		ST	ANDA	RD			NO	SW	– M –
Enactment : March 27,199	1 194	MULTILAYER	CERAMI	IC CAI	PACITO	R			4 / 0
	,0	Com	mercial	Grade			Pag	е	1 / 8
1 Osmanal Astista									
1. General Article									
Application Range These specificatio		, the "Multilayo	Coramic	Canad	oitore "m	ainly			
used to the com						anny			
		. ,							
<u>*Caution : Indust</u>									
		sales represen	tatives of	r produ	ict engin	eers be	efore usi	ing the p	roducts.
<u>(For de</u>	etails, pleas	<u>se refer Page 8)</u>							
2. General Code									
(1) Type Designation	ation								
(1) Type Designa	ation								
(1) Type Designa		012 <u>X5R</u>	<u>225</u>	K	<u>500</u>	<u>N</u>	<u>R</u>	Ē	
(1) Type Designa	<u>CS 20</u>	012 (2) X5R (3)	<u>225</u> (4)	<u>K</u> (5)	<u>500</u> (6)	<u>N</u> (7)	<u>R</u> (8)	<u>E</u> (9)	
	<u>CS</u> 20	(2) (3)	(4)	(5)		<u>N</u> (7)			
	<u>CS</u> 20		(4)	(5)		<u>N</u> (7)			
1) Multilayer C	<u>CS</u> <u>2(</u> (1) eramic Ca	(2) (3)	(4)	(5)		<u>N</u> (7)			
	<u>CS</u> <u>2(</u> (1) eramic Ca :	(2) (3)	(4) mercial G	(5) Grade)	(6)	<u>N</u> (7)			
1) Multilayer C	CS (1) eramic Ca : This is	(2) (3) apacitor (Comr	(4) mercial G tens of a	(5) Grade) a millim	(6) neter.	(7)	(8)	(9)	
1) Multilayer C 2) Size Code	CS20(1)eramicca:ThisisThefirs	(2) (3) apacitor (Comr expressed in t t two digits ar	(4) mercial G tens of a	(5) Grade) a millim	(6) neter.	(7)	(8)	(9)	
1) Multilayer C	CS20(1)eramicca:ThisisThefirs	(2) (3) apacitor (Comr expressed in t t two digits ar	(4) mercial G tens of a	(5) Grade) a millim	(6) neter.	(7)	(8)	(9)	
 Multilayer C Size Code Temperature 	CS 2((1) eramic Ca : This is The firs e Coefficie	(2) (3) apacitor (Comr expressed in t t two digits ar ent Code	(4) mercial G tens of a re the ler	(5) Grade) a millim ngth, T	(6) neter. The last	(7) two dig	(8) gits are	(9) width.	erance
 Multilayer C Size Code Temperature Classific 	CS (1) eramic Ca : This is The firs e Coefficient cation	(2) (3) apacitor (Comr expressed in t t two digits ar ent Code Code	(4) mercial G tens of a re the len Tem	(5) Grade) a millim ngth, T	(6) neter. he last re Range	(7) two dig	(8) gits are Capacita	(9) width. ance Tole	
 Multilayer C Size Code Temperature 	CS (1) eramic Ca : This is The firs e Coefficient cation	(2) (3) apacitor (Comr expressed in t t two digits ar ent Code	(4) mercial G tens of a re the let Tem	(5) Grade) a millim ngth, T	(6) neter. The last re Range	(7) two dig	(8) gits are Capacita	(9) width.	
 Multilayer C Size Code Temperature Classific 	CS (1) eramic Ca : This is The firs e Coefficient cation	(2) (3) apacitor (Comr expressed in t t two digits ar ent Code <u>Code</u> <u>C0G</u>	(4) mercial G tens of a re the len	(5) Grade) a millim ngth, T nperatu -55 to -	(6) The last re Range H125°C +85°C	(7) two dig	(8) gits are Capacita	(9) width. ance Tole	
 Multilayer C Size Code Temperature Classific 	CS 2((1) eramic Ca : This is The firs e Coefficient cation	(2) (3) apacitor (Comr expressed in t t two digits ar ent Code Code Code COG X5R X7R X7S	(4) mercial G tens of a re the len	(5) Grade) a millim ngth, T -55 to - -55 to - -55 to - -55 to -	(6) neter. The last H125°C H125°C H125°C	(7) two dig	(8) gits are Capacita ±3	(9) width. ance Tole 30 ppm/℃ ±15% ±15% ±22%	
 Multilayer C Size Code Temperature Classific Class 	CS 2((1) eramic Ca : This is The firs e Coefficient cation	(2) (3) apacitor (Comr expressed in t t two digits ar ent Code Code Code COG X5R X7R	(4) mercial G tens of a re the let	(5) Grade) a millim ngth, T peratu -55 to -55 to -55 to	(6) neter. The last H125°C H125°C H125°C H125°C H125°C	(7) two dig	(8) gits are Capacita ±3 +22	(9) width. ance Tole 30 ppm/°C ±15% ±15%	6

