

e.MMC 4.5 I/F

Released Data Sheet 80-36-03494 V1 Aug 2012

SanDisk Corporation

Corporate Headquarters • 601 McCarthy Boulevard • Milpitas, CA 95035 Phone (408) 801-1000 • Fax (408) 801-8657 www.sandisk.com

REVISION HISTORY

Doc. No	Revision	Date	Description	Reference
80-36-03494	0.1	6-May-12	Preliminary	
80-36-03494	1.0	Aug-12	First release	

SanDisk® Corporation general policy does not recommend the use of its products in life support applications where in a failure or malfunction of the product may directly threaten life or injury. Per SanDisk Terms and Conditions of Sale, the user of SanDisk products in life support applications assumes all risk of such use and indemnifies SanDisk against all damages. See "Disclaimer of Liability."

This document is for information use only and is **subject to change without prior notice**. SanDisk Corporation assumes no responsibility for any errors that may appear in this document, nor for incidental or consequential damages resulting from the furnishing, performance or use of this material. No part of this document may be reproduced, transmitted, transcribed, stored in a retrievable manner or translated into any language or computer language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise, without the prior written consent of an officer of SanDisk Corporation.

All parts of the SanDisk documentation are protected by copyright law and all rights are reserved. SanDisk and the SanDisk logo are registered trademarks of SanDisk Corporation. Product names mentioned herein are for identification purposes only and may be trademarks and/or registered trademarks of their respective companies.

© 2012 SanDisk Corporation. All rights reserved.

80-36-03494.Mayy 2012 Printed in U.S.A

TABLE OF CONTENTS

1.	Intro	oduction	5
	1.1.	General Description	5
	1.2.	Plug-and-Play Integration	5
	1.3.	Feature Overview	6
	1.4.	Functional Description	7
	1.5.	Technology Independence	7
	1.6.	Defect and Error Management	7
	1.7.	MMC bus and Power Lines	8
		1.7.1. Bus operating conditions	8
2.	e.MN	MC4.5 Selected Features Overview	10
	2.1.	Discard	10
	2.2.	Power Off Notifications	10
	2.3.	Packed Commands	10
	2.4.	Boot partitions Size	10
	2.5.	Automatic Sleep Mode	10
	2.6.	Sleep (CMD5)	11
	2.7.	Enhanced Reliable Write	11
	2.8.	Secure Erase	11
	2.9.	Secure Trim	12
	2.10	. Trim	12
	2.11	. Partition management	12
	2.12	. Device Health	13
	2.13	. Enhanced Write Protection	13
	2.14	. High Priority Interrupt (HPI)	13
	2.15	. H/W Reset	14
	2.16	. DDR I/F	14
3.	Proc	luct Specifications	15
	3.1.	Typical Power Requirements	15
	3.2.	Operating Conditions	15
		3.2.1. Operating and Storage Temperature Specifications	
		3.2.2. Moisture Sensitivity	
		System Performance	
4.	Phys	sical Specifications	17

5.	Inter	face D	escription	21
	5.1.	MMC	I/F Ball Array	21
	5.2.	Pins a	and Signal Description	23
	5.3.	iNANE	O Registers	25
			OCR Register	
			CID Register	
			DSR Register	
			CSD Register	
			EXT_CSD Register	
6.	Pow	er Deli	very and Capacitor Specifications	32
	6.1.	SanDi	sk iNAND Extreme Power Domains	32
	6.2.	Capac	citor Connection Guidelines	32
			VDDi Connections	
		6.2.2.	VCC and VCCQ Connections	32
7.	Mark	king		34
8.	Orde	ering In	nformation	35
		•	ct Us	

1. Introduction

1.1. General Description

iNAND *Extreme* is an Embedded Flash Drive (EFD) designed for mobile handsets and consumer electronic devices. iNAND *Extreme* is a hybrid device combining an embedded thin flash controller and standard MLC NAND flash memory, with an industry standard e.MMC 4.5¹ interface.

Empowered with a new e.MMC4.5 feature set such as Power Off Notifications and Packed commands, as well as legacy e.MMC4.41 features such as Boot and RPMB partitions, HPI, and HW Reset the iNAND *Extreme* e.MMC is the optimal device for reliable code and data storage.

Designed specifically for mobile multimedia applications, iNAND *Extreme* is the most mature on board MMC device since 2005, providing mass storage of up to 128GB in JEDEC compatible form factors, with low power consumption and high performance - an ideal solution for multimedia handsets of 2.5G, 3G, 3.5G and 4G.

In addition to the high reliability and high system performance offered by the current iNAND family of products, iNAND *Extreme* offers plug-and-play integration and support for multiple NAND technology transitions, as well as features such as advanced power management scheme.

iNAND *Extreme* uses advanced Multi-Level Cell (MLC) NAND flash technology, enhanced by SanDisk's embedded flash management software running as firmware on the flash controller.

iNAND *Extreme* architecture and embedded firmware fully emulates a hard disk to the host processor, enabling read/write operations that are identical to a standard, sector-based hard drive. In addition, SanDisk firmware employs patented methods, such as virtual mapping, dynamic and static wear-leveling, and automatic block management to ensure high data reliability and maximize flash life expectancy.

SanDisk iNAND *Extreme* provides up to 128GB of memory for use in mass storage applications. In addition to the mass-storage-specific flash memory chip, iNAND *Extreme* includes an intelligent controller, which manages interface protocols, data storage and retrieval, error correction code (ECC) algorithms, defect handling and diagnostics, power management and clock control.

iNAND *Extreme* enables multimedia driven applications such as music, photo, video, TV, GPS, games, email, office and other applications.

The breakthrough in performance and design makes iNAND *Extreme* the ideal solution for mobile handset vendors, portable navigation and Automotive Infotainment vendors who require easy integration, fast time to market and high-capacity.

1.2. Plug-and-Play Integration

iNAND optimized architecture eliminates the need for complicated software integration and testing processes and enables a practically plug-and-play integration in the system. The replacement of one iNAND device with another of a newer generation requires virtually no changes to the host. This makes iNAND the perfect solution for platforms and reference designs, as it allows for the

¹ Compatible to JESD84-B45

utilization of more advanced NAND Flash technology with minimal integration or qualification efforts.

SanDisk iNAND *Extreme* is well-suited to meet the needs of small, low power, electronic devices. With JEDEC form factors measuring 11.5x13mm (153 balls) for capacities -64GB and a 12x16mm (169 balls) form factor compatible with 0.5mm ball pitch, iNAND *Extreme* is fit for a wide variety of portable devices such as multi-media mobile handsets, personal media players, GPS devices and Automotive infotainment (car multimedia and car navigation).

