製 品 仕 様 書

<u>品名:STR-A6151M</u> <u>LF No.2901</u>

鉛フリー品 Pb Free RoHS 指令対応 Meet for RoHS

承認	審査	作成
JA. Rakamichi Hideki Nakamichi	Daiji Vehara	Tetsuya Tabata
サンケ	ン電気株式会社 技術本部 PCI) 事業部
発行年月日		2006/11/29
仕様書番号		SSE-23931

1 適用範囲

Scope

この規格は、スイッチングレギュレータ用ハイブリッド IC STR-A6151M について適用する。 The present specifications shall apply to a hybrid IC type STR-A6151M for switching regulators.

2 概要

Outline

種	Туре	別	ハイブリッド IC Hybrid IC	
構	Structure	造	樹脂封止型(トランスファーモールド) Plastic mold package (Transfer mold)	
主	主 用 途 スイッチングレギュレータ Applications Switching regulators			

3 絶対最大定格 (Ta=25℃)

Absolute maximum ratings (Ta=25℃)

項目	端子	記号	規格値	単位	備考
Parameter	Terminal	Symbol	Ratings	Unit	Note
ドレイン電流 Drain Current	8-3	IDpeak ^{**1}	2.5	A	シングルパルス Single Pulse
最大スイッチング電流 Maximum switching current	8-3	IDMAX	2.5	A	V1-3=0.96V Ta=-20∼+125°C
アバランシェエネルギ耐量 Single pulse avalanche energy	8-3	Eas ^{**2}	72	mJ	シングルパルス Single Pulse VDD=99V,L=20mH IL=2.5A
O.C.P 端子電圧 O.C.P terminal voltage	1-3	Vo.c.p	-0.5~6	V	
制 御 部 電 源 電 圧 Input voltage for control part	2-3	Vcc	35	V	
F.B /O.L.P 端子電圧 F.B/O.L.P terminal voltage	4-3	VF.B/O.L.P	-0.5~10	v	
起動端子電压 Startup terminal voltage	5-3	Vstartup	-0.3~600	V	
MOSFET 部許容損失 Power dissipation for MOSFET	8-3	PD1 ^{≋3}	1.35	w	% 5
制御部許容損失(MIC) Power dissipation for control part (MIC)	2-3	PD2 ^{※4}	0.15	W	Vcc×Icc にて規定 Specified by Vcc×Icc
動作時内部フレーム温度 Internal frame temperature in operation		TF	−20 ~ +125	ొ	推奨動作温度参照 Refer to recommended operating temperature
動作周囲温度 Operating ambient temperature		Тор	$-20 \sim +125$	C	,
保 存 温 度 Storage temperature	_	Tstg	−40 ~ +125	C	
チャネル温度 Channel temperature	—	Tch	+150	C	
※1 MOS FET A S O 曲線	白 4 2027		X2 MOC EET To		4 42 HT

※1 MOS FET A.S.O 曲線参照

Refer to MOS FET A.S.O curve

※3 MOS FET Ta-PD1 曲線参照 Refer to MOS FET Ta-PD1 curve ※2 MOS FET Tch-EAS 曲線参照 Refer to MOS Tch-EAS curve

※4 MIC Tr-PD2 曲線参照

Refer to MIC TF-PD2 curve

061129

SSE-23931

※5 基板実装時(基板サイズ 15mm×15mm)

When embedding this hybrid IC onto the printed circuit board (board size 15mm×15mm)

4 電気的特性

Electrical characteristics

4-1 制御部電気的特性(特記なき場合の条件 Vcc=20V,Ta=25℃)

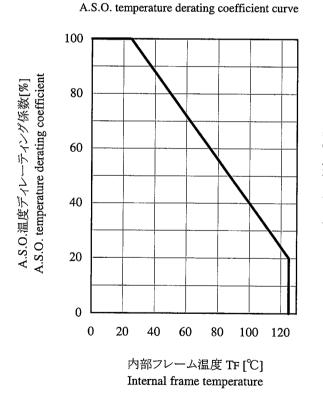
Electrical characteristics for control part(Ta=25°C, Vcc=20V, unless otherwise specified)

