

Features

- High ruggedness
- Low R_{DS(ON)} (Typ 5.5mΩ)@V_{GS}=10V
 Low Gate Charge (Typ 99nC)
- Improved dv/dt Capability
- 100% Avalanche Tested
- Application: Synchronous Rectification, Li Battery Protect Board, Inverter

DFN5*6

4. Gate 5,6,7,8.Drain 1,2,3.Source

N-channel Enhanced mode DFN5*6 MOSFET

General Description

This power MOSFET is produced with advanced technology of SAMWIN. This technology enable the power MOSFET to have better characteristics, including fast switching time, low on resistance, low gate charge and especially excellent avalanche characteristics.

Order Codes

Item	Sales Type	Marking	Package	Packaging
1	SW HA 056R68E7T	SW056R68E7T	DFN5*6	REEL

Absolute maximum ratings

Symbol	Parameter		Value	Unit
V _{DSS}	Drain to source voltage		68	V
	Continuous drain current (@T _c =25°C)		100*	А
l _D	Continuous drain current (@T _c =100°C)		63*	А
I _{DM}	Drain current pulsed	(note 1)	400	А
	Continuous drain current (@T _a =25°C)		17	А
I _{DSM}	Continuous drain current (@T _a =70°C)	\sim	14	Α
V _{GS}	Gate to source voltage	12.	±20	V
E _{AS}	Single pulsed avalanche energy	(note 2)	289	mJ
E _{AR}	Repetitive avalanche energy	(note 1)	20	mJ
dv/dt	Peak diode recovery dv/dt	(note 3)	5	V/ns
D	Total power dissipation (@T _c =25°C)		83.3	W
P _D	Total power dissipation (@T _a =25°C)		2.6	W
T _{STG} , T _J	Operating junction temperature & storage ter	mperature	-55 ~ + 150	°C

^{*.} Drain current is limited by junction temperature.

Thermal characteristics

Symbol	Parameter	Value	Unit
R _{thjc}	Thermal resistance, Junction to case	1.5	°C/W
R _{thja}	Thermal resistance, Junction to ambient	49	°C/W

Note: R_{thja} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is d efined as the solder mounting surface of the drain pins. R_{thjc} is guaranteed by design while R_{thca} is determined by the user's board design.

DFN5*6 R_{thja}: 49°C/W on a 1 in² pad of 2oz copper.

Electrical characteristic ($T_J = 25^{\circ}C$ unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Off charac	teristics					
BV _{DSS}	Drain to source breakdown voltage	V _{GS} =0V, I _D =250uA	68			V
ΔBV_{DSS} / ΔT_{J}	Breakdown voltage temperature coefficient	I _D =250uA, referenced to 25°C		0.04		V/ºC
I _{DSS}	Drain to source leakage current	V _{DS} =68V, V _{GS} =0V			1	uA
		V _{DS} =54V, T _J =125°C			50	uA
I _{GSS}	Gate to source leakage current, forward	V _{GS} =20V, V _{DS} =0V	R	57	100	nA
	Gate to source leakage current, reverse	V _{GS} =-20V, V _{DS} =0V		9	-100	nA
On charac	teristics	0 4				
V _{GS(TH)}	Gate threshold voltage	V _{DS} =V _{GS} , I _D =250uA	2		4	V
R _{DS(ON)}	Drain to source on state resistance	V _{GS} =10V, I _D =30A,T _J =25°C	O.P	5.5	6.8	mΩ
		V _{GS} =10V, I _D =30A,T _J =125°C		7.7		mΩ
G_fs	Forward transconductance	$V_{DS}=5V$, $I_{D}=30A$		44		S
Dynamic c	haracteristics		1			
C _{iss}	Input capacitance		3	5021		pF
C _{oss}	Output capacitance	V _{GS} =0V, V _{DS} =34V, f=1MHz	2	365		
C _{rss}	Reverse transfer capacitance			317		
t _{d(on)}	Turn on delay time			26		ns
t _r	Rising time	$V_{DS}=34V$, $I_{D}=30A$, $R_{G}=4.7\Omega$, $V_{GS}=10V$ (note 4,5)		64		
$t_{d(off)}$	Turn off delay time			90		
t _f	Fall time	(,		36		
Q_g	Total gate charge	V _{DS} =54V, V _{GS} =10V, I _D =30A,		99		nC
Q_{gs}	Gate-source charge	I _G =4mA		25		
Q_{gd}	Gate-drain charge	(note 4,5)		34		
R_g	Gate resistance	V _{DS} =0V, Scan F mode	3.3			Ω