To support this wide range of applications, iNAND Extreme is offered with an MMC Interface.

The MMC interface allows for easy integration into any design, regardless of the host (chipset) type used. All device and interface configuration data (such as maximum frequency and device identification) are stored on the device.

Figure 1 shows a block diagram of the SanDisk iNAND Extreme with MMC Interface.

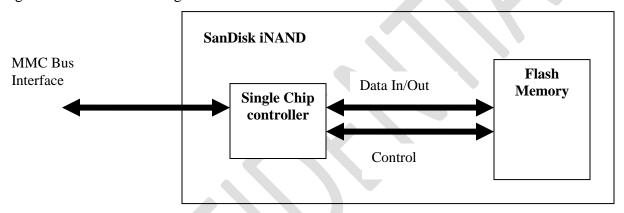


Figure 1 - SanDisk iNAND Extreme with MMC I/F Block Diagram

1.3. Feature Overview

SanDisk iNAND Extreme, with MMC interface, features include the following:

- Memory controller and NAND flash
- Complies with e.MMC Specification Ver. 4.5²
- Mechanical design complies with JEDED MO-276C Specification
- Offered in two TFBGA packages of e.MMC 4.5³
 - o 11.5mm x 13mm x 1.0mm (16GB, 32GB)
 - o 11.5mm x 13mm x 1.4mm (64B)
 - o 12mm x 16mm x 1.6mm (128GB)
- Operating temperature range: -25C° to +85C°
- Dual power system

² Refer to JEDEC Standards No. JESD84-B45

³ Refer to JEDEC Standards No. JESD84-C441

- Core voltage (VCC) 2.7-3.6v
- I/O (VCCQ) voltage, either: 1.7-1.95v or 2.7-3.6v
- Up to 128GB of data storage.
- Supports three data bus widths: 1bit (default), 4bit, 8bit.
- Variable clock frequencies of 0-20 MHz, 0-26 MHz (default), 0-52 MHz (high-speed)
- Up to 104 MB/sec bus transfer rate, using 8 parallel data lines at 52 MHz, DDR Mode
- Correction of memory field errors
- Designed for portable and stationary applications that require high performance and reliable data storage

1.4. Functional Description

SanDisk iNAND *Extreme* contains a high-level, intelligent subsystem as shown in Figure 1. This intelligent (microprocessor) subsystem provides many capabilities not found in other types of storage devices. These capabilities include:

- Host independence from details of erasing and programming flash memory
- Sophisticated system for managing defects
- Sophisticated system for error recovery including a powerful ECC
- Power management for low power operation

1.5. Technology Independence

SanDisk iNAND *Extreme* uses 512 bytes as sector size. To write or read a sector (or multiple sectors), the host software simply issues a read or write command to the device. The command contains the address and number of sectors to write or read. The host software then waits for the command to complete.

There is no host software involvement in the details of flash operations such as erase, program or read. This is extremely important since flash devices are becoming increasingly complex with current advanced NAND MLC processes. Because iNAND uses an intelligent on-board controller, host system software will not need to be updated as new flash memory evolves. In other words, systems that support iNAND technology today will be able to access future SanDisk devices built with new flash technology without having to update or change the host software.

1.6. Defect and Error Management

The SanDisk iNAND *Extreme* contains a sophisticated defect and error management system. If necessary, iNAND will rewrite data from a defective sector to a good sector. This is completely transparent to the host and does not consume any user data space. In the extremely rare case that a read error does occur, iNAND has innovative algorithms to recover the data. These defect and error management systems, coupled with the solid state construction, give SanDisk iNAND *Extreme* unparalleled reliability.

1.7. MMC bus and Power Lines

SanDisk iNAND *Extreme* with MMC interface supports the MMC protocol. For more details regarding these buses refer to JEDEC standards No. JESD84-B45.

The iNAND bus has the following communication and power lines:

- CMD: Command is a bidirectional signal. The host and iNAND operate in two modes, open drain and push-pull.
- DAT0-7: Data lines are bidirectional signals. Host and iNAND operate in push-pull mode.
- CLK: Clock input.
- RST_n: Hardware Reset Input
- VCCQ: VCCQ is the power supply line for host interface.
- VCC: VCC is the power supply line for internal flash memory.
- VDDi: VDDi is iNAND's internal power node, not the power supply. Connect 0.1uF capacitor from VDDi to ground.
- VSS, VSSQ: ground lines.

1.7.1. Bus operating conditions

Table 1 - Bus operating conditions

, 3					
Parameter	Min	Max	Unit		
Peak voltage on all lines	-0.5	VCCQ+0.5	٧		
Input Leakage Current (before initializing and/or connecting the internal pull-up resistors)	-100	100	μА		
Input Leakage Current (after changing the bus width and disconnecting the internal pull-up resistors)	-2	2	μΑ		
Output Leakage Current (before initializing and/or connecting the internal pull-up resistors)	-100	100	μA		
Output Leakage Current (after changing the bus width and disconnecting the internal pull-up resistors)	-2	2	μА		

Table 2 – Power supply voltage

Parameter	Symbol	Min	Max	Unit
	VCCQ (Low)	1.65	1.95	V
Cumply Valtage	VCCQ (High)	2.7	3.6	V
Supply Voltage	VCC	2.7	3.6	V
	VSS-VSSQ	-0.5	0.5	V

2. E.MMC4.5 SELECTED FEATURES OVERVIEW

2.1. Discard

iNAND supports discard command as defined in e.MMC4.5 spec⁴. This command allows the host to identify data which is not needed, without requiring the device to remove the data from the Media. It is highly recommended for use to guarantee optimal performance of iNAND and reduce amount of housekeeping operation.

2.2. Power Off Notifications

iNAND supports power off notifications as defined in e.MMC4.5 spec⁵. The usage of power off notifications allows the device to prepare itself to power off, and improve user experience during power-on.

- Latency overall user experience is improved. Device returns quicker from each write operation
- **Burst performance** is improved performing housekeeping allows us to better prepare for the next burst operations. (Cleaning up the SLC cache for future usage)
- **Graceful shutdown** power off notification itself allows the device to shutdown properly and save important data for fast boot time on the next power cycle

2.3. Packed Commands

To enable optimal system performance, iNAND supports packed commands as defined in e.MMC4.5 spec⁶. It allows the host to pack Read or Write commands into groups (of single type of operation) and transfer these to the device in a single transfer on the bus. Thus, it allows to reduce overall bus overheads.