項 目 Parameter	端子	記号		規格値 Ratings	<u> </u>	単位	測定条件 Measurement
1 at affected	Terminal	Symbol	MIN	TYP	MAX	Unit	condition
動作開始電源電圧 Operation start voltage	2-3	Vcc (ON)	16	17.5	19.2	v	
動作停止電源電圧 Operation stop voltage	2-3	Vcc (OFF)	9	10	11	V	
動作時回路電流 Circuit current in operation	2-3	Icc(ON)	_	_	4	mA	
非動作時回路電流 Circuit current in non-operation	2-3	Icc(OFF)		_	50	μА	
最 大 O F F 時 間 Maximum OFF time	8-3	Toff(MAX)	10.5	11.5	12.5	μsec	
O.C.P threshold voltage	1-3	Vocp	0.96	1.13	1.28	V	
リーディングエッジブランキング時間 Leading edge blanking time	8-3	Tbw	200	320	480	nsec	
バーストしきい電圧 Burst threshold voltage	4-3	Vburst	0.66	0.75	0.84	V	P.6∼7
O.L.P しきい電圧 O.L.P threshold voltage	4-3	VOLP	6.5	7.2	7.9	V	参照 Refer to
O.L.P 流 出 電 流 Out-flow Current at O.L.P operation	4-3	IO.L.P	18.2	26	34.1	μΑ	page 6~7
最大 F.B 流出電流 Maximum F.B current	4-3	IFB(MAX)	220	300	390	μA	
起 動 電 流 Startup current	5-3	Istartup	340	790	1230	μА	
起動回路漏れ電流 Startup circuit leakage current	5-3	Istart(leak)			30	μА	
O.V.P 動作電源電圧 O.V.P operation voltage	2-3	Vcc(OVP)	28.7	31.2	34.1	V	
ラッチ回路保持電流※6 Latch circuit sustaining current	2-3	Icc(H)			200	μА	
ラッチ回路解除電圧※6 Latch circuit release voltage	2-3	Vcc(La.OFF)	6.6	7.3	8.0	V	
熱 保 護 動 作 温 度 Thermal shutdown operating temperature		Tj(TSD)	135	_		°C	

※6 ラッチ回路とは、O.V.P, T.S.D により動作する回路を示す。 The latch circuit means a circuit operated O.V.P and T.S.D. Thermal resistance

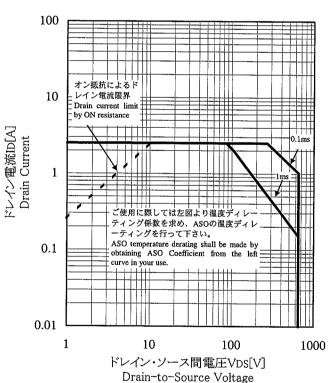
Between channel

and internal frame

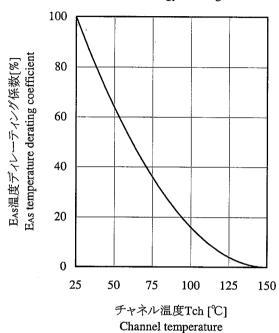

4-2 MOSFET 部電気的特性(Ta=25℃)

Electrical characteristics for	MOSFET(Га=25°С)					
項 目 Parameter	端 子 Terminal	記号 Symbol	MIN	規格値 Ratings TYP	MAX	単位 Unit	測定条件 Measurement condition
ドレイン・ソース間電圧 Drain-to-Source breakdown voltage	8-1	VDSS	650	_	_	V	
ドレイン漏れ電流 Drain leakage current	8-1	IDSS			300	μА	P.6~7 参照
O N 抵 抗 On-resistance	8-1	RDS(ON)	_		3.95	Ω	Refer to page 6~7
スイッチング・タイム Switching time	8-3	tf		_	250	nsec	
熱 抵 抗 ※7		O at E			50	90 axx	升剂4大部71~4間

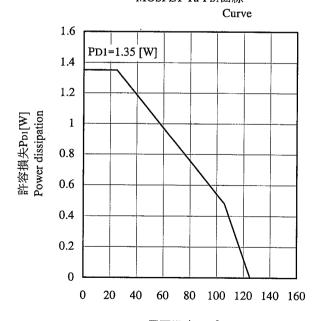
 θ ch-F


※ 7内部フレーム温度 TF は3番端子根元の温度にて規定。
Internal frame temperature(TF) is measured at the root of the terminal #3.