Source to drain diode ratings characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _S	Continuous source current	Integral reverse p-n Junction			100	А
I _{SM}	Pulsed source current	diode in the MOSFET			400	Α
V _{SD}	Diode forward voltage drop.	I _S =45A, V _{GS} =0V			1.4	V
t _{rr}	Reverse recovery time	I _S =30A, V _{GS} =0V,		40		ns
Q _{rr}	Reverse recovery charge	dl _F /dt=100A/us		55		nC

X. Notes

- Repeatitive rating : pulse width limited by junction temperature. 1.
- L =0.5mH, I_{AS} =34A, V_{DD}=40V, R_G=25 Ω , Starting T_J = 25 $^{\circ}$ C I_{SD} ≤30A, di/dt = 100A/us, V_{DD} ≤ BV_{DSS}, Staring T_J =25 $^{\circ}$ C Pulse Test : Pulse Width ≤ 300us, duty cycle ≤ 2%. 2.
- 3.
- 4.
- 5. Essentially independent of operating temperature.

Fig. 1. On-state characteristics

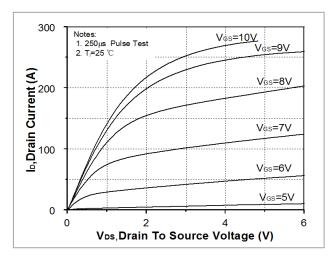


Fig. 3. On-resistance variation vs. drain current and gate voltage

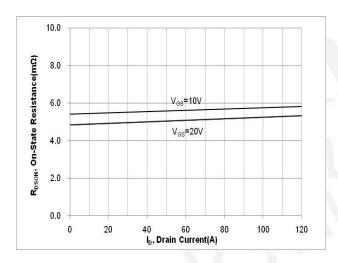


Fig 5. Breakdown voltage variation vs. junction temperature

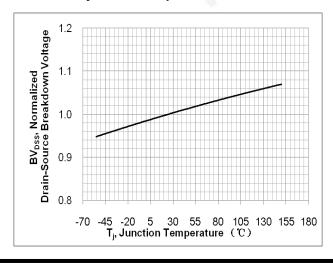


Fig. 2. Transfer Characteristics

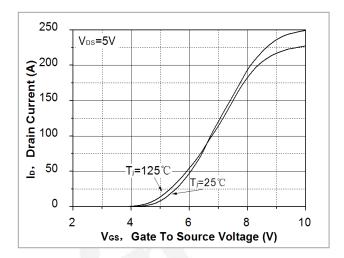


Fig. 4. On-state current vs. diode forward voltage

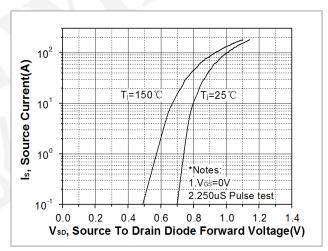


Fig. 6. On-resistance variation vs. junction temperature

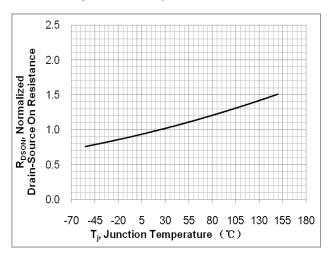


Fig. 7. Gate charge characteristics

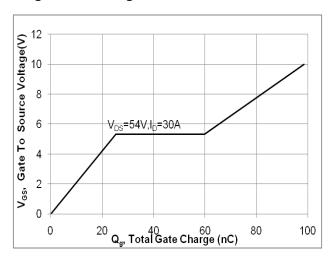


Fig. 9. Maximum safe operating area

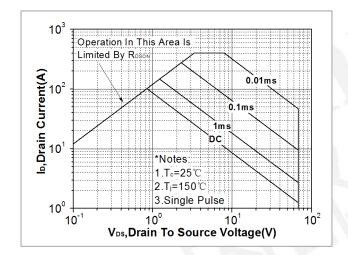


Fig. 8. Capacitance Characteristics

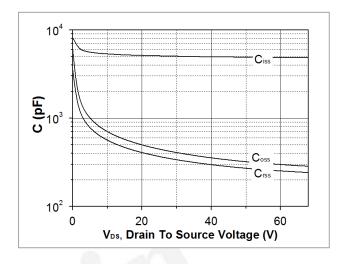


Fig. 10. Maximum drain current vs. case temperature

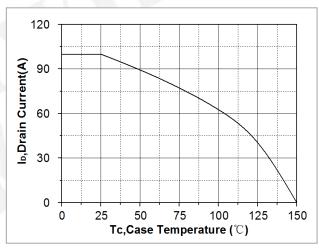


Fig. 11. Transient thermal response curve

