency (Z = R + iX)

- where f is frequency and C is capacitance. material.
- MLCC in the high frequency mainly comes from the loss of its electrode metal.
- cancel each other and the impedance of MLCC has only ESR at SRF.
- 8-4. The impedance of MLCC can be measured by a network analyzer or an impedance analyzer. caused by the AC voltage characteristic of MLCC.

SAMSUNG

8-1. MLCC operates as a capacitor in the low frequency and its reactance (XC) decreases as frequency increases ($X_C=1/j2\pi fC$)

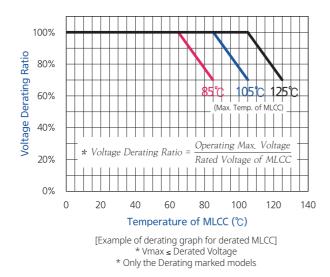
The resistance (ESR; Equivalent Series Resistance) of MLCC in the low frequency mainly comes from the loss of its dielectric

8-2. MLCC operates as an inductor in the high frequency and the inductance of MLCC is called ESL (Equivalent Series Inductance). The reactance (XL) of MLCC in the high frequency increases as frequency increases (X_L=j 2π f-ESL). The resistance (ESR) of

8-3. SRF (Self Resonant Frequency) of MLCC is the frequency where its capacitive reactance (XC) and inductive reactance(XL)

When using the network analyzer, please note that the small-signal input may lead to the impedance of low capacitance

[Example of Impedance characteristics] Sample : X5R 1uF, Rated voltage 6.3V

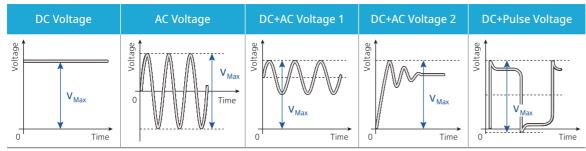

Electrical & Mechanical Caution

1. Derating

MLCC with the test voltage at 100% of the rated voltage in the high temperature resistance test are labeled as "derated MLCC." For this type of MLCC, the voltage and temperature should be derated as shown in the following graph for the equivalent life time of a normal MLCC with the test voltage at 150% of the rated voltage in the high temperature resistance test.

1-1. The derated MLCC should be applied with the derating voltage and temperature as shown in the following graph.

1-2. The "Temperature of MLCC" in the x-axis of the graph below indicates the surface temperature of MLCC including selfheating effect. The "Voltage Derating Ratio" in the y-axis of the graph below gives the maximum operating voltage of MLCC with reference to the maximum voltage (Vmax) as defined in section "3-2. Applied Voltage."

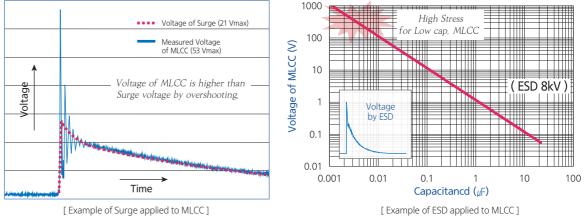

2. Applied Voltage

The actual applied voltage on MLCC should not exceed the rated voltage set in the specifications.

2-1. Cautions by types of voltage applied to MLCC

- · For DC voltage or DC+AC voltage, DC voltage or the maximum value of DC + AC voltage should not exceed the rated voltage of MLCC.
- · For AC voltage or pulse voltage, the peak-to-peak value of AC voltage or pulse voltage should not exceed the rated voltage of MLCC.
- · Abnormal voltage such as surge voltage, static electricity should not exceed the rated voltage of MLCC.

Types of Voltage Applied to the Capacitor


2-2. Effect of EOS (Electrical Overstress)

- caused by the dielectric breakdown in MLCC.
- accelerate heating on the dielectric. Therefore, it can bring about a failure of MLCC in a market at the early stage.
- testing or evaluating.

(1) Surge

When the overcurrent caused by surge is applied to MLCC, the influx of current into MLCC can induce the overshooting phenomenon of voltage as shown in the graph below and result in the electrical short failure in MLCC. Therefore, it is necessary to be careful to prevent the influx of surge current into MLCC. (2) ESD (Electrostatic Discharge)

Since the voltage of the static electricity is very high but the quantity of electric charge is small compared to the surge, ESD can cause damage to MLCC with low capacitance as shown in the following graph, whereas surge with lots of electric charge quantity can cause damages to even high capacitance MLCC.

* Simulation for ESD 8kV

3. Vibration

Please check the types of vibration and shock, and the status of resonance. Manage MLCC not to generate resonance and avoid any kind of impact to terminals. When MLCC is used in a vibration environment, please make sure to contact us for the situation and consider special MLCC such as Soft-term, etc.

4. Shock

Mechanical stress caused by a drop may cause damages to a dielectric or a crack in MLCC Do not use a dropped MLCC to avoid any quality and reliability deterioration. When piling up or handling printed circuit boards, do not hit MLCC with the corners of a PCB to prevent cracks or any other damages to the MLCC.