Faster sequential write performance on platform level using packed CMD

- Convert packed sequential commands to a single internal write. (ie. 8x128K packed writes become a single 1MB write)
- Hides host TAT, pipelines writes

2.4. Boot partitions Size

iNAND supports e.MMC 4.5 boot operation modes.

Boot partition size is reflected in BOOT SIZE MULTI register value in extended CSD.

2.5. Automatic Sleep Mode

A unique feature of iNAND is automatic entrance and exit from sleep mode. Upon completion of an operation, iNAND enters sleep mode to conserve power if no further commands are received.

⁴ For additional information refer to JEDEC Standard No. JESD84-B45

⁵ For additional information refer to JEDEC Standard No. JESD84-B45

⁶ For additional information refer to JEDEC Standard No. JESD84-B45

Typically the entrance to sleep mode occurs after 10ms, max value entering sleep mode is 850ms due to housekeeping operation. The host does not have to take any action for this to occur, however, in order to achieve the lowest sleep current, the host needs to shut down its clock to the memory device. In most systems, embedded devices are in sleep mode except when accessed by the host, thus conserving power. When the host is ready to access a memory device in sleep mode, any command issued to it will cause it to exit sleep and respond immediately.

2.6. Sleep (CMD5)

An iNAND device may be switched between a Sleep and a Standby state using the SLEEP/AWAKE (CMD5). In the Sleep state the power consumption of the memory device is minimized and the memory device reacts only to the commands RESET (CMD0) and SLEEP/AWAKE (CMD5). All the other commands are ignored by the memory device.

The Vcc power supply may be switched off in Sleep state is to enable even further system power consumption saving.

For additional information please refer JESD84-B45 section number 6.6.28.

2.7. Enhanced Reliable Write

iNAND supports enhanced reliable write as defined in e.MMC 4.5 spec⁷.

Enhanced reliable write is a special write mode in which the old data pointed to by a logical address must remain unchanged until the new data written to same logical address has been successfully programmed. This is to ensure that the target address updated by the reliable write transaction never contains undefined data. When writing in reliable write, data will remain valid even if a sudden power loss occurs during programming.

2.8. Secure Erase

For backward compatibility reasons, in addition to the standard erase command the iNAND supports the optional Secure Erase command⁸.

The Secure Erase command differs from the basic Erase command in that it requires the iNAND to execute the erase operation on the memory array when the command is issued and requires the iNAND and host to wait until the operation is complete before moving to the next iNAND operation.

The secure erase command requires the iNAND to perform a secure purge operation on the erase groups, and copy items identified for erase, in those erase groups.

A purge operation is defined as overwriting addressable locations with a single character and then performing an erase.

This new command meets high security application requirements (e,g, those used by military and government customers) that once data has been erased, it can no longer be retrieved from the device.

⁷ For additional information refer to JEDEC Standards No. JESD84-B45

⁸ For additional information refer to JEDEC Standards No. JESD84-B45

2.9. Secure Trim

For backward compatibility reasons, iNAND support Secure Trim command. The Secure Trim⁹ command is similar to the Secure Erase command but performs a secure purge operation on write blocks instead of erase groups. The size of a write block in the iNAND device is 512B

2.10. Trim

The Trim function is similar to the Erase command but applies the erase operation to write blocks instead of erase groups. The size of a write block in the INAND device is 512B

For additional information on the Trim function, refer to JEDEC standards No. JESD84-B45

2.11. Partition management

The iNAND offers the possibility for the host to configure additional split local memory partitions with independent addressable space starting from logical address 0x00000000 for different usage models. Therefore memory block area scan be classified as follows¹⁰:

- Factory configuration supplies two boot partitions (refer to section 2.1) implemented as enhanced storage media and one RPMB partitioning of 4MB in size.
- Up to four General Purpose Area Partitions can be configured to store user data or sensitive
 data, or for other host usage models. The size of these partitions is a multiple of the write
 protect group. Size can be programmed once in device life-cycle (one-time programmable).

⁹ For additional information refer to JEDEC Standards No. JESD84-B45

¹⁰ For additional information refer to JEDEC Standards No. JESD84-B45

2.12. Device Health

Device Health is SanDisk proprietary feature and is similar to SMART feature of modern hard disks, it provides only vital NAND flash program/erase cycles information in percentage of useful flash life span.

Host can query Device Health information utilizing standard MMC command, CMD_8, to get extended CSD structure. Device health feature will provide % of the wear of the device in 10% fragments.

The following 2 Extended CSD fields will hold the average percentage of usage for an iNAND device. Each one holds a value for of the specified memory types:

- ☐ MLC User Area
- ☐ SLC Internal memory such as Binary Cache

Name	Field	Size (Byte)	Cell Type	Hex Offset (Byte)	Dec. Offset (Byte)
MLC Device health status	MLC_DEVICE_HEALTH_STATUS	1	R	0x5E	94
SLC Device health status	SLC_DEVICE_HEALTH_STATUS	1	R	0x57	87

2.13. Enhanced Write Protection

To allow the host to protect data against erase or write, the iNAND supports two levels of write protect command¹¹:

- The entire iNAND (including the Boot Area Partitions, General Purpose Area Partition, and User Area Partition) may be write-protected by setting the permanent or temporary write protect bits in the CSD.
- Specific segments of the iNAND may be permanently, power-on or temporarily write protected. Segment size can be programmed via the EXT_CSD register.

For additional information please refer JESD84-B45 standard.

2.14. High Priority Interrupt (HPI)

Many operating-systems use demand-paging to launch a process requested by the user. If the host needs to fetch pages while in a middle of a write operation the request will be delayed until the completion of the write command.

© 2012 SanDisk Corporation

¹¹ For additional information refer to JEDEC Standards No. JESD84-B45

The high priority interrupt (HPI) as defined in JESD84-B45 enables low read latency operation by suspending a lower priority operation before it is actually completed. This mechanism can reduce read latency, in typical condition to below 10msec.

For additional information on the HPI function, refer to JESD84-B45 standard section 6.6.23

2.15. H/W Reset

Hardware reset may be used by host to reset the device, moving the device to a Pre-idle state and disabling the power-on period write protect on blocks that was set as power-on write protect before the reset was asserted. For more information, refer to JESD84-B45 standard.

2.16. DDR I/F

Support DDR signaling to double bus performance. For additional information please refer to JESD84-B45 standard.