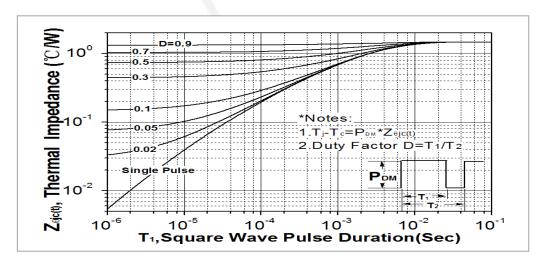
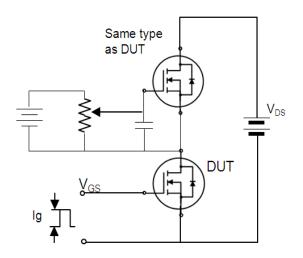



Fig. 12. Gate charge test circuit & waveform

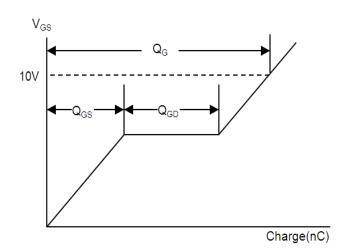
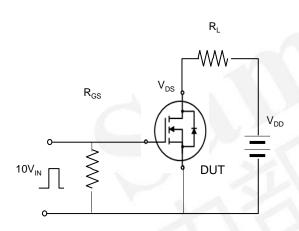



Fig. 13. Switching time test circuit & waveform

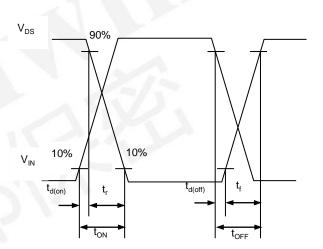
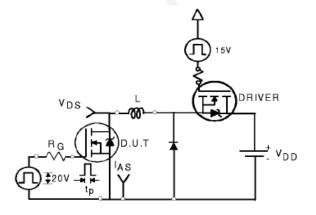



Fig. 14. Unclamped Inductive switching test circuit & waveform

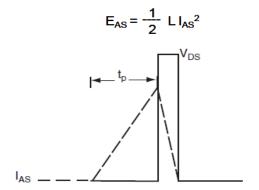
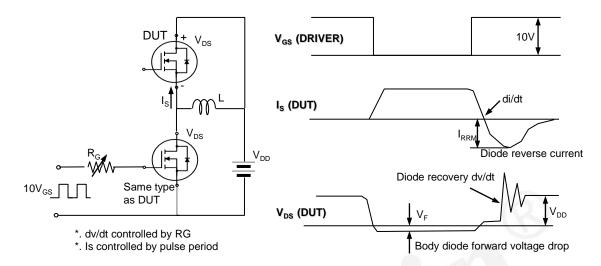



Fig. 15. Peak diode recovery dv/dt test circuit & waveform

DISCLAIMER

- * All the data & curve in this document was tested in SEMIPOWER TESTING & APPLICATION CENTER.
- * This product has passed the PCT,TC,HTRB,HTGB,HAST,PC and Solderdunk reliability testing.
- * Qualification standards can also be found on the Web site (http://www.semipower.com.cn)

* Suggestions for improvement are appreciated, Please send your suggestions to samwin@samwinsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by Sam&wing manufacturer:

Other Similar products are found below:

MCH3443-TL-E MCH6422-TL-E FDPF9N50NZ NTNS3A92PZT5G IRFD120 JANTX2N5237 2N7000 2SK2464-TL-E AOD464 2SJ277-DL-E 2SK2267(Q) 2SK2545(Q,T) 405094E 423220D MIC4420CM-TR VN1206L 614234A 715780A SSM6J414TU,LF(T 751625C IRS2092STRPBF-EL IPS70R2K0CEAKMA1 BSF024N03LT3 G PSMN4R2-30MLD TK31J60W5,S1VQ(O 2SK2614(TE16L1,Q) DMN1017UCP3-7 EFC2J004NUZTDG P85W28HP2F-7071 DMN1053UCP4-7 NTE2384 NTE2969 NTE6400A DMC2700UDMQ-7 DMN2080UCB4-7 DMN61D9UWQ-13 US6M2GTR DMN31D5UDJ-7 SSM6P54TU,LF DMP22D4UFO-7B IPS60R3K4CEAKMA1 DMN1006UCA6-7 DMN16M9UCA6-7 STF5N65M6 IRF40H233XTMA1 IPSA70R950CEAKMA1 IPSA70R2K0CEAKMA1 STU5N65M6 C3M0021120D DMN6022SSD-13