5. Piezo-electric Phenomenon

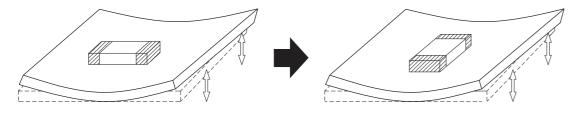
MLCC may generate a noise due to vibration at specific frequency when using the high dielectric constantMLCC (Class II) at AC or Pulse circuits.

MLCC may cause a noise if MLCC is affected by any mechanical vibrations or shocks

SAMSUNG

· Electrical Overstress such as a surge voltage or EOS can cause damages to MLCC, resulting in the electrical short failure

Down time of MLCC is varied with the applied voltage and the room temperature and a dielectric shock caused by EOS can

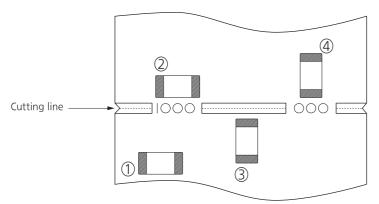

· Please use caution not to apply excessive electrical overstress including spike voltage MLCC when preparing MLCC for

Process of Mounting and Soldering

1. Mounting

1-1. Mounting position

It is recommended to locate the major axis of MLCC in parallel to the direction in which the stress is applied.

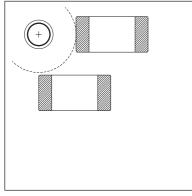


Not recommended

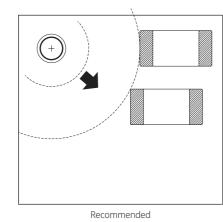
Recommended

1-2. Cautions during mounting near the cutout

Please take the following measures to effectively reduce the stress generated from the cutting of PCB. Select the mounting location shown below, since the mechanical stress is affected by a location and a direction of MLCC mounted near the cutting line.



* Relate mechanical stress 2>1 3 > 1

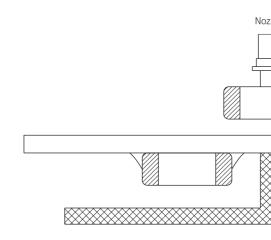

(4) > (1)

1-3. Cautions during mounting near screw

If MLCC is mounted near a screw hole, the board deflection may be occurred by screw torque. Mount MLCC as far from the screw holes as possible.

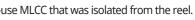
2. Caution before Mounting

- 2-1. It is recommended to store and use MLCC in a reel. Do not re-use MLCC that was isolated from the reel.
- 2-2. Check the capacitance characteristics under actual applied voltage.
- 2-3. Check the mechanical stress when actual process and equipment is in use.
- 2-4. Check the rated capacitance, rated voltage and other electrical characteristics before assembly. Heat treatment must be done prior to measurement of capacitance.
- 2-5. Check the solderability of MLCC that has passed shelf life before use.
- 2-6. The use of Sn-Zn based solder may deteriorate the reliability of MLCC.


3. Cautions during Mounting with Mounting (pick-and-place) Machines

3-1. Mounting Head Pressure

Excessive pressure may cause cracks in MLCC. It is recommended to adjust the nozzle pressure within the maximum value of 300g.f. Additional conditions must be set for both thin film and special purpose MLCC.


3-2. Bending Stress

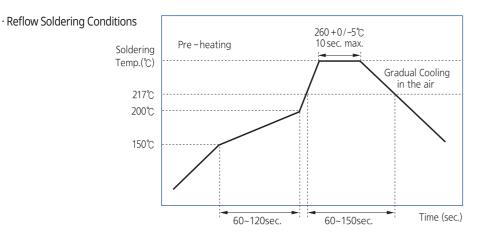
When using a two-sided substrate, it is required to mount MLCC on one side first before mountin on the other side due to the bending of the substrate caused by the mounting head. Support the substrate as shown in the picture below when MLCC is mounted on the other side. If the substrate is not supported, bending of the substrate may cause cracks in MLCC.

3-3. Suction nozzle

Dust accumulated in a suction nozzle and suction mechanism can impede a smooth movement of the nozzle. This may cause cracks in MLCC due to the excessive force during mounting. If the mounting claw is worn out, it may cause cracks in MLCC due to the uneven force during positioning. A regular inspection such as maintenance, monitor and replacement for the suction nozzle and mounting claw should be conducted.

force	zle		
support pip			
A apple bit	support pin		

4. Reflow soldering


MLCC is in a direct contact with the dissolved solder during soldering, which may be exposed to potential mechanical stress caused by the sudden temperature change.

Therefore. MLCC may be contaminated by the location movement and flux.

For the reason, the mounting process must be closely monitored.

Metho	Classification	
Deflow coldering	Overall heating	Infrared rays Hot plate VPS(Vapor phase)
Reflow soldering	Local heating	Air heater Laser Light beam

4-1. Reflow Profile

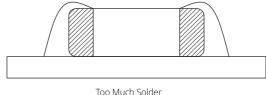
Use caution not to exceed the peak temperature (260°C) and time (30sec) as shown.

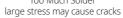
Pre-heating is necessary for all constituents including the PCB to prevent the mechanical damages on MLCC. The temperature difference between the PCB and the component surface must be kept to the minimum.

As for reflow soldering, it is recommended to keep the number of reflow soldering to less than three times. Please check with us when the number of reflow soldering needs to exceed three times. Care must be exercised especially for the ultrasmall size, thin film and high capacitance MLCC as they can be affected by thermal stress more easily.

4-2. Reflow temperature

The following quality problem may occur when MLCC is mounted with a lower temperature than the reflow temperature recommended by a solder manufacturer. The specified peak temperature must be maintained after taking into consideration the factors such as the placement of peripheral constituent and the reflow temperature.

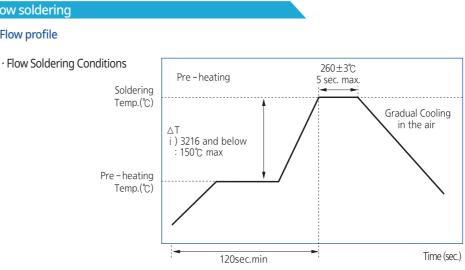

- Drop in solder wettability
- Solder voids
- Potential occurrence of whisker
- Drop in adhesive strength
- · Drop in self-alignment properties
- Potential occurrence of tombstones


4-3. Cooling

Natural cooling with air is recommended.

4-4. Optimum solder flux for reflow soldering

- Overly the thick application of solder pastes results in an excessive solder fillet height. This makes MLCC more vulnerable to the mechanical and thermal stress from the board, which may cause cracks in MLCC.
- Too little solder paste results in a lack of the adhesive strength, which may cause MLCC to isolate from PCB
- Check if solder has been applied uniformly after soldering is completed.



solder to MLCC. The amount of the solder at the edge may impact directly on cracks in MLCC.

5. flow soldering

5-1. Flow profile

Take caution not to exceed peak temperature (260°C) and time (5sec) as shown. In case of flow soldering, only 1608(0603inch), 2012(0805inch), 3216(1206inch) case size are recommended to use.

Please contact us before use the type of high capacitance and thin film MLCC for some exceptions that may be caused.

5-2. Caution before Flow soldering

- temperature difference between the solder and the surface of MLCC must be kept to the minimum.
- internal termination and the outer termination.

Not enough solder Weak holding force may cause bad connections or detaching of the capacitor

• It is required to design a PCB with consideration of a solder land pattern and its size to apply an appropriate amount of

• When a sudden heat is applied to MLCC, the mechanical rigidity of MLCC is deteriorated by the internal deformation of MLCC. Preheating all the constituents including PCB is required to prevent the mechanical damages on MLCC. The

• If the flow time is too long or the flow temperature is too high, the adhesive strength with PCB may be deteriorated by the leaching phenomenon of the outer termination, or the capacitance value may be dropped by weak adhesion between the

6. Soldering Iron

Manual soldering can pose a great risk on creating thermal cracks in MLCC. The high temperature soldering iron tip may come into a direct contact with the ceramic body of MLCC due to the carelessness of an operator. Therefore, the soldering iron must be handled carefully, and close attention must be paid to the selection of the soldering iron tip and to temperature control of the tip.

6-1. How to use a soldering Iron

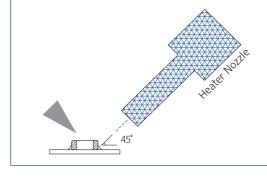
- In order to minimize damages on MLCC, preheating MLCC and PCB is necessary.
- A hot plate and a hot air type preheater should be used for preheating
- Do not cool down MLCC and PCB rapidly after soldering.
- Keep the contact time between the outer termination of MLCC and the soldering iron as short as possible. Long soldering time may cause problems such as adhesion deterioration by the leaching phenomenon of the outer termination.

Variation of Temp.	Soldering Temp.(°C)	Pre-heating Time(sec)	Soldering Time(sec)	Cooling Time(sec)
$\Delta T \leq 130$	300±10°C max	≥60	≤4	-

* Control ∆ T in the solder iron and preheating temperature.

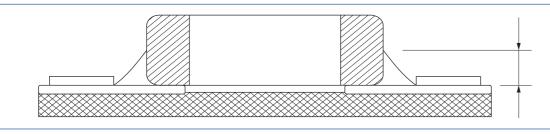
	Condition of Iron facilities	
Wattage	Tip diameter	Soldering time
20W max	3mm max	4sec max

* Caution - Iron tip should not contact with ceramic body directly Lead-free solder: Sn-3.0Ag-0.5CU


6-2. How to use a spot heater

Compared to local heating using a solder iron, heat by a spot heater heats the overall MLCC and the PCB, which is likely to lessen the thermal shocks.

For a high density PCB, a spot heater can prevent the problem to connect between a solder iron and MLCC directly.


- If the distance from the air nozzle outlet to MLCC is too close, MLCC may be cracked due to the thermal stress. Follow the conditions set in the table below to prevent this problem.
- The spot heater application angle as shown in the figure is recommended to create a suitable solder fillet shape

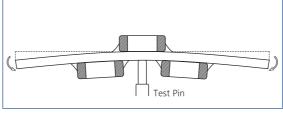
Distance	5mm \leq
Hot Air Application angle	45°C
Hot Air Temperature Nozzle Outlet	$400^{\circ}\text{C} \geq$
Application Time	10s >

6-3. Cautions for re-work

- Too much solder amount will increase the risk of PCB bending or cause other damages.
- Too little solder amount will result in MLCC breaking loose from the PCB due to the inadequate adhesive strength.
- Check if the solder has been applied properly and ensure the solder fillet has a proper shape.

* Soldering wire below 0.5mm is required for soldering.

7. Cleaning

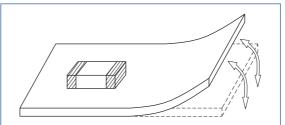

- 7-1. In general, cleaning is unnecessary if rosin flux is used. performance of MLCC.
 - This means that the cleansing solution must be carefully selected and should always be new.

7-2. Cautions for cleaning

cleaning in order to avoid damages on MLCC.

8. Cautions for using electrical measuring probes

- Watch for PCB bending caused by the pressure of a test-probe or other equipment.
- If the PCB is bent by the force from the test probe, MLCC may be cracked or the solder joint may be damaged.
- Avoid PCB flexing by using the support pin on the back side of the PCB.
- Place equipment with the support pin as close to the test-probe as possible.
- Prevent shock vibrations of the board when the test-probe contacts a PCB.



Not recommended

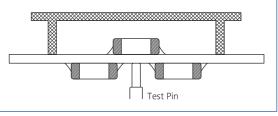
9. Printed Circuit Board Cropping

- Do not apply any stress to MLCC such as bending or twisting the board after mounting MLCC on the PCB.
- The stress as shown may cause cracks in MLCC when cutting the board.
- Cracked MLCC may cause degradation to the insulation resistance, thereby causing short circuit.
- Avoid these types of stresses applied to MLCC.

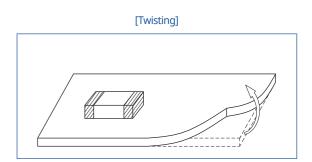
[Bending]

9-1. Cautions for cutting PCB

Check a cutting method of PCB in advance.


The high density board is separated into many individual boards after the completion of soldering. If the board is bent or deformed during separation, MLCC may be cracked. Carefully select a separation method that minimizes the deformation of the PCB.

SAMSUNG


When acidic flux is used strongly, chlorine in the flux may dissolve into some types of cleaning fluids, thereby affecting the

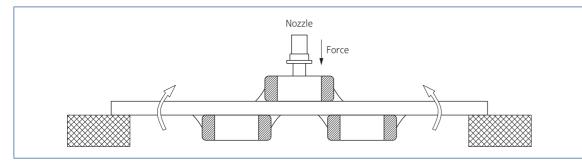
MLCC or solder joint may be cracked with the vibration of PCB, if ultrasonic vibration is too strong during cleaning. When high pressure cleaning equipment is used, test should be done for the cleaning equipment and its process before the

• Confirm the position of the support pin or jig when checking the electrical performance of MLCC after mounting on the PCB.

Recommended

10. Assembly Handling

10-1. Cautions for PCB handling

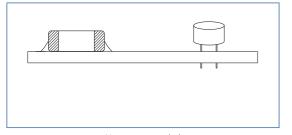

Hold the edges of the board mounted with MLCC with both hands since holding with one handmay bend the board. Do not use dropped boards, which may degrade the quality of MLCC.

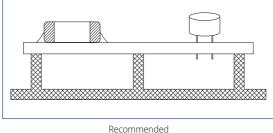
10-2. Mounting other components

Pay attention to the following conditions when mounting other components on the back side of The board after MLCC has been mounted on the front side.

When the suction nozzle is placed too close to the board, board deflection stress may be applied to MLCC on the back side, resulting in cracks in MLCC.

Check if proper value is set on each chip mounter for a suction location, a mounting gap and a suction gap by the thickness of components.




10-3. Board mounting components with leads

If the board is bent when inserting components (transformer, IC, etc.) into it, MLCC or solder joint may be cracked.

Pay attention to the following:

- Reduce the stress on the board during insertion by increasing the size of the lead insertion hole.
- Insert components with leads into the board after fixing the board with support pins or a dedicated jig.
- Support the bottom side of the board to avoid bending the board.
- Check the status of the height of each support pin regularly when the support pins are used.



Not recommended

10-4. Socket and / or connector attach / detach

Since the insertion or removal from sockets and connectors may cause the board to bent, make sure that MLCC mounted on the board should not be damaged in this process.

10-5. Fastening screw

- conditions before performing the work.
- Plan the work to prevent the board from bending
- Use a torque driver to prevent over-tightening of the screw.
- Since the board may be bent by soldering, use caution in tightening the screw.

11. Adhesive selection

Pay attention to the following if an adhesive is used to position MLCC on the board before soldering.

11-1. Requirements for Adhesives

- They must maintain their adhesive strength when exposed to soldering temperatures.
- They should not spread when applied to the PCB.
- They should have a long pot life.
- They should hardened quickly.
- They should not corrode the board or MLCC materials.
- They should be an insulator type that does not affect the characteristic of MLCC.
- They should be non-toxic, not harmful, and particularly safe when workers touch the adhesives.

11-2. Caution before Applying Adhesive

Check the correct application conditions before attaching MLCC to the board with an adhesive. If the dimension of land, the type of adhesives, the amount of coating, the contact surface areas, the curing temperature, or other conditions are not appropriate, it may degrade the MLCC performance.

11-3. Cautions for selecting Adhesive

Depending on the type of the chosen adhesive, MLCC insulation resistance may be degraded. In addition, MLCC may be cracked by the difference in contractile stress caused by the different contraction rate between MLCC and the adhesive.

11-4. Cautions for the amount of applied adhesive and curing temperature

- mounting position, thereby an inflow of the adhesive onto theland section should be avoided.
- oxidation both on the outer termination (Sn) of MLCC and the surface of the board may deteriorate the solderability.

12. Flux

- 12-1. The excessive amount of flux generates excessive flux gases which may deteriorate solderability. Therefore, apply the flux thin and evenly as a whole.
- flux with a halogen content of 0.1% max.
- 12-3. Strong acidic flux can degrade the MLCC performance
- 12-4. Check the solder quality of MLCC and the amount of remaining flux surrounding MLCC after the mounting process.

When attaching a shield on a board, the board may be bent during a screw tightening work Pay attention to the following

• They must have enough adhesive strength to prevent MLCC from slipping or moving during the handling the board.

• The inappropriate amount of the adhesive cause the weak adhesive strength, resulting in the mounting defect in MLCC • Excessive use of the adhesive may cause a soldering defect, loss of electrical connection, incorrect curing, or slippage of a

• If the curing temperature is too high or the curing time is too long, the adhesive strength will be degraded. In addition,

12-2. Flux with a high ratio of halogen may oxidize the outer termination of MLCC, if cleaning is not done properly. Therefore, use

13. Coating

13-1. Crack caused by Coating

A crack may be caused in the MLCC due to amount of the resin and stress of thermal contraction of the resin during coating process.

During the coating process, the amount of resin and the stress of thermal contraction of the resin may cause cracks in MLCC.

The difference of thermal expansion coefficient between the coating, or a molding resin may cause destruction, deterioration of insulation resistance or dielectric breakdown of MLCC such as cracks or detachment, etc.

13-2. Recommended Coating material

- A thermal expansion coefficient should be as close to that of MLCC as possible.
- A silicone resin can be used as an under-coating to buffer the stress.
- The resin should have a minimum curing contraction rate.
- The resin should have a minimum sensitivity (ex. Epoxy resin).
- The insulation resistance of MLCC can be deteriorated if a high hygroscopic property resin is used in a high humidity condition.
- Do not use strong acid substances due to the fact that coating materials inducing a family of halogen substances and organic acid may corrode MLCC.

Design

1. Circuit design

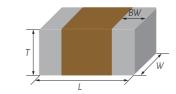
When the board is dropped or bent, MLCC mounted on the board may be short-circuited by the drop in insulation resistance. Therefore, it is required to install safety equipment such as a fuse to prevent additional accidents when MLCC is short-circuited, otherwise, electric short and fire may occur. This product is not a safety guaranteed product.

2. PCB Design

2-1. Unlike lead type components, SMD type components that are designed to be mounted directly on the board are fragile to the stress. In addition, they are more sensitive to mechanical and thermal stress than lead type components.

2-2. MLCC crack by PCB material type

A great difference of the thermal expansion coefficient between PCB and MLCC causes thermal expansion and contraction, resulting in cracks in MLCC. Even though MLCC is mounted on a board with a fluorine resin or on a single-layered glass epoxy, cracks in MLCC may occur.

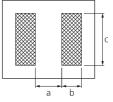

3. Design system evaluation

- 3-1. Evaluate the actual design with MLCC to make sure there is no functional issue or violation of specifications of the finished goods.
- 3-2. Please note that the capacitance may differ based on the operating condition of the actual system since Class 2 MLCC capacitance varies with applied voltage and temperature.
- 3-3. Surge resistance must be evaluated since the excessive surge caused by the inductance of the actual system may apply to MLCC.

3-4. Note the actual MLCC size and the termination shape.

4. Land dimension

The recommended land dimension is determined by evaluating the actual SET and a board.


Reflow Footprint

Chip Size [mm]	Chip Tol. [mm]	a [mm]	b [mm]	c [mm]	(a+2b) min	(a+2b) max
	± 0.05	0.35~0.40	0.37~0.47	0.50~0.55	1.09	1.34
	± 0.07	0.37~0.42	0.37~0.47	0.52~0.58	1.11	1.36
	± 0.10	0.40~0.45	0.37~0.47	0.55~0.60	1.14	1.39
1005	± 0.15	0.40~0.45	0.40~0.50	0.60~0.65	1.20	1.45
	± 0.20	0.45~0.50	0.40~0.50	0.65~0.70	1.25	1.50
	± 0.30	0.45~0.50	0.42~0.52	0.70~0.75	1.29	1.54
	± 0.40	0.50~0.55	0.45~0.55	0.75~0.80	1.40	1.65
	± 0.10	0.50~0.55	0.60~0.65	0.80~0.85	1.70	1.85
	± 0.15	0.55~0.60	0.62~0.67	0.85~0.90	1.79	1.94
1608	± 0.20	0.60~0.65	0.65~0.70	0.90~0.95	1.90	2.05
	± 0.25	0.65~0.70	0.70~0.75	0.95~1.00	2.05	2.20
	± 0.30	0.70~0.75	0.75~0.80	1.00~1.05	2.20	2.35
	±0.10	0.70~0.75	0.75~0.80	1.25~1.30	2.20	2.35
	±0.15	0.75~0.80	0.80~0.85	1.30~1.35	2.35	2.50
2012	±0.20	0.80~0.85	0.85~0.90	1.35~1.40	2.50	2.65
	±0.25	0.85~0.90	0.95~1.00	1.40~1.45	2.75	2.90
	±0.30	0.90~0.95	1.05~1.10	1.45~1.50	3.00	3.15
3216	±0.20	1.70~1.90	0.85~1.00	1.60~1.80	3.40	3.90
3210	±0.30	1.80~2.00	0.95~1.10	1.70~1.90	3.70	4.20
3225	-	2.00~2.40	1.00~1.40	1.80~2.20	4.00	5.20

Flow Footprint

Chip Size [mm]	Chip Tol. [mm]	a [mm]	b [mm]	c [mm]	(a+2b) min	(a+2b) max
1608	-	0.60~1.00	0.60~0.80	0.60~0.80	1.80	2.60
2012	-	1.00~1.20	0.80~1.20	0.80~1.20	2.60	3.60
3216	-	2.00~2.40	1.00~1.20	1.00~1.40	4.00	4.80

SAMSUNG

Others

1. Storage environment

1-1. Recommendation for temperature/humidity

Even taping and packaging materials are designed to endure a long-term storage, they should be stored with a temperature of 0~40°C and an RH of 0~70% otherwise, too high temperatures or humidity may deteriorate the quality of the product rapidly.

As oxidization is accelerated when relative humidity is above 70%RH, the lower the humidity is, the better the solderability is. As the temperature difference may cause dew condensation during the storage of the product, it is a must to maintain a temperature control environment

1-2. Shelf Life

An allowable storage period should be within 6 months from the outgoing date of delivery in consideration of solderability. As for products in storage over 6 months, please check solderability before use.

2. Caution for corrosive environment

As corrosive gases may deteriorate the solderability of MLCC outer termination, it is a must to store MLCC in an environment without gases. MLCC that is exposed to corrosive gases may cause its guality issues due to the corrosion of plating layers and the penetration of moisture.

3. Equipment in operation

- 3-1. Do not touch MLCC directly with bare hands to prevent an electric shock or damage.
- 3-2. The termination of MLCC shall not be contacted with a conductive object (short -circuit). Do not expose MLCC to conductive liquid containing acidic or alkaline material.
- 3-3. Do not use the equipment in the following conditions.
 - (1) Exposure to water or oil
 - (2) Exposure to direct sunlight
 - (3) Exposure to Ozone or ultra-violet radiation.
 - (4) Exposure to corrosive gas (e.g. hydrogen sulfide, sulfur dioxide, chlorine, ammonia gas)
 - (5) Exposure to vibration or mechanical shock exceeding specified limit
 - (6) Exposure to high humidity
- 3-4. If the equipment starts generating any smoke, fire or smell, immediately switch it off or unplug from the power source. If the equipment is not switched off or unplugged, serious damage may occur due to the continuous power supply. Please be careful with the high temperature in this condition.

4. Waste treatment

In case of scrapping MLCC, it is incinerated or buried by a licensed industrial waste company. When scrapping MLCC, it is recommended to incinerate or bury the scrappage by a licensed industrial waste company.

5. Operating temperature

The operating temperature limit is determined by the specification of each models.

- 5-1. Do not use MLCC over the maximum operating temperature. Pay attention to equipment's temperature distribution and the seasonal fluctuation of ambient temperature.
- 5-2. The surface temperature of MLCC cannot exceed the maximum operating temperature including self-heating effects.

6. Transportation

The performance of MLCC may be affected by transportation conditions.

- 6-1. MLCC shall be protected from excessive temperature, humidity and a mechanical force during transportation. forces.
- 6-2. Do not apply excessive vibrations, shocks or excessive forces to MLCC.
 - If excessive mechanical shock or stress are applied, MLCC's ceramic body may crack.
- become short-circuited.
- 6-3. MLCC may crack and become non-functional due to the excessive shocks or dropping during transportation.

7. Notice

Some special products are excluded from this document. Please be advised that this is a standard product specification for a reference only. We may change, modify or discontinue the product specifications without notice at any time. So, you need to approve the product specifications before placing an order. Should you have any question regarding the product specifications, please contact our sales personnel or application engineers.

During transportation, the cartons shall not be deformed and the inner packaging shall be protected from excessive external

• When the surface of MLCC is hit with the sharp edge of an air driver, a soldering iron, or a tweezer, etc, MLCC may crack or

Certifications

Sony Green Partner

QC 080000 IECQ HSPM

Quality System Certification status for each factory site

Certification	Busan (Korea)	Tianjin (China)
IATF 16949	BSI IATF16949 91430-001	BSI IATF16949 91430-012
Date Validity	2019-04-04 ~ 2021-06-18	2019-04-04 ~ 2021-09-03
ISO 14001	KE191620	098_18_E1_012_R1_L
Date Validity	2019-06-10 ~ 2022-06-24	2018-04-15 ~ 2021-04-14
OHSAS 18001		098_18_S1_002_R1_L
Date Validity		2018-04-15 ~ 2021-03-12
QC 080000	IECQ-H_ULTW_10.0018	IECQ-H_ULTW_10.0021
Date Validity	2019-07-17 ~ 2022-07-19	2019-07-25 ~ 2022-07-26
ISO5001	18213-1	098_18_En1_021_R2_L
Date Validity	2019-05-17 ~ 2021-08-3019	2018-12-26 ~ 2021-08-30
ISO 45001	KS19017	TBD('20.May)
Date Validity	2019-06-10 ~ 2022-06-09	

Homepage

http://www.Samsungsem.com

SEMCO web-site

SEMCO web - site supports all technical data & information for our partner.

Web Library

The software of "LCR Web Library" provides the characteristics of SEMCO's products on the website. (http://weblib.samsungsem.com /)

- S-parameter and Spice Model of MLCC, Inductor and Bead.
- The acoustic noise data of MLCC

- Capacitance of MLCC according to Temperature and DC bias

SAMSUNG EL	MSUNG ICTRO-MECHANICS	Component Library				MLCC					\square	Ξ
Selecte	d Parts	* Please select item fr	om the I	ist below								
lodel Mode 🎅		Filter 🛞								+ Adv	anced Search Reset	
Precise S	imple	Part Number		Use for	Capacitance	Sizo(inch/mm)	Rated Vdc	TCC	T Size Max	Tolerance	Features	
Graph Type	pq pjR	Part Number Keyword		all Automotivo General High Reliability	Match Ronge	 ✓ all ✓ 01005/0402 ✓ 015008/05025 ✓ 0201/0603 	Metch Ranps Vdc	✓ all ✓ C0G ✓ X5R ✓ X6S	Match Range	 ✓ all ✓ +80 % / -20 % ✓ ± 0.05 pF ✓ ± 0.1 pF 	C all C DC Blas Improved High Bending High-Q	Î
C L	Q DF	Part Number	Data	Use for	Capacitance	Size(inchimm)	Rated Vdc	TCC	T Size Max	Tolerance	• Features	v
DC Blas	AC Vol.											
RpploCurr.	TCC	CL32A107MPVNNN		General	100uF	1210/3225	10Vdc	XSR	2.8mm	±20 %	Standard	
		CL31A107MQKNNW		High Reliability	100uF	1208/3216	6.3Vdc	X5R	1.9mm	±20 %	Standard	
C Bias @ temp	TCC @ DC(V)	CL31A107MQKNINN	E	General	100uF	1206/3216	6.3Vdc	X5R	1.9mm	±20 %	Standard	
S[(B]	Smith chart	CL32A107MQVNINN		General	100uF	1210/3225	6.3Vdc	XSR	2.8mm	±20 %	Standard	
		CL32B476KPJINNN		General	47uF	1210/3225	10Vdc	X7R	2.7mm	±10 %	Standard	
		CL21A476MRYNNN	Ξ	General	47uF	0805/2012	4Vdc	XSR	1.45mm	±20 %	Standard	
wnload · ···	ly for supported items.	CL32A476KOJNNN	Ξ	General	47uF	1210/3225	16Vdc	XSR	2.7mm	±10 %	Standard	
S2P	SPICE	CL32A476MOJNNN	3	General	47uF	1210/3225	16Vdc	XSR	2.7mm	±20 %	Standard	
Series	Shunt	CL32A476KPJINNN	Ξ	General	47uF	1210/3225	10Vdc	XSR	2.7mm	±10 %	Standard	
		CL32A476MPJNNN	0	General	47uF	1210/3225	10Vdc	XSR	2.7mm	±20 %	Standard	
Precise Model	Simple Model	CL32A476KQJNNN		General	47uF	1210/3225	6.3Vdc	XSR	2.7mm	±10 %	Standard	
		CL21A476MRYNNW	E	High Reliability	47uF	0605/2012	4Vdc	XSR	1.45mm	±20 %	Standard	
		CL10A476MQ8QRN	Ξ	General	47uF	0503/1608	6 3Vdc	X5R	1mm	±20 %	Standard	

Disclaimer & Limitation of Use and Application

The products listed in this Specification sheet are NOT designed and manufactured for any use and applications set forth below.

Please note that any misuse of the products deviating from products specifications or information provided in this Spec sheet may cause serious property damages or personal injury. We will NOT be liable for any damages resulting from any misuse of the products, specifically including using the products for high reliability applications as listed below.

If you have any questions regarding this 'Limitation of Use and Application', you should first contact our sales personnel or application engineers.

- ① Aerospace/Aviation equipment
- Medical equipment
- ③ Military equipment
- ④ Disaster prevention/crime prevention equipment
- (5) Power plant control equipment
- ⁽⁶⁾ Atomic energy-related equipment
- ⑦ Undersea equipment
- (8) Traffic signal equipment
- (9) Data-processing equipment
- 10 Electric heating apparatus, burning equipment
- (1) Safety equipment
- (2) Any other applications with the same as or similar complexity or reliability to the applications

SAMSUNG

MEMO

Passive components sales offices

Head office

Maeyoung-ro 150 (Maetan-dong) Yeongtong-gu, Suwon-city, Gyeonggi Province, Korea 16674 Tel : +82-31-210-5114

America Sales Office

Sanjose Office

Samsung Electromechanics America Inc. 3655 North First Street SanJose, CA, 95134 TEL : +1 408 544 4000 E-mail : soo8212.lee@samsung.com

Detroit Office

Samsung Electromechanics America Inc. 4121 N Atlantic Blvd. Auburn Hills, MI, 48326 TEL : +1-713-395-5198 E-mail : eric.beaty@samsung.com

Europe Sales Office

Frankfurt office Samsung Electro-Mechanics GmbH, Kolnerstr. 12 65760 Eschborn Germany TEL : + 49-6196-66-7259 E-mail : benjamin.blume@samsung.com

Munich Office

Samsung Electro-Mechanics GmbH, Reichenbachstrasse 2 85737 Ismaning Germany Tel : +49-6196-66-7237 E-mail : dimitri.hahn@samsung.com

Stuttgart Office

Samsung Electro-Mechanics GmbH, Leitzstrasse 45 70469 Stuttgart Germany Tel : +49-711-490-66281 E-mail : laura.careno@samsung.com

Asia Sales Office

Shenzhen Office

14F, Tower A, SCC Building, Junction of Houhai Blvd. and Haide 1st Rd. Nanshan District, Shenzhen, China, 518064 TEL : +86-755-8608-5984 E-mail : danny.huang@samsung.com

Shanghai Office

13F, Building B, No 1065 Zhongshan Rd.(W) Changning District, Shanghai, China, 200051 TEL : +86-21-2051-5813 E-mail : cecilia.wang@samsung.com

Chongqing Office

Chongqing IFS Tower 1, Qingyun Road No. 1 Jiangbei District, Chongqing, China, 400023 TEL : +86-23-6711-9168(#6347) E-mail : elvis.xu@samsung.com

Beijing Office

14F Room C1C2, China Merchants Tower, No.118 Jianguo Rd. Chaoyang District, Beijing, China, 100022 TEL : +86-10-6566-8100(#6622) E-mail : iris.wang@samsung.com

Taipei Office

9F-1, No.399 Rueykuang Rd. Neihu District, Taipei, Taiwan, 11492 TEL : +886-2-2656-8375 E-mail : peter.tung@samsung.com

Tokyo Office

Shinagawa Grand Tower 9F, Kounan 2-16-4 Minato-ku,Tokyo, Japan, 108-0075 TEL : +81-3-6369-6452 E-mail : hikota.suga@samsung.com

Singapore Office

3 CHURCH STREET #23-01 SAMSUNG HUB Singapore 049483 TEL : +65-6933-2636 E-mail : jessica.benegildo@samsung.com

Passive components manufacturing sites

Busan Plant (Korea) Noksan Saneopjungro 333 (Songjeong-dong), Gangseo-gu, Busan 46754 Tel : +82-51-970-7114, 8114 Tianjin Plant (China)

80, Xiaqing road, TEDA west district, Tianjin, China TEL : +86-22-2830-3333(3500)

All information indicated in this catalog is as of November 2019

* The specifications and designs contained herein may be subject to change without notice.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Multilayer Ceramic Capacitors MLCC - SMD/SMT category:

Click to view products by SAMSUNG manufacturer:

Other Similar products are found below :

M39014/02-1218V M39014/02-1225V M39014/22-0631 D55342E07B523DR-T/R NIN-FB391JTRF NIN-FC2R7JTRF NMC0402NPO220J50TRPF NMC0402X5R105K6.3TRPF NMC0402X5R224K6.3TRPF NMC0402X7R103J25TRPF NMC0402X7R392K50TRPF NMC0603NPO201J50TRPF NMC0603NPO330G50TRPF NMC0603NPO331F50TRPF NMC0603X5R475M6.3TRPF NMC0603X7R333K16TRPF NMC0805NPO220J100TRPF NMC0805NPO820J50TRPF NMC1206X7R102K50TRPF NMC1206X7R106K10TRPLPF NMC-H0805X7R472K250TRPF C1608C0G2A221J C1608X7R1E334K C2012C0G2A472J 2220J2K00562KXT CCR06CG153FSV CDR33BX104AKUR CDR33BX683AKUS CGA3E1X7R1C684K CL10C0R8BB8ANNC M55342H06B20G0R-T/R C1005X5R0G225M C2012X7R2E223K C3216C0G2J272J D55342E07B35E7R-T/R CDR34BX563BKUS CDR34BX563BKWS NMC0402NPO220F50TRPF NMC0402X7R562J25TRPF NMC0603NPO102J25TRPF NMC1206X7R332K50TRPF NMC-P1206X7R104K250TRPLPF 726632-1 CGA6M3X7R1H225K CGA5L2X7R2A105K CGA3E2X8R1H223K CDR33BX823AKUR\M500 CDR33BP132BJUR CDR35BX474AKUR\M500 CDR35BX104BKUR\M500