- ex) 104 = 100000 pF
 - R denotes decimal
 - 8R2 = 8.2 pF
- 5) Capacitance Tolerance Code

Code	Tolerance
В	± 0.1 pF
С	± 0.25 pF
D	± 0.5 pF
F	± 1.0 %
G	± 2.0 %
J	± 5 %
K	± 10 %

Code	Tolerance
М	± 20 %
Р	+ 100, -0%
Z	+ 80, -20%
Н	+ 0.25/-0 pF
I	+ 0/-0.25 pF
U	+ 5/-0 %
V	+ 0/-5 %

SW - M - 04B 2 / 8

6) Voltage Code

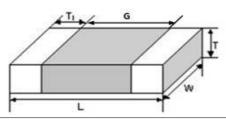
v	onugo	oouc													
	code	6R3	100	160	250	350	500	101	201	251	501	631	102	202	302
	Val	DC	DC	DC	DC	DC	DC	DC	DC	DC	DC	DC	DC	DC	DC
	Vol.	6.3V	10V	16V	25V	35V	50V	100V	200V	250V	500V	630V	1KV	2KV	ЗKV

7) Termination Code

ex) N : Ni-Sn (Nickel-Tin Plate)

A : Ag/Ni-Sn (Ag Epoxy/Nickel-Tin Plate) -> Soft Termination Type

- 8) Packing Code
 - ex) R : 7" Reel Type
 - L: 13" Reel Type
 - B : Bulk Type
- 9) Thickness option


Thickne	ess(mm)	Code	Thickne	ss(mm)	Code	
t	Tol(±)	oodo	t	Tol(±)	0000	
0.30	0.03	Blank	1.30	0.20	E	
0.50	0.05	Blank	1.35	0.20	Н	
0.60	0.10	А	1.60	0.20	l	
0.80	0.10	В	1.80	0.20	J	
0.85	0.15	В	2.00	0.25	K	
1.00	0.15	E	2.50	0.25	L	
1.10	0.15	E	2.80	0.30	М	
1.15	0.15	E	3.20	0.30	N	
1.25	0.15	E	5.00	0.40	0	

3. Temperature Characteristics

See Page 5/8 (No.13)

4. Constructions and Dimensions

(I) Dimensions

<u>(Unit : mm)</u>

		Dimension							
Code	Length		Wi	dth	T1(min)	G(min)			
	L	Tol(±)	W	Tol(±)		G(IIIII)			
0603	0.60	0.03	0.30	0.03	0.05	0.15			
1005	1.00	0.05	0.50	0.05	0.05	0.30			
1608	1.60	0.15	0.80	0.10	0.10	0.50			
2012	2.00	0.20	1.25	0.15	0.10	0.65			
3216	3.20	0.30	1.60	0.20	0.15	1.00			
3225	3.20	0.40	2.50	0.25	0.15	1.05			
4520	4.50	0.40	2.00	0.25	0.20	1.50			
4532	4.50	0.40	3.20	0.30	0.20	1.50			
5750	5.70	0.50	5.00	0.40	0.30	1.85			
*1005 Size ≥4. *2012 Size ≥10						15, T : 0.80±0.15 30, T : 1.60±0.30			
*2012 SIZE 210	<i>μ</i> Γ → VV · I.2	$5\pm0.20, 1 + 0.8$	SUTU.ID *321	$S = 247 \mu r$	→ vv · 1.60±0.	$30, 1 \cdot 1.60 \pm 0.30$			

(2) Construction of Termination

Sn 🗸	411	Ē	2		
Ni —	++1		2	-	-
cu/	ttt		_	1	-

SW - M - 04B 3 / 8

۱o.	lte	em	Specification	Test Methods and Conditions				
1	Operating Temperature Range		X7R, X7S, X7T : -55 to +125℃ X5R : -55 to +85℃ Y5V : -30 to +85℃					
2	Insulation Resistance		50Ω·F min	Applied the rated voltage for 2 minutes of char The charge/discharge current is less than 50mA.	ging,			
3	Dielectric Str	rength	No defects or abnormalities	X7R, X7S, X7T, X5R, Y5V : The rated voltage × 25 - Applied between the terminations for 1 to 5 seco - The charge/discharge current is less than 50mA.				
4	Capacitance		within the specified tolerance	The capacitance/D.F. should be measured at 25°C frequency and voltage shown in the table.	at the			
				Capacitance Frequency Volta	ge			
				C≦10µF 1 ± 0.1kHz 0.5~1.0	Vrms			
5	Dissipation F	actor	X7R, X7S, X7T, X5R : 12.5%max	C>10# 120 ± 24Hz 0.5±0.1	Vrms			
			*3216 Size 100 ₄ F : 15%max Y5V : 20%max	 Initial measurement Perform the initial measurement according to Note1 for Class II Measurement after test Take it out and set it for 24±2 hours (Class II) then measure 				
6	Solderability of Termination		-Termination should be covered with more than 75% of new solder	<pre>*Pb-Free type Solder : 96.5Sn-3Ag-0.5Cu Solder temperature : 245±5℃ Immersion time : 3±0.1sec *Pre-Heating : at 80~120℃ for 10~30sec</pre>				
		Appearance	No defects which may affect performance	Preheat the capacitor at 120 to 150°C for 1 minute. (Preheating for 3225,4520,4532 Step1:100°C to 120°C, 1min Step2:170°C to 200°C, 1min) Immerse the capacitor in a eutectic solder solution at				
	Resistance	Capacitance change	X7R, X7S, X7T, X5R : Within±7.5% Y5V : Within±20%					
7	to Soldering Heat	Dissipation Factor	X7R, X7S, X7T, X5R : 12.5%max *3216 Size 100µF : 15%max Y5V : 20%max	260±5℃ for 10±0.5 seconds. Initial measurement Perform the initial measurement according to N	ding to Note1 for			
		I.R.	50Ω·F min	Class II •Measurement after test Let sit at room temperature for 24±2 hours,the				
		Appearance	No defects which may affect performance	Perform the five cycles according to the four heat the listed in the following table.	eatments			
		Capacitance Change	X7R, X7S, X7T, X5R : Within ±7.5% Y5V : Within ±20%	Step 1 2 3 4 Min. Max. Temp operating Room operating Room	m			
8	Temperature Cycle	Dissipation Factor	X7R, X7S, X7T, X5R : 12.5%max *3216 Size 100 ₄ F : 15%max Y5V : 20%max	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				
		I.R	50Ω·F min	Initial measurement Perform the initial measurement according to for Class II Measurement after test	— Note1			

<u>SW - M - 04B</u> 4 / 8

No.	lte	em	Specification	Test Methods and Conditions
		Appearance	No defects which may affect performance	
		Capacitance Change	X7R, X7S, X7T, X5R : Within ±12.5% Y5V : Within ±30%	Apply 150% of the rated voltage for 1000+48/-0 hrs at the maximum operating temperature ±3℃. The charge/discharge current is less than 50mA.
9	High Temperature Load	perature Dissipation		-Initial measurement Perform the initial measurement according to Note1 for Class II
		I.R	12.5Ω·F min	Measurement after test Perform the final measurement according to Note2
			20mm	·Substrate material
10	Bending strength		R230	 Glass EPOXY Board. Thickness 1.6mm 0.8mm(0603/1005size) *. Test condition Bending limit : 1mm Pressurizing speed : 1mm/sec
		Capacitance Change	No cracking or marking defects shall occur X7R, X7S, X7T, X5R: Within ±12.5% Y5V : Within ±30% Within +30/-40% (cap≥10∠F)	- Holding time : 5±1sec
		Appearance	No defects or abnormalities	
		Capacitance	Whin the specified tolerance	*Shown in Fig. After soldering and then let sit for 24±2hr at room temperature. The capacitor should be subjected to a simple
11	Vibration Resistance	Dissipation Factor	X7R, X7S, X7T, X5R : 12.5%max *3216	harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz, shall be traversed(from 10Hz to 55Hz then 10Hz again) in approximately 1 minute. This motion shall be applied for a period of 2 hours in each 3mutually perpendicular directions(total is 6hours).
		Appearance	No defects which may affect performance	Apply the rated voltage at 40±2℃ and
		Capacitance Change	X7R, X7S, X7T, X5R: Within $\pm 12.5\%$ Y5V : Within $\pm 30\%$	90 to 95%RH for 500+24/-0 hrs. The charge/discharge current is less than 50mA.
12	Humidity Load	ty Dissipation Factor X7R, X7S, X7T, X5R : 20%max *3216 Size 100µF : 30%max		 Initial measurement Perform the initial measurement according to Note1 for Class II
		I.R.	Y5V : 40%max 12.5Ω·F min	Measurement after test Perform the final measurement according to Note2

SW - M - 04B 5 / 8

No.	ltem		Sp	ecification			Test Methods and Conditions
		Char.	Temp. Range	Reference Temp.	Cap.	Change	The capacitance change should be measured after 5 min. at each specified
	Capacitance	X5R	-55 to +85℃	25℃	Within	±15%	temperature stage.
13	Temperature	X7R	-55 to +125℃	25℃	Within	±15%	The ranges of capacitance change compared with the 25°C value over the
	Characteristics	X7S	-55 to +125℃	25℃	Within	±22%	temperature ranges shown in the table
		X7T	-55 to +125℃	25℃	Within H	-22/-33%	should be within the specified ranges.
		Y5V	-30 to +85℃	25℃	Within H	-22/-82%	

*Note1. Initial Measurement for Class II

Perform a heat treatment at 150+0,-10°C for one hour and then let sit for 24±2 hours at room temperature, then measure

*Note2. Measurement after test

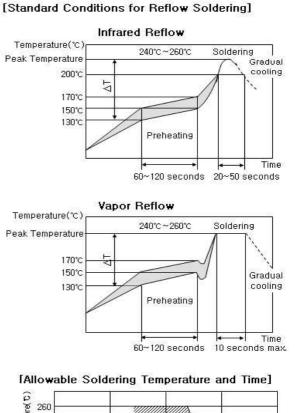
Class II

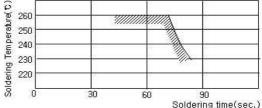
Perform a heat treatment at $150+0,-10^{\circ}$ for one hour and then let sit for 24 ± 2 hours at room temperature, then measure.

	① 1000 p	cs per Po	olybag							
	② 5 Polybags per Inner box									
	3 10 Inne	er boxes	per Out b	хох						
(2) Reel Pac	king									
	① 8~10 F	Reels per	Inner box	х						
	② 6 Inner	boxes p	er Out bo	X						
(3) Reel Dim	ensions									
E.						_				(Unit : m
		MARK	SIZE 0603~322	25 m1	A 78±2	Β Φ50Min	С Ф13±0.5	D Φ21±0.	E 8 2±0.	W 5 10±1
(Q1/j		7 " REEL	4520~453			¢000000 ⊅60−0,+1	Φ13±0.2	Φ57-0+		
		13 " REEL	1005~322	25 Φ3	30±2	Φ70Min	Φ13±0.5	Φ21±0.	8 2±0.	5 10±1
	ll .									
(4)Number c	of Package									
TYPE	:	IA CODE			7			13"		
CS060		CC0201	_	Qt/F 15,				Qt/REEL		
CS100		CC0201			000			50,000		
CS160		CC0603	4,000				16,000			
CS201 CS321		CC0805 CC1206		3,000 -	~ 4,000 ~ 4,000		10,000 6,000 ~ 10,000			
CS322		CC1210	1,000 ~ 3,000				4,000 ~ 10,000			
CS452		CC1808		1,500 ~ 3,000 500 ~ 1,000				-		
(5) Tape D		CC1812		500 ~	1,000		I	,500 ~ 5,0	000	
CHI	P INSERT	F		I ♦ B	I	— ➡		Marx DSSED	►I I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	
TYPE	EIA CODE	A	В	С	D	E	F	G	Н	J
CS0603	CC0201	0.67±0.05		8.0±0.3	3.5±0.05			2.0±0.1	4.0±0.1	1.5±0.1
CS1005	CC0402	1.15±0.1	0.65±0.1	8.0±0.3	3.5±0.05	1.75±0.1	2.0±0.05	2.0±0.1	4.0±0.1	1.5±0.1
CS1608	CC0603	1.9±0.2	1.10±0.2	8.0±0.3	3.5±0.05	1.75±0.1	4.0±0.1	2.0±0.1	4.0±0.1	1.5±0.1
CS2012	CC0805	2.4±0.2		8.0±0.3	3.5±0.05	1.75±0.1	4.0±0.1	2.0±0.1	4.0±0.1	1.5±0.1
002012	CC1206	3.6±0.2		8.0±0.3	3.5±0.05		4.0±0.1	2.0±0.1	4.0±0.1	1.5±0.1
CS3216	CC1210	3.6±0.2	2.80±0.2	8.0±0.3	3.5±0.05	1.75±0.1	4.0±0.1 4.0±0.1	2.0±0.1	4.0±0.1	1.5±0.1
	CC1808	4.8±0.2	2.3±0.2	12.0±0.3	5.5±0.1	1.75±0.1	4.0±0.1 8.0±0.1	2.0±0.1	4.0±0.1	1.5±0.1
CS3216		10100	3.6±0.2	12.0±0.3	5.5±0.1	1.75±0.1	8.0±0.1	2.0±0.1	4.0±0.1	1.5±0.1
CS3216 CS3225	CC1812	4.9±0.2								
CS3216 CS3225 CS4520		· · · · · · · · · · · · · · · · · · ·	CHIPS	_▶ ∢_	BLAN 20 to 40	►	◀	DER o 250mm	▶	

SW - M - 04B

6 / 8


DRAWING DIRECTION


6.Caution

- ► Reflow Soldering
- 1. The sudden temperature change easily causes mechanical damages to ceramic components. Therefore, the preheating procedures should be required for the soldering of ceramic components.
- Please refer to the recommended soldering profiles as shown in figures, and keep the temperature difference(△T) within the range recommended in Table 1.

Table 1

Size code	Temperature Difference
0603, 1005, 1608, 2012, 3216	∆T≤190℃
3225size and over	∆T≤130℃

In case of repeated soldering, the accumulated soldering time must be within the range shown above.

► Storage Condition

*When Solderability is considered, Capacitor are recommended to be used in 12 months

- (1) Temperature: $25^{\circ}C \pm 10^{\circ}C$
- (2) Relative Humidity: Below 70% RH
- ► The Regulation of Environmental Pollution Materials.

*Never use materials mentioned below in MLCC products regulated this document.

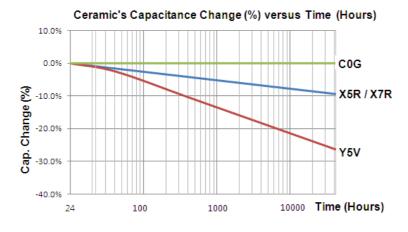
Pb, Cd, Hg, Cr^{+6} , PBB(Polybromide biphenyl), PBDE(Polybrominated diphenyl ethers), asbestos.

	SW - M - 04B	8 / 8
* Note		
(1) 'Aging'/'Do-aging' Bobaviar of high dialoctric MICCs		

(1) 'Aging'/'De-aging' Behavior of high dielectric MLCCs

(Typically represented by X7R, Y5V temperature characteristic of which main composition is BaTiO3)

'Aging' / 'De-aging' Behavior of high dielectric MLCCs Please note that high dielectric type dielectric Ceramic Capacitors have a "normal" 'aging' behavior / characteristic, that is; their capacitance value decreases with time from its value when it was first manufactured. From that date, the capacitance value begins to decrease at a logarithmic rate defined by:


C_t = C_{24} (1 - k log10 t)

where :

 C_t = Capacitance Value, t hours after the start of 'aging'

 C_{24} = Capacitance Value, 24 hours after its manufacture

- k = aging constant (capacitance decrease per decade-hour)
- t = time, in hours, from the start of 'aging'

The capacitance value can be restored (a.k.a. 'de-aged') by exposing the component to elevated temperatures approaching its Curie Temperature (approximately 120°C). This 'deaging' can occur during the component's solder-assembly onto the PCB, during life or temperature cycle testing., or by ' baking ' at 150°C for about 1 hour.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Multilayer Ceramic Capacitors MLCC - SMD/SMT category:

Click to view products by Samwha manufacturer:

Other Similar products are found below :

M39014/02-1218V M39014/02-1225V M39014/22-0631 D55342E07B523DR-T/R NIN-FB391JTRF NIN-FC2R7JTRF NMC0402NPO220J50TRPF NMC0402X5R105K6.3TRPF NMC0402X5R224K6.3TRPF NMC0402X7R103J25TRPF NMC0402X7R153K16TRPF NMC0603NPO101F50TRPF NMC0603NPO1R8C50TRPF NMC0603NPO201J50TRPF NMC0603X5R475M6.3TRPF NMC0805NPO270J50TRPF NMC0805NPO681F50TRPF NMC0805NPO820J50TRPF NMC0805X7R224K16TRPLPF NMC0805X7R224K25TRPF NMC1206X7R102K50TRPF NMC1206X7R475K10TRPLPF NMC-Q0402NPO8R2D200TRPF C1206C101J1GAC C1608C0G2A221J C1608X7R1E334K C2012C0G2A472J 2220J2K00562KXT 1812J2K00332KXT CDR04BX104AKSR CDR31BX103AKWR CDR33BX104AKUR CDR33BX683AKUS CGA2B2C0G1H010C CGA2B2C0G1H040C CGA2B2C0G1H050C CGA2B2C0G1H060D CGA2B2C0G1H070D CGA2B2C0G1H120J CGA2B2C0G1H151J CGA2B2C0G1H1R5C CGA2B2C0G1H2R2C CGA2B2C0G1H390J CGA2B2C0G1H391J CGA2B2C0G1H3R3C CGA2B2C0G1H680J CGA2B2C0G1H688D CGA2B2C0G1H820J CGA2B2X8R1H152K CGA2B2X8R1H221K