3. PRODUCT SPECIFICATIONS

3.1. Typical Power Requirements

Table 3.1 - iNAND Sleep Power Requirements (Ta=25°C@3.3V)

		Max Value	Measurement
Auto Sleep mode		350 up to 64GB 700 for 128GB	uA
Sleep (CMD5 - VCCQ)		200 (Max)	uA
Read	RMS	200	mA
	Peak	300	mA
	RMS	200	mA
Write	Peak	300	mA
VCC (ripple: max, 100mV peak-to-peak) 2.7 V – 3.6 V			

Table 4.2 - iNAND Active Power Requirements RMS VCC / VCCQ (Ta=25°C @3.3V)

Read	RMS VCC	130	mA
	RMS VCCQ	70	mA
Write	RMS VCC	70	mA
	RMS VCCQ	130	mA

- Note 1: RMS Current measurements are average over 100 mSecs.
- Note 2: Sleep current is measured at room temperature
- Note 3: In sleep state, triggered by CMD5, Flash Vcc power supply is switched off
- Note 4: Peak current is measured over 3 uSecs.

3.2. Operating Conditions

3.2.1. Operating and Storage Temperature Specifications

Table 5 - Operating and Storage Temperatures

Temperature	Operating	-25° C to 85° C
	Non-Operating: After soldered onto PC Board	-40° C to 85° C

3.2.2. Moisture Sensitivity

The moisture sensitivity level for iNAND is MSL = 3.

3.3. System Performance

All performance values for iNAND in Table 6 were measured under the following conditions:

• Voltage range:

Core voltage (VCC): 2.7-3.6v

Host voltage (VCCQ), either: 1.7-1.95v or 2.7-3.6v

• Operating temperature -25° C to 85° C

Table 6a – Sequential System Performance

SKU	Sustained Write	Sustained Read
SDIN7DP4-16G	45MB/s	90MB/s
SDIN7DP4-32G		
SDIN7DP4-64G		
SDIN7CP4-128G		

Note 1: Sustained Read & Write performance is measured under DDR Bus width of 8bit at 52Mhz.

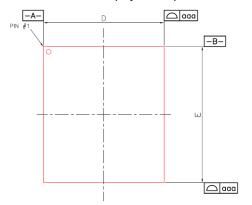
Table 7b – Random System Performance

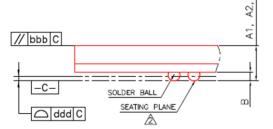
SKU	Sustained Write	Sustained Read
SDIN7DP4-16G	700 IOPS	3500 IOPS
SDIN7DP4-32G		
SDIN7DP4-64G		
SDIN7CP4-128G		

Note 2: Sustained Read & Write performance is measured using SanDisk proprietary test environment, w/o FS overhead.

Table 5c - System Timing Performance

Timing	Value
Block Read Access Time (MAX)	100 ms
Block Write Access Time (MAX)	250 ms
CMD1 to Ready after Power-up (MAX)	1000 ms


4. PHYSICAL SPECIFICATIONS


The SanDisk iNAND is a 153/169-pin, thin fine-pitched ball grid array (BGA). See Figure 2a, Figure 3a- Package Outline Drawing – bottom view

a and Table 8a for physical specifications and dimensions of 153 pin and Figure 2b, Package Outline Drawing – bottom view

Figure 3a-

b and Table 8b for physical specifications and dimensions of 169 pin .

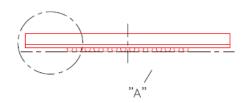
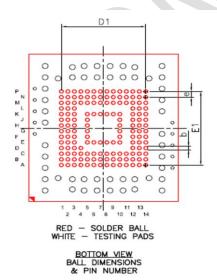



Figure 2a- INAND Specification Top and Side View (Detail A)

Legend				
0	Ball			
0	Test Pad (for SanDisk internal use only).			

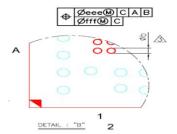


Figure 3a- Package Outline Drawing – bottom view

Table 8a - iNAND Package Specification

153 ball		Dimension in millimeters Dimension			ension in ir	sion in inches	
Package Size	Symbol	Minimum	Nominal	Maximum	Minimum	Nominal	Maximum
11.5X13X1.0	A1			1.00			0.039
11.5X13X1.4	A2			1.40			0.055
All	В	0.17	0.22	0.27	0.007	0.009	0.011
All	D	11.40	11.50	11.60	0.449	0.453	0.457
All	Е	12.90	13.00	13.10	0.508	0.512	0.516
All	D1		6.50			0.256	
All	E1		6.50		-	0.256	
All	Е		0.50			0.020	
All	В	0.25	0.30	0.35	0.010	0.012	0.014
All	Aaa		0.10			0.004	
All	Bbb	0.10				0.004	
All	Ddd	0.08				0.003	
All	MD/ME		14/14			14/14	

Figure 4b- INAND Specification Top and Side View (Detail A)

Figure 5b- Package Outline

Table 9b – iNAND Package Specification

169 Ball		Dimens	sion in mill	imeters	Dimension in inches		
Package Size	Symbol	Minimum	Nominal	Maximum	Minimum	Nominal	Maximum
16X12X1.6	Α			1.60			0.063
All	A1	0.17	0.22	0.27	0.007	0.009	0.011
16X12X1.6	A2	1.18	1.23	1.28	0.046	0.048	0.050
16X12X1.6	D	11.93	12.00	12.07	0.470	0.472	0.475
16X12X1.6	Е	15.93	16.00	16.07	0.627	0.630	0.633
16X12X1.6	D1		1.50			0.059	
16X12X1.6	D2		3.50			0.138	
16X12X1.6	D3		5.50			0.217	
All	D4		6.50			0.256	
All	E1		6.50			0.256	
16X12X1.6	E2		10.50		1	0.413	
16X12X1.6	E3		12.50	-		0.492	
16X12X1.6	E4		13.50			0.531	
All	е		0.50			0.020	
All	b	0.25	0.30	0.35	0.010	0.012	0.014
All	aaa		0.10			0.004	
All	bbb		0.10			0.004	
All	ddd	0.08				0.003	
All	eee	0.15				0.006	
All	fff		0.05			0.002	
All	MD/ME		14/14			14/14	

5. INTERFACE DESCRIPTION

5.1. MMC I/F Ball Array

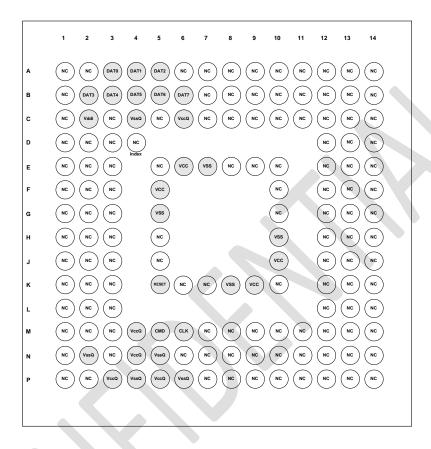


Figure 4 - 153 balls - Ball Array (Top View)