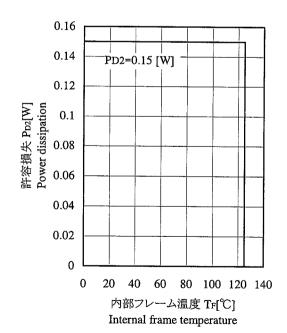
STR-A6151M A.S.O.温度ディレーティング係数曲線


STR-A6151M MOSFET A.S.O.曲線 Curve

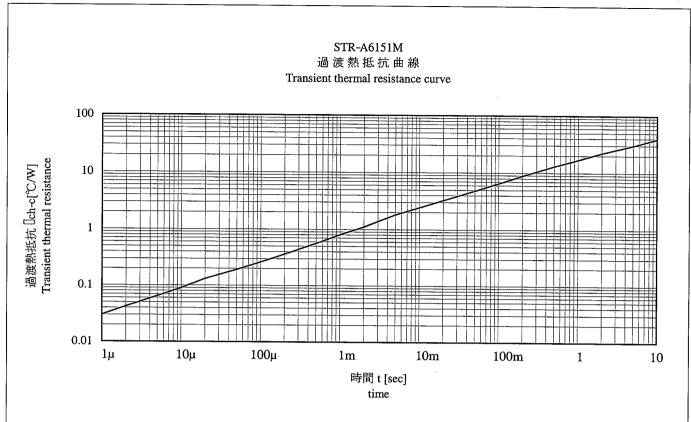
52



STR-A6151M アバランシェ・エネルギ耐量 ディレーティング曲線


Avalanche energy derating curve

STR-A6151M MOSFET Ta-PD1曲線

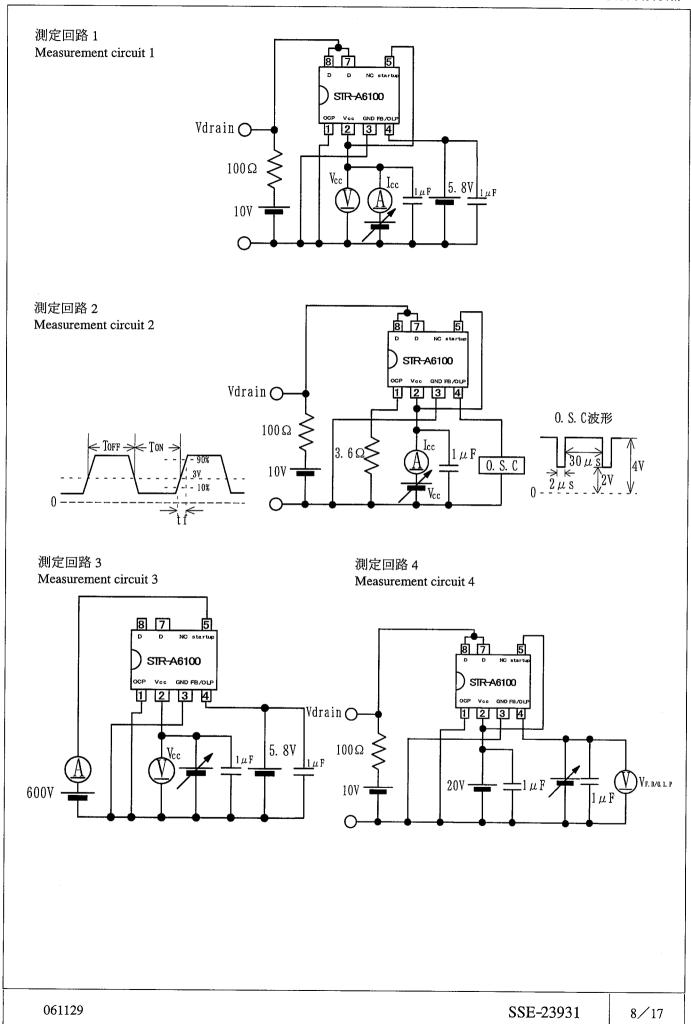

STR-A6151M MIC Tr-PD2曲線 Curve

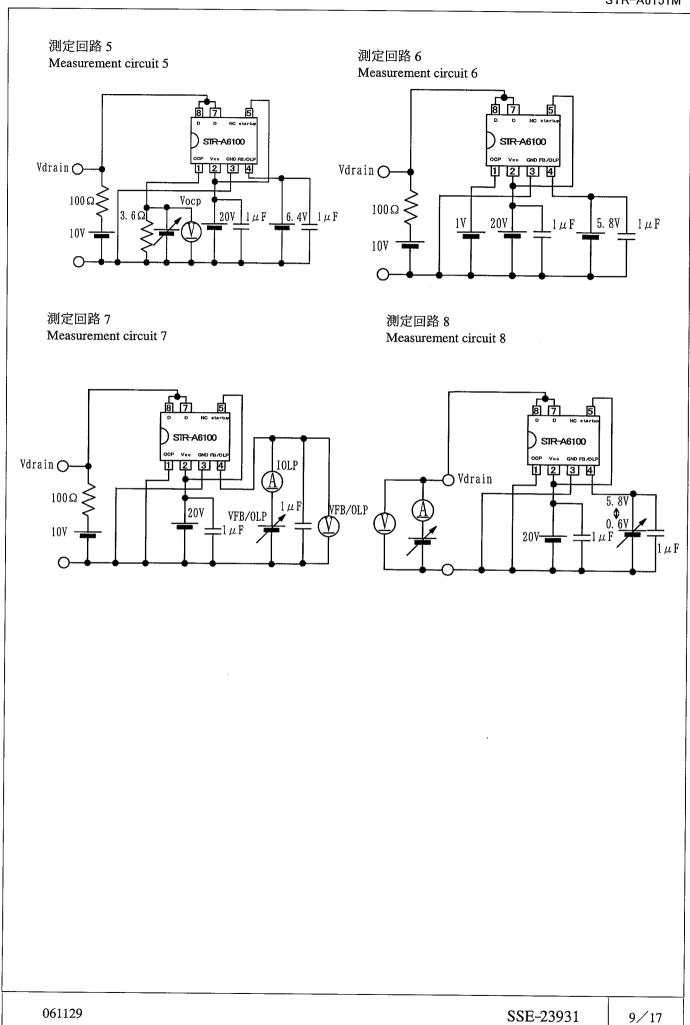
周囲温度 Ta[℃] Ambient temperature

061129

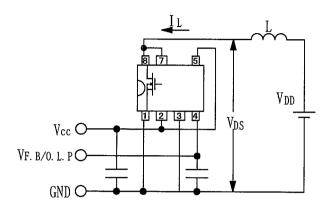
SSE-23931

4-3 測定条件 Measurement Conditions

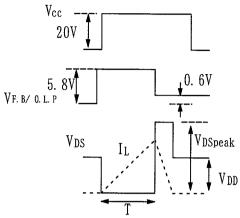

項 目 Parameter	測定回路 Measurement	VCC[V]	測 定 条 件 Measurement condition
動作開始電源電圧 Operation start voltage	circuit	0→17.5	8-3 端子間波形が High から Low に切り替わる時の電源電圧 Power supply voltage where waveform between terminals 8 and 3 is switched from high to low
動作停止電源電圧 Operation stop voltage	測定回路 1 Measurement circuit 1	20→10	8-3 端子間波形が Low から High に切り替わる時の電源電圧 Input voltage where waveform between terminals 8 and 3 is switched from low to high
非動作時回路電流 Circuit current in non-operation		14	動作開始前、電源端子流入電流 In-flow current into power supply terminal prior to operation
最大 OFF 時間 Maximum OFF time 動作時回路電流	測定回路 2 Measurement circuit 2	20	8-3 端子間波形 High 期間 While waveform between terminals 8 and 3 is high 発振動作時、電源端子流入電流 In-flow current into power supply terminal at
Circuit current in operation 起動電流 Startup current	測定回路 3	15	oscillation start Vstartup=600V 時に起動端子に流れ込む電流 In-flow current into Startup terminal at Vstartup=600V
起動回路漏れ電流 Startup circuit leakage current	Measurement circuit 3	20	Vstartup=600V 時に起動端子に流れ込む電流 In-flow current into Startup terminal at Vstartup=600V
バーストしきい電圧 Burst threshold voltage	測定回路 4 Measurement circuit 4	20	O.L.P/F.B 端子電圧を 5.8V から下降させ,8-3端子間波形がLowからHighに切り替わる時のO.L.P/F.B 端子電圧O.L.P/F.B terminal voltage where waveform between terminals 8 and 3 is switched from low to high after decreasing the voltage from 5.8V
O.V.P 動作電源電圧 O.V.P operation voltage		0→31	8-3 端子間波形が Low から High に切り替わる時の電源電圧 Input voltage where waveform between terminals 8 and 3 is switched from low to high
ラッチ回路保持電流 Latch circuit sustaining current	測定回路 1 Measurement circuit 1	31→ (VCC(OFF) 0.5V)	OVP 動作後 VCC=VCC(OFF)-0.5V 時電源端子に流入する電流 In-flow current into power terminal at VCC=VCC(OFF)-0.5V after OVP operation
ラッチ回路解除電圧 Latch circuit release voltage		31→7.2	OVP 動作後 Im≦20μA となる電源電圧 Power supply voltage with Im≦20μA after OVP operation


項 目 Parameter	測定回路 Measurement circuit	VCC[V]	測 定 条 件 Measurement condition
O.C.P しきい電圧 O.C.P threshold voltage	測定回路 5 Measurement circuit 5	20	O.C.P 端子電圧を 0V から上げていき,8-3 端子間波形が Low から High に切り替わる時の O.C.P 端子電圧 O.C.P terminal voltage where waveform between terminals 8 and 3 is switched from low to high after raising the voltage from 0V
リーディングエッジブランキングタイム Leading edge blanking time	測定回路 6 Measurement circuit6	20	8-3 端子間波形 Low 期間 While waveform between terminals 8 and 3 is Low
O.L.P しきい電圧 O.L.P threshold voltage	測定回路 7		O.L.P/F.B 端子電圧を5.8Vから上げていき,8-3 端子間波形が Low から High に切り替わる時の O.L.P/F.B 端子電圧 O.L.P/F.B terminal voltage where waveform between terminals 8 and 3 is switched from low to high after raising the voltage from 5.8V
O.L.P 流 出 電 流 Out-flow Current from O.L.P operation	Measurement circuit7	20	VF.B/O.L.P=6.4V 時に F.B/O.L.P 端子から流出する電流 Out-flow current from F.B/O.L.P terminal at VF.B/O.L.P=6.8V
最大 F.B 流 出 電 流 Maximum Out-flow F.B current			VF.B/O.L.P=0V 時に F.B/O.L.P 端子から流 出する電流 Out-flow current from F.B/O.L.P terminal at VF.B/O.L.P=0V
ドレイン・ソース間電圧 Drain-to-Source breakdown voltage	測定回路 8		ID=300µA, V1-3=0V(short)
ドレイン漏れ電流 Drain leakage current	Measurement circuit 8	<u></u>	VDS=650V, V1-3=0V(short)
ON 抵抗 On-resistance	on oait o	—	ID=0.4A
スイッチング・タイム Switching time	測定回路 2 Measurement circuit 2	20	測定回路 2 参照 Refer to measurement circuit 2
アバランシェエネルギ耐量 Single pulse avalanche energy 発振動作は 8.2 端子関矩形	測定回路 9 Measurement circuit 9	20	測定回路 9 参照 Refer to measurement circuit 9

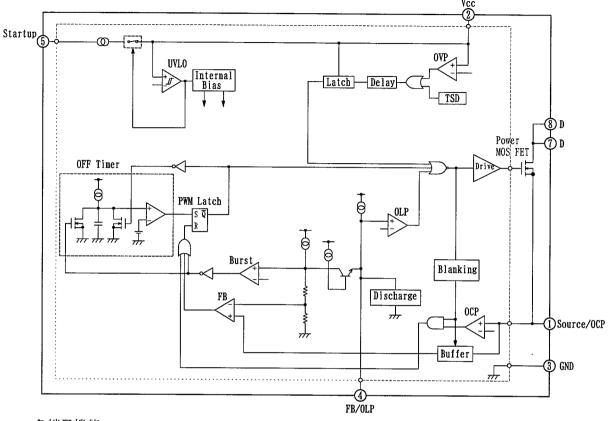
発振動作は 8-3 端子間矩形波にて規定


Oscillating operation to be specified by rectangular wave between terminals 8 and 2.

061129



測定回路 9 アバランシェ・エネルギ耐量測定方法 Measurement circuit 9 Method of measuring avalanche energy



アバランシェエネルギ耐量 EAS 計算式 Equation for calculation of avalanche energy EAS $E_{AS} = \frac{1}{2} \cdot L \cdot (ILPeak)^2 \cdot \frac{V_{DS}Peak}{V_{DS}Peak - V_{DD}}$

T: Ilpeak= 2.5A となる様調整 To be adjusted for IL peak= 2.5A

5 ブロックダイアグラム(ピン配置) Block diagram (Connection diagram)

各端子機能 Function of Terminal

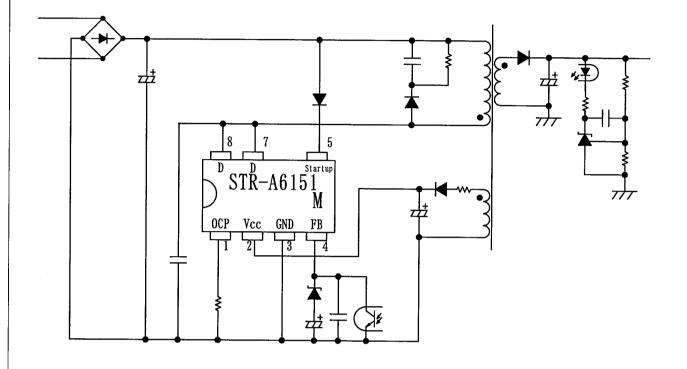
端子番号 記 号 名 称 機 能 Terminal No. Symbols Description Functions 1 Source/O.C.P Source/O.C.P 端子 MOSFET Source/過電流保護 MOSFET Source/Over current protect 2 Vcc 電源端子 制御回路電源入力 Power supply terminal Input of power supply for control circuit 3 GND グランド端子 グランド Ground terminal 定電圧制御信号/過負荷保護信号入力 Input of constant voltage control signal/over load protection signal 5 Startup 端子 起動流入力		on or reminar			
1 Source/O.C.P Source/O.C.P 端子 Source/O.C.P 端子 Source/O.C.P terminal MOSFET Source/Over current protect 2 Vcc 電源端子 制御回路電源入力 Input of power supply for control circuit 3 GND グランド端子 グランド Ground terminal Ground 4 FB/O.L.P 端子 Feedback /O.L.P terminal Input of constant voltage control signal/over load protection signal 5 Startup 端子 起動電流入力		記号	名 称	機能	
Source/O.C.P terminal MOSFET Source/Over current protect 2 Vcc 電源端子 制御回路電源入力 Power supply terminal Input of power supply for control circuit 3 GND グランド端子 グランド Ground terminal 定電圧制御信号/過負荷保護信号入力 Input of constant voltage control signal/over load protection signal 5 Startup 端子 起動電流入力	Terminal No.	Symbols	Description	Functions	
Source/O.C.P terminal MOSFET Source/Over current protect 1 Vcc 電源端子 制御回路電源入力	1	Source/O C P	Source/O.C.P 端子	MOSFET Source/過電流保護	
Power supply terminal Input of power supply for control circuit 3 GND グランド端子 Ground terminal グランド Ground 4 FB/O.L.P FB/O.L.P 端子 Feedback /O.L.P terminal 定電圧制御信号/過負荷保護信号入力 Input of constant voltage control signal/over load protection signal 5 Startup Startup 端子 起動電流入力	-	Source, C.C.I	Source/O.C.P terminal	MOSFET Source/Over current protect	
Power supply terminal Input of power supply for control circuit 3 GND グランド端子 グランド Ground terminal 定電圧制御信号/過負荷保護信号入力 Input of constant voltage control signal/over load protection signal 5 Startup 端子 起動電流入力	2	V_{cc}			
Ground terminal Ground 4 FB /O.L.P FB/ O.L.P 端子 Feedback /O.L.P terminal 定電圧制御信号/過負荷保護信号入力 Input of constant voltage control signal/over load protection signal 5 Startup Startup 端子 起動電流入力	_		Power supply terminal	Input of power supply for control circuit	
Ground terminal Ground 4 FB/O.L.P FB/O.L.P 端子 Feedback /O.L.P terminal 定電圧制御信号/過負荷保護信号入力 Input of constant voltage control signal/over load protection signal 5 Startup Startup 端子 起動電流入力	3	GND	グランド端子	グランド	
4 FB /O.L.P FB /O.L.P Input of constant voltage control signal/over load protection signal 5 Startup 端子 起動電流入力		GIVE	Ground terminal	Ground	
Feedback /O.L.P terminal Input of constant voltage control signal/over load protection signal Startup 端子 起動電流入力			FR/OIP端子	定電圧制御信号/過負荷保護信号入力	
protection signal 5 Startup 端子 起動電流入力	4	FB /O.L.P			1
1 J SIANIO 1 - 1 - 1 - 1 - 1 - 1 - 1				protection signal	
Charles 1	5	Startup	-	起動電流入力	
Startup terminal Input of Startup current		Startap	Startup terminal	Input of Startup current	- 1
	_				
7 P ドレイン端子 MOSFET ドレイン	7	n	ドレイン端子	MOSFET ドレイン	
8 Drain terminal MOSFET drain	8	D	Drain terminal		

その他機能

Other Functions

ici i unctions			
記号	機能能		
Symbols	Functions		
O.V.P	過電圧保護回路		
O. V.1	Over voltage protection circuit		
T.S.D	過熱保護回路		
1.5.D	Thermal shutdown circuit		

061129


SSE-23931

6 応用回路例

Example application circuit

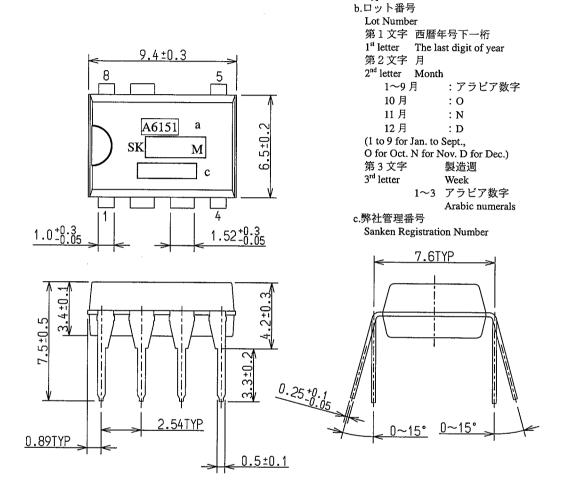
注 1) 放熱効果をあげる為、ドレイン端子 7,8pin のパターンは出来るだけ広くして下さい。

Note1: For more efficient heat radiation, secure as broad a pattern of the drain terminal (# 7,8) as possible.

061129

SSE-23931

7 外形


Package information

7-1外形、寸法および材質(リードフォーミング No.2901)

Package type, physical dimensions and material(Lead Forming No.2901)

パッケージ

Package type

a.品名標示 Type Number

端子材質:Cu

Material of terminal: Cu 端子の処理:半田メッキ

Treatment of terminal:solder plating

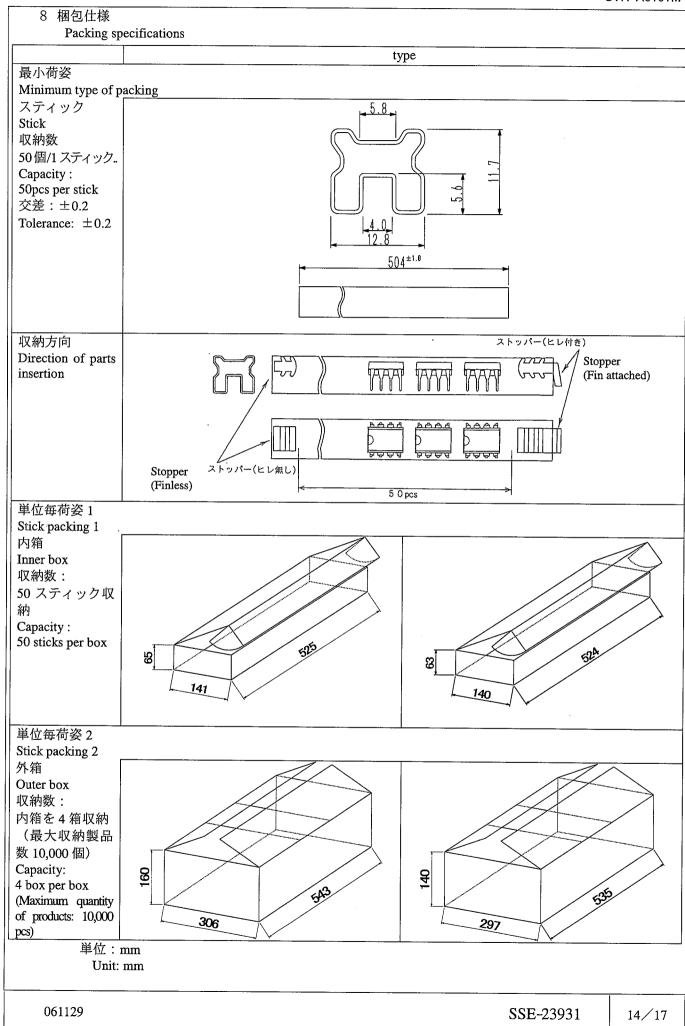
製品重量:約0.51g Weight: Approx. 0.51g

7-2外観

Appearance

本体は、汚れ、傷、亀裂等なく綺麗であること。

The body shall be clean and shall not bear any stain, rust or flaw.


7-3表示

Marking

表示は本体に、品名及びロット番号を、明瞭かつ容易に消えぬようレーザーで捺印すること。 The type number and lot number shall be marked on the body by laser which shall not be unreadable easily.

061129

SSE-23931

9 使用上の注意

Cautions and warnings

⚠ 使用上の注意 CAUTION/ WARNING

保管環境、特性検査上の取り扱い方法によっては信頼度を損なう要因となりますので、注意事項に留意されますようお願いいたします。

Since reliability can be affected adversely by improper storage environment and handling methods during Characteristic tests, please observe the following cautions.

9-1 保管上の注意事項

Cautions for Storage

● 保管環境は、常温(5~35℃)、常湿(40~75%)中が望ましく、高温多湿や温湿度変化の大きな場所を避けてください。

Ensure that storage conditions comply with the standard temperature (5 to 35° C) and the standard relative humidity (around 40 to 75%) and avoid storage locations that experience extreme changes in temperature or humidity.

- 腐食性ガス等の有毒ガスが発生しない塵埃の少ない場所で直射日光を避けてください。 Avoid locations where dust or harmful gases are present and avoid direct sunlight.
- 長期保管したものは、使用前に半田付け性やリードの錆等について再点検してください。 Reinspect for rust in leads and solderability that have been stored for a long time.

9-2 特性検査、取り扱い上の注意事項

Cautions for characteristic Tests and Handling

● 受入検査等で特性検査を行う場合は、測定器からのサージ電圧の印加、端子間ショートや誤接続等に十分ご注意ください。また定格以上の測定は避けてください。

When characteristic tests are carried out during inspