

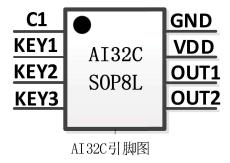
見 录

目 录	. 1
概述	. 2
应用	. 2
特点	. 2
封装	. 2
引脚定义	. 3
按键-输出编码表:	. 3
典型应用	. 3
绝对最大值	. 4
电气参数特性	.4
功能描述	. 4
初始化	.4
自动校正功能	. 5
睡眠模式	. 5
外围电路和注意事项	. 5
内部平衡电容和灵敏度调节电容	. 5
灵敏度电容和按键检测 PAD 大小以及介质材料与厚度选择	. 5
VDD 电源电压注意事项	. 5
封装尺寸信息(SOP8L)	.7

3 通道自校正电容式触摸感应芯片

概述

AI32C 是 3 键的电容式触摸感应芯片,高低电平模式输出。芯片采用 SOP8 环保封装


应用

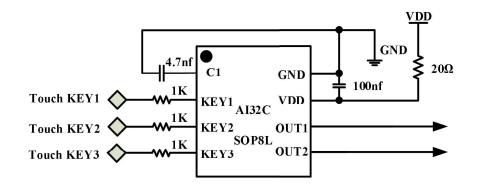
◆ 用于电视机、音响、显示器、玩具等家电和娱乐设备与工业控制设备

特点

- 极高的灵敏度,可穿透 13mm 的玻璃,感应到手指的触摸
- 超强的抗干扰和 ESD 能力
- 内置按键消抖,无需外部软件再消抖
- 外围电路简单,最少只需一个 4.7nf 电容,芯片即可正常工作
- 外围寄生电容自动校正
- 工作电压范围: 2.5~5.5 V
- SOP8 环保封装

封装

引脚定义


NO.	PADNAME	Descrption	NO.	PADNAME	Descrption
1	C1	内部基准电容接口	8	GND	电源地
2	KEY1		7	VDD	正电源
3	KEY2	触摸按键	6	OUT1	数据通道 1 输出
4	KEY3		5	OUT2	数据通道 2 输出

按键-输出编码表:

AI32C 预期同时只有一个按键被触摸。如果同一时间有多个按键被触摸,那么按照 KEY1>KEY2>KEY3 的优先级输出编码值。下表给出了触摸按键与输出值的关系:

輸出	键值		
触摸按键	OUT2	OUT1	
KEY1	0	0	
KEY2	0	1	
KEY3	1	0	
无按键	1	1	

典型应用

- 1. C1 是内部基准电容,推荐使用 4.7nF(取值范围 1nF—10nF) NPO 材质电容。
- 2. 图中电源 VDD 与芯片 VDD 管脚之间的 20 Ω 电阻建议加上,不可省去.
- 3. 触摸引脚每个 KEY 端,可以添加对地的灵敏度电容,电容值越小灵敏度越高,不接电容时灵敏度最高,电容值最大 10pF,最小为 0pf,即悬空。常规应用中,悬空即可,但建议

PCB 板上保留电容位置,方便后续调节灵敏度。

绝对最大值

参数	范围	单位
VDD 电压	-0.3~6.0	V
输入输出电压	-0.3~6.0	V
工作温度范围	-40~85	$^{\circ}$
存储温度范围	-55~150	$^{\circ}$
ESD, HUM	≥8000	V

电气参数特性

(无特殊说明, Ta=25℃, VDD=5V)

符号	参数描述	条件	最小值	典型值	最大值	单位
VDD	工作电压		2.5		5.5	٧
I_sleep	睡眠模式工作电流	VDD=3.0V		7		uA
		VDD=5.0V		11		uA
Ludd	 工作电流	VDD=3.0V		394		uA
I_vdd	工作电机 	VDD=5.0V		666		uA
T_init	上电初始化时间			300		mS
C_in	芯片感应电容范围		0.2		100	pF

功能描述

初始化

芯片上电复位后,只需约 300mS 就可以计算出环境参数和自动校正按键走线长度,按键检 测功能开始工作

自动校正功能

芯片内置自动校正功能,芯片能够根据外部环境的变化,自动调整电容的大小,检测到 按键时停止自动校正, 进入按键判决过程, 从检测到按键开始, 经过大约 30~60 秒, 芯片 重新进入自动校正状态,意味着检测按键有效的时间为30~60秒,按键时间超过这个时间, 感应电容计入外部环境电容。

睡眠模式

为了降低芯片的待机功耗,约80秒没有检测到按键,芯片进入睡眠省电模式。按键的 采样间隔时间变长, VDD 电流减小, 芯片功耗降低, 睡眠模式下, 一旦检测到按键, 芯片立 即退出睡眠模式,进入正常工作模式。

外围电路和注意事项

Al32C 的外围电路很简单,只需少量电容电阻元件,可参考 Al32C 的典型应用电路。

内部平衡电容和灵敏度调节电容

C1 电容建议采用精度 10%的 NPO 材质电容,在 PCB 板 layout 时,请将 C1 电容尽量贴 近IC放置。

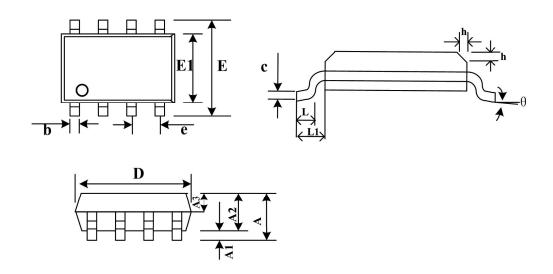
灵敏度电容和按键检测 PAD 大小以及介质材料与厚度选择

常用的介质有 玻璃、亚克力、塑料、陶瓷等,用户可以根据自己的实际使用情况选择 合适的材料及厚度,按照材料的不同和 PCB 板的布局来决定按键 PAD 的大小。隔离介质越 厚,要求适当加大按键检测 PAD 的面积。也可以在 key1/key2/key3 上选择接一个对地电容来 调节按键的灵敏度,容值在 1-100pf 之间. 这个灵敏度电容可以不接.

一般情况下, 按键检测 PAD 面积可以在 3mm*3mm~30mm*30mm 之间, 每个感应盘的 面积保持相同,以确保灵敏度相同。电容传感器可以是任何形状的导体,建议使用直径大于 10mm 的圆形金属片或边长 10mm 的正方形金属片。常用的感应盘有 PCB 板上的铜箔、平 顶圆柱弹簧、金属片和导电橡胶等。

VDD 电源电压注意事项

Al32C 测量的是电容的微小变化,要求电源的纹波和噪声要小,要注意避免由电源串入的外


厦门市芯网电子科技有限公司 0592-5216722

AI32C 规格书

界强干扰。尤其是应用于高噪声环境时,必须能有效隔离外部干扰及电压突变,要求电源有较高稳定度,应尽量远离高压大电流的器件区域或者加屏蔽。如果电源文波幅度较大时,建议对电源做特别处理,比如增加滤波或采用 78L05 组成的稳压线路。在某些特定的应用场合,要尽可能的让触摸电路远离某些功能电路,比如收音机,RF等。

封装尺寸信息(SOP8L)

6 1 1	Dimensions In Millimeters			
Symbol	MIN	ТҮР	MAX	
Α			1.75	
A1	0.10		0.225	
A2	1.30	1.40	1.50	
А3	0.60	0.65	0.70	
b	0.39		0.48	
b1	0.38	0.41	0.43	
С	0.21		0.26	
c1	0.19	0.20	0.21	
D	4.70	4.90	5.10	
E	5.80	6.00	6.20	
E1	3.70	3.90	4.10	
е	1.27BSC			
h	0.25		0.5	
L	0.5		0.8	
L1	1.05BSC			
θ	0		8°	

注: BSC: Basic Spacing between Centers(中心基本距离), IC 引脚之间的宽度。

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Capacitive Touch Sensors category:

Click to view products by Sam&wing manufacturer:

Other Similar products are found below:

AT42QT1012-MAH FK 8-1 SMBTASK3KIT6 TTP233H-HA6 8022W TC233A AW96103CSR AI32C XW01-SOP8 AF2041 XW01
TS01S CR12CN04DPO-E2 CR30SCF10ATO CR30SCF10DPO BCS M30BBI2-PSC15D-S04K LDS6124NQGI FDC1004DGSR
FDC1004DGST CR18SCF05DPO CR30CN15DPO-E2 CDWM3020ZPM D11SN6FP OTBA5L OTBVR81LQD PBCL22T QS18VN6DB
MTCH6301-I/ML CAP1133-1-AIA-TR STMPE16M31QTR STMPE16M31PXQTR LC717A00AR-NH AT42QT1070-MMH AT42QT1070SSU AT42QT1011-TSHR AT42QT1011-MAHR AT42QT1110-AUR BU21077MUV-E2 TL50HRQP AT42QT1012-MAHR BRT-TVHG8X10P BCS M12B4I1-PSC40D-EP02 CFAK 12P1103 CFAK 12P1140/L CFAK 18P1100 CFAK 18P1200 CFAK 30P1100 CFAM 12P1600
CFAM 18P1600 CFAM 18P1600/S14