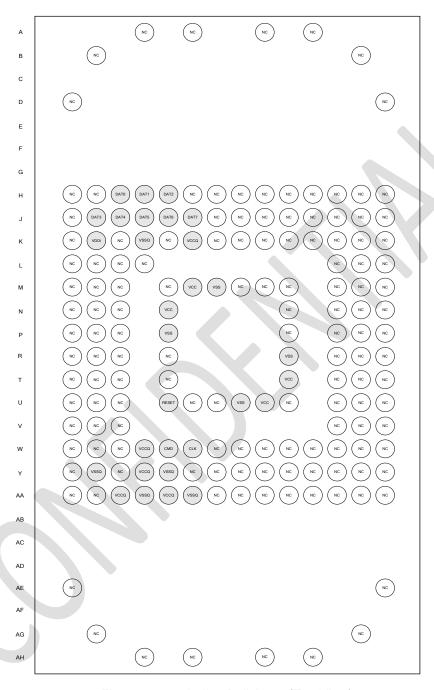


Figure 4 - 169 balls - Ball Array (Top View)

5.2. Pins and Signal Description

Table 7a contains the SanDisk iNAND *Extreme*, with MMC interface (153 balls), functional pin assignment. *Table 7a – Functional Pin Assignment, 153 balls*

Ball No.	Ball Signal	Туре	Description			
А3	DAT0					
A4	DAT1					
A5	DAT2					
B2	DAT3	.,,				
В3	DAT4	I/O	Data I/O: Bidirectional channel used for data transfer			
B4	DAT5					
B5	DAT6					
B6	DAT7					
M5	CMD	I/O	Command: A bidirectional channel used for device initialization an command transfers.			
M6	CLK	Input	Clock: Each cycle directs a 1-bit transfer on the command and DA lines			
K5	RST_n		Hardware Reset			
E6	VCC					
F5	VCC	0	Flash VO and an arrangement			
J10	VCC	Supply	Flash I/O and memory power supply			
K9	VCC					
C6	VCCQ					
M4	VCCQ					
N4	VCCQ	Supply	Memory controller core and MMC I/F I/O power supply			
P3	VCCQ					
P5	VCCQ					
E7	VSS					
G5	VSS	C	Flook I/O and marrows may ad accuration			
H10	VSS	Supply	Flash I/O and memory ground connection			
K8	VSS					
C4	VSSQ					
N2	VSSQ					
N5	VSSQ		Memory controller core and MMC I/F ground connection			
P4	VSSQ					
P6	VSSQ					
C2	VDDi		Internal power node. Connect 0.1uF capacitor from VDDi to ground			

Note: All other pins are not connected [NC] and can be connected to GND or left floating.

Table 7b contains the SanDisk iNAND *Extreme*, with MMC interface (169 balls), functional pin assignment. Table 7b – Functional Pin Assignment, 169 balls

Ball No.	Ball Signal	Туре	Description			
H3	DAT0					
H4	DAT1					
H5	DAT2					
J2	DAT3		Data I/O. Didica stick and about a local feet data to confee			
J3	DAT4	I/O	Data I/O: Bidirectional channel used for data transfer			
J4	DAT5					
J5	DAT6					
J6	DAT7					
W5	CMD	I/O	Command: A bidirectional channel used for device initialization and command transfers.			
W6	CLK	Input	Clock: Each cycle directs a 1-bit transfer on the command and DAT lines			
U5	RST_n		Hardware Reset			
M6	VCC					
N5	VCC	0				
T10	VCC	Supply	Flash I/O and memory power supply			
U9	VCC					
K6	VCCQ					
W4	VCCQ					
Y4	VCCQ	Supply	Memory controller core and MMC I/F I/O power supply			
AA3	VCCQ					
AA5	VCCQ					
M7	VSS					
P5	VSS	Cunnly	Floob I/O and mamory ground connection			
R10	VSS	Supply	Flash I/O and memory ground connection			
U8	VSS					
K4	VSSQ					
Y2	VSSQ					
Y5	VSSQ		Memory controller core and MMC I/F ground connection			
AA4	VSSQ					
AA6	VSSQ					
K2	VDDi		Internal power node. Connect 0.1uF capacitor from VDDi to ground			

Note: All other pins are not connected [NC] and can be connected to GND or left floating.

5.3. iNAND Registers

5.3.1. OCR Register

Value: 0xC0FF8080

Note: Bit 30 is set because the device is High Capacity; bit 31 will be set only when the device is

ready

Parameter	OCR slice	Description	Value	Width
Access Mode	[30:29]	Access mode	10b	2
	[23:15]	VDD: 2.7 - 3.6 range	111111111b	9
	[14:8]	VDD: 2.0 - 2.6 range	0000000b	7
	[7]	VDD: 1.7 - 1.95 range	1b	1

5.3.2. CID Register

Parameter	CID slice	Description	Value	Width
MID	[127:120]	Manufacturer ID	45h	8
CBX	[113:112]	Card BGA	01h	2
OID	[111:104]	OEM/Application ID	0000h	8
PNM	[103:56]	Product name	16GB: 53454d313647h ("SEM16G") 32GB: 53454d333247h ("SEM32G") 64GB: 53454D363447h ("SEM64G") 128GB: 53454D313238h ("SEM128")	48
PRV	[55:48]	Product revision	Counter to indicate FW revision	8
PSN	[47:16]	Product serial number	Random by Production	32
MDT	[15:8]	Manufacturing date	month, year	8
CRC	[7:1]	CRC7 checksum	000000b	7

5.3.3. DSR Register

Parameter	DSR slice	Description	Value	Width
RSRVD	[15:8]	Reserved	04h	8
RSRVD	[7:0]	Reserved	04h	8

DSR is not implemented; in case of read, value of 0x0404 will be returned.

5.3.4. CSD Register

Parameter	CSD Slice	Description	Value	Width
CSD_STRUCTURE	[127:126]	CSD structure	11b	3
SPEC_VERS	[125:122]	System specification version	0100b	4
TAAC	[119:112]	Data read access-time 1	0Fh	8
NSAC	[111:104]	Data read access-time 2 in CLK cycles (NSAC*100)	00h	8
TRAN_SPEED	[103:96]	Max. bus clock frequency	32h	8
CCC	[95:84]	Card command classes	0F5h	12
READ_BL_LEN	[83:80]	Max. read data block length	9h	4
READ_BL_PARTIAL	[79:79]	Partial blocks for read allowed	0b	1
WRITE_BLK_MISALIGN	[78:78]	Write block misalignment	0b	1
READ_BLK_MISALIGN	[77:77]	Read block misalignment	0b	1
DSR_IMP	[76:76]	DSR implemented	0b	1
C_SIZE	[73:62]	Device size	FFFh	12
VDD_R_CURR_MIN	[61:59]	Max. read current @ VDD min	111b	3
VDD_R_CURR_MAX	[58:56]	Max. read current @ VDD max	111b	3
VDD_W_CURR_MIN	[55:53]	Max. write current @ VDD min	111b	3
VDD_W_CURR_MAX	[52:50]	Max. write current @ VDD max	111b	3
C_SIZE_MULT	[49:47]	Device size multiplier	111b	3
ERASE_GRP_SIZE	[46:42]	Erase group size	11111b	5
ERASE_GRP_MULT	[41:37]	Erase group size multiplier	11111b	5
WP_GRP_SIZE	[36:32]	Write protect group size	11111b	5
WP_GRP_ENABLE	[31:31]	Write protect group enable	1b	1
DEFAULT_ECC	[30:29]	Manufacturer default	00b	2
R2W_FACTOR	[28:26]	Write speed factor	10b	3
WRITE_BL_LEN	[25:22]	Max. write data block length	9h	4
WRITE_BL_PARTIAL	[21:21]	Partial blocks for write allowed	0b	1
CONTENT_PROT_APP	[16:16]	Content protection application	0b	1
FILE_FORMAT_GRP	[15:15]	File format group	0b	1
COPY	[14:14]	Copy flag (OTP)	1b	1
PERM_WRITE_PROTECT	[13:13]	Permanent write protection	0b	1
TMP_WRITE_PROTECT	[12:12]	Temporary write protection	0b	1
FILE_FORMAT	[11:10]	File format	00b	2
ECC	[9:8]	ECC code	00b	2
CRC	[7:1]	Calculated CRC	0000000b	7

5.3.5. EXT_CSD Register

Parameter	ECSD slice [bytes]	Description	Value
S_CMD_SET	[504]	Supported Command Sets	1h
HPI_FEATURES	[503]	HPI Features	1h
BKOPS_SUPPORT	[502]	Background operations support	1h
MAX_PACKED_READS	[501]	Max packed read commands	3Fh
MAX_PACKED_WRITES	[500]	Max packed write commands	3Fh
DATA_TAG_SUPPORT	[499]	Data Tag Support	1h
TAG_UNIT_SIZE	[498]	Tag Unit Size	3h
TAG_RES_SIZE	[497]	Tag Resources Size	3h
CONTEXT_CAPABILITIES	[496]	Context management capabilities	5h
LARGE_UNIT_SIZE_M1	[495]	Large Unit size	0h
EXT_SUPPORT	[494]	Extended partitions attribute	0h
		support	
CACHE_SIZE	[252:249]	Cache size	0000h
GENERIC_CMD6_TIME	[248]	Generic CMD6 timeout	19h
POWER_OFF_LONG_TIME	[247]	Power off notification(long) timeout	64h
BKOPS_STATUS	[246]	Background operations status	Default = 0h Updated in Run time
CORRECTLY_PRG_SECTORS_ NUM	[245:242]	Number of correctly programmed sectors	Default = 0h Updated in Run time
INI_TIMEOUT_AP	[241]	1st Initialization time after partitioning	Ah
PWR_CL_DDR_52_360	[239]	Power class for 52MHz, DDR at 3.6V	44h
PWR_CL_DDR_52_195	[238]	Power class for 52MHz, DDR at 1.95V	0h
PWR CL 200 360	[237]	Power class for 200MHz at 3.6V	44h
PWR_CL_200_195	[236]	Power class for 200MHz, at 1.95V	0h
MIN_PERF_DDR_W_8_52	[235]	Minimum Write Performance for 8bit at 52MHz in DDR mode	0h
MIN_PERF_DDR_R_8_52	[234]	Minimum Read Performance for 8bit at 52MHz in DDR mode	Oh
TRIM_MULT	[232]	TRIM Multiplier	Eh
SEC_FEATURE_SUPPORT	[231]	Secure Feature support	55h
SEC_ERASE_MULT	[230]	Secure Erase Multiplier	44h
SEC_TRIM_MULT	[229]	Secure TRIM Multiplier	44h
BOOT_INFO	[228]	Boot Information	7h
BOOT_SIZE_MULT	[226]	Boot partition size	20h
ACCESS_SIZE	[225]	Access size	1h
HC_ERASE_GROUP_SIZE	[224]	High Capacity Erase unit size	Table 7
ERASE_TIMEOUT_MULT	[223]	High capacity erase time out	Eh

Parameter	ECSD slice [bytes]	Description	Value
REL_WR_SEC_C	[222]	Reliable write sector count	1h
HC_WP_GRP_SIZE	[221]	High capacity write protect group size	Table 7
S_C_VCC	[220]	Sleep current [VCC]	8h
S_C_VCCQ	[219]	Sleep current [VCCQ]	7h
S_A_TIMEOUT	[217]	Sleep/Awake time out	11h
SEC_COUNT	[215:212]	Sector count	Table 10
MIN_PERF_W_8_52	[210]	Minimum Write Performance for 8bit @52MHz	Ah
MIN_PERF_R_8_52	[209]	Minimum Read Performance for 8bit @52MHz	Ah
MIN_PERF_W_8_26_4_52	[208]	Minimum Write Performance for 4bit @52MHz or 8bit @26MHz	Ah
MIN_PERF_R_8_26_4_52	[207]	Minimum Read Performance for 4bit @52MHz or 8bit @26MHz	Ah
MIN_PERF_W_4_26	[206]	Minimum Write Performance for 4bit @26MHz	Ah
MIN_PERF_R_4_26	[205]	Minimum Read Performance for 4bit @26MHz	Ah
PWR_CL_26_360	[203]	Power Class for 26MHz @ 3.6V	44h
PWR_CL_52_360	[202]	Power Class for 52MHz @ 3.6V	44h
PWR_CL_26_195	[201]	Power Class for 26MHz @ 1.95V	0h
PWR_CL_52_195	[200]	Power Class for 52MHz @ 1.95V	0h
PARTITION_SWITCH_TIME	[199]	Partition switching timing	3h
OUT_OF_INTERRUPT_TIME	[198]	Out-of-interrupt busy timing	19h
DRIVER_STRENGTH	[197]	I/O Driver Strength	TBD
CARD_TYPE	[196]	Card Type	7h
CSD_STRUCTURE	[194]	CSD Structure Version	2h
EXT_CSD_REV	[192]	Extended CSD Revision	6h
CMD_SET	[191]	Command Set	Default = 0h Updated in Run time
CMD_SET_REV	[189]	Command Set Revision	0h
POWER_CLASS	[187]	Power Class	Default = 0h Updated in Run time
HS_TIMING	[185]	High Speed Interface Timing	Default = 0h Updated in Run time
BUS_WIDTH	[183]	Bus Width Mode	Default = 0h Updated in Run time
ERASE_MEM_CONT	[181]	Content of explicit erased memory range	Oh
PARTITION_CONFIG	[179]	Partition Configuration	Default = 0h
			L

Parameter	ECSD slice [bytes]	Description	Value
			Updated in Run time
BOOT_CONFIG_PROT	[178]	Boot config protection	Default = 0h
			Updated in Run time
BOOT_BUS_CONDITIONS	[177]	Boot bus width1	Default = 0h
			Updated in Run time
ERASE_GROUP_DEF	[175]	High-density erase group definition	Default = 0h
			Updated in Run time
BOOT_WP_STATUS	[174]	Boot write protection status	Default = 0h
		registers	Updated in Run time
BOOT_WP	[173]	Boot area write protect register	0h
USER_WP	[171]	User area write protect register	0h
FW_CONFIG	[169]	FW Configuration	0h
RPMB_SIZE_MULT	[168]	RPMB Size	20h
WR_REL_SET	[167]	Write reliability setting register	1Fh
WR_REL_PARAM	[166]	Write reliability parameter register	5h
SANITIZE_START	[165]	Start Sanitize operation	Default = 0h
			Updated in Run time
BKOPS_START	[164]	Manually start background operations	Default = 0h
			Updated in Run time
BKOPS_EN	[163]	Enable background operations handshake	Oh
RST_n_FUNCTION	[162]	H/W reset function	Default = 0h Updated by the host
HPI_MGMT	[161]	HPI management	Default = 0h
		_	Updated by the host
PARTITIONING SUPPORT	[160]	Partitioning support	1h
MAX_ENH_SIZE_MULT	[159:157]	Max Enhanced Area Size	N/A – not supported
PARTITIONS_ATTRIBUTE	[156]	Partitions Attribute	Default = 0h
			Updated by the host
PARTITION_SETTING_	[155]	Partitioning Setting	Default = 0h
COMPLETED			Updated by the host
GP_SIZE_MULT	[154:143]	General Purpose Partition Size	0h
ENH_SIZE_MULT	[142:140]	Enhanced User Data Area Size	0h
ENH_START_ADDR	[139:136]	Enhanced User Data Start Address	0h
SEC_BAD_BLK_MGMNT	[134]	Bad Block Management mode	0h
TCASE_SUPPORT	[132]	Package Case Temperature is controlled	Oh

Parameter	ECSD slice [bytes]	Description	Value
PERIODIC_WAKEUP	[131]	Periodic Wake-up	0h
PROGRAM_CID_CSD_DDR_SU PPORT	[130]	Program CID/CSD in DDR mode support	0h
VENDOR_SPECIFIC_FIELD	[127:64]	Vendor Specific Fields	0h
NATIVE_SECTOR_SIZE	[63]	Native sector size	0h
USE_NATIVE_SECTOR	[62]	Sector size emulation	0h
DATA_SECTOR_SIZE	[61]	Sector size	0h
INI_TIMEOUT_EMU	[60]	1st initialization after disabling sector size emulation	0h
CLASS_6_CTRL	[59]	Class 6 commands control	0h
DYNCAP_NEEDED	[58]	Number of addressed group to be Released	0h
EXCEPTION_EVENTS_CTRL	[57:56]	Exception events control	0h
EXCEPTION_EVENTS_STATUS	[55:54]	Exception events status	0h
EXT_PARTITIONS_ATTRIBUTE	[53:52]	Extended Partitions Attribute	0h
CONTEXT_CONF	[51:37]	Context configuration	Default = 0h Updated in Run time
PACKED_COMMAND_STATUS	[36]	Packed command status	Default = 0h Updated in Run time
PACKED_FAILURE_INDEX	[35]	Packed command failure index	Default = 0h Updated in Run time
POWER_OFF_NOTIFICATION	[34]	Power Off Notification	Default = 0h Updated in Run time
CACHE_CTRL	[33]	Control to turn the Cache ON/OFF	0h
FLUSH_CACHE	[32]	Flushing of the cache	0h

The following table shows the capacity available for user data for the various device capacities:

Table 10: Capacity* for User Data

Capacity	LBA [Hex]	LBA [Dec]	Capacity [Bytes]
SDIN7DP4-16G	0x1D5A000	30,777,344	15,758,000,128
SDIN7DP4-32G	0x3A3E000	61,071,360	31,268,536,320
SDIN7DP4-64G	0x747C000	122,142,720	62,537,072,640
SDIN7CP4-128G	0xE8F8000	244,285,440	125,074,145,280

Table 11: Write protect group size

SKU	HC_ERASE_GR OUP_SIZE	HC_WP_GRP_SI ZE	Erase Unit Size [MB]	Write Protect Group Size [MB]
SDIN7DP4-16G	4h	10h	2MB	32MB
SDIN7DP4-32G	4h	20h	2MB	64MB
SDIN7DP4-64G	4h	40h	2MB	128MB
SDIN7CP4-128G	4h	80h	2MB	256MB

6. POWER DELIVERY AND CAPACITOR SPECIFICATIONS

6.1. SanDisk iNAND Extreme Power Domains

SanDisk iNAND *Extreme* has three power domains assigned to VCCQ, VCC and VDDi, as shown in Table 12.

Pin **Power Domain** Comments VCCQ Host Interface Supported voltage ranges: High Voltage Region: 3.3V (nominal) Low Voltage Region: 1.8V (nominal) VCC Memory Supported voltage range: High Voltage Region: 3.3V (nominal) **VDDi** VDDi is the internal regulator connection to an Internal external decoupling capacitor.

Table 12 - Power Domains

6.2. Capacitor Connection Guidelines

6.2.1. VDDi Connections

The VDDi (C2/K2) ball must only be connected to an external capacitor that is connected to VSS. This signal may not be left floating. The capacitor's specifications and its placement instructions are detailed below.

The capacitor is part of an internal voltage regulator that provides power to the controller.

Caution: Failure to follow the guidelines below, or connecting the VDDi ball to any external signal or power supply, may cause the device to malfunction.

The trace requirements for the VDDi (C2/K2) ball to the capacitor are as follows:

• Resistance: <2 ohm

• Inductance: <5 nH

The capacitor requirements are as follows:

• Capacitance: >=0.1 uF

• Voltage Rating: >=6.3 V

• Dielectric: X7R or X5R

6.2.2. VCC and VCCQ Connections

- All VCC balls should be connected to a 3.3V supply
- All VCCQ balls should be connected either to a 3.3V or 1.8V supply

SanDisk recommends providing separate bypass capacitors for each power domain as shown in Figure 5.

Ball P3

Note: Signal routing in the diagram is for illustration purposes only and the final routing depends on your PCB layout. Also, for clarity, the diagram does not show the VSS connection. All balls marked VSS should be connected to a ground (GND) plane.

14 13 12 11 10 9 8 Top √iew 7 E6 Vcc 6 5 4 3 2 1 В D Ε K VccQ Vcc = 3.3V (nom)Trace Requirements (C_5): power Resistance < 2 ohm supply Inductance < 5nH Capacitor C_5: VSS VSS VSS VSS VSS C_1=C_3>=4.7uF Capacitance >= 0.1uF Voltage >= 6.3V C_2=C_4<=100nF Close to Close to Dielectric: X7R or X5R

Ball F5

Figure 5- Recommended Power Domain Connections

7. MARKING

First row: Simplified SanDisk Logo

Second row: Sales item P/N

Third row: Country of origin i.e. 'TAIWAN' or 'CHINA'

* No ES marking for product in mass production.

Fourth row: Y- Last digit of year

WW- Work week

D- A day within the week. MTLLXXX – Internal use

2D barcode: Store the 10 Digital unique ID information as reflected in the fourth row.

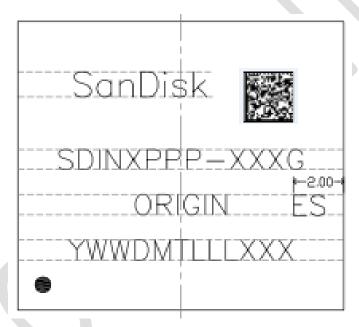


Figure 6: Product marking

8. ORDERING INFORMATION

Table 13 – Ordering Information

Capacity	Technology	Part Number	Samples Part Number	Package
16GB	X2	SDIN7DP4-16G	SDIN7DP4-16G -Q	11.5mm x 13mm x 1.0mm
32GB	X2	SDIN7DP4-32G	SDIN7DP4-32G-Q	11.5mm x 13mm x 1.0mm
64GB	X2	SDIN7DP4-64G	SDIN7DP4-64G-Q	11.5mm x 13mm x 1.4mm
128GB	X2	SDIN7CP4-128G	SDIN7CP4-128G-Q	12.0mm x16mm x 1.6mm

Note 1: Suffix "T" added to the P/N indicates tape/reel. For example, SDIN7DP4-16G would become SDIN7DP4-16G-T. The default P/Ns in Table 10 are shipped in trays.

Note 2: Optional Customer Code in case applicable will be added at the end of the part number. For example SDIN7DP4-16G-999 or SDIN7DP2-8G-999Q

How to Contact Us

USA

 $San Disk\ Corporation,\ Corporate\ Head quarters.$

601 McCarthy Blvd Milpitas, CA 95035

Phone: +1-408-801-1000 Fax: +1-408-801-8657

Japan

SanDisk Limited (Japan) Shinagawa Tokyu Bldg., 3F 1-6-31, Konan, Minato-ku Tokyo, Japan 108-0075 +81-3-4334-7110 (OEM Sales)

Taiwan

SanDisk Asia Ltd. 37F, Taipei 101 Tower, No 7, Xinyi Rd, Section 5.

Tel: +886-2-8758-2966 Fax: +886-2-8758-2999

Taipei, Taiwan, 110

Internet

http://www.SanDisk.com/mobile

Europe

SanDisk IL Ltd. 7 Atir Yeda St.

Kfar Saba 44425, Israel Phone: +972-9-764-5000 Fax: +972-3-548-8666

Korea

SanDisk Korea Ltd. 6F Samhwa bldg, Yangjae-dong 14-8, Seocho-gu, Seoul 137-130, Korea

Phone:+82-2-3452-9079 Fax: +82-2-3452-9145

China

SanDisk China Ltd. Room 121-122

Bldg. 2, International Commerce & Exhibition Ctr.

Hong Hua Rd. Futian Free Trade Zone

Shenzhen, China

Phone: +86-755-8348-5218 Fax: +86-755-8348-5418

Sales and Technical Information

techsupport@SanDisk.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for eMMC category:

Click to view products by SanDisk manufacturer:

Other Similar products are found below:

MTFC32GAPALBH-IT MTFC16GAKAEJP-AIT MTFC64GAPALBH-IT GLS85VM1004G-S-I-LFWE-ND232 GLS85VM1016C-M-I-BZYE-ND231 S40FC004C1B2I00300 SDINBDG4-8G SDINBDG4-8G-XI1 THGBMNG5D1LBAIL SDINBDG4-64G-XI1 SDINADF4-128G SDINBDG4-8G-XA SDINBDG4-32G-XI1 SDINBDG4-32G-XI1 SDINBDG4-32G-XI SDINBDG4-64G SDINBDG4-64G-ZA ASFC8G31M-51BIN ASFC4G31M-51BIN GLS85VM1032C-M-I-BZYE-ND231 GLS85VM1008Q-S-I-BZYE-ND235 GLS85VM1008E-S-I-BZYE-ND237 GLS85VM1008C-M-I-LFWE-ND230 GLS85VM1008C-M-I-BZYE-ND231 THGBMJG7C1LBAIL THGBMJG8C2LBAIL MTFC32GAZAQHD-WT TR MTFC32GAZAQHD-WT MTFC32GAZAQHD-AAT MTFC32GAPALBH-AAT MTFC8GAMALGT-AIT MTFC8GAMALGT-AAT MTFC16GAPALNA-AIT MTFC4GACAJCN-1M WT MTFC64GAPALBH-AAT MTFC64GAPALBH-AIT MTFC8GAKAJCN-1M WT MTFC4GLGDQ-AIT A SDINADF4-128G-H SDINBDA4-256G SDINBDA6-256G-ZA SDINBDG4-16G-XI2 SDINBDG4-32G-XI2 SDINBDG4-16G-XI1 SDINBDG4-8G-IIT SDINADF4-64G-H SDINBDG4-16G-ZA S40FC004C1B2C00000 S40FC004C1B1C00000 S40FC004C1B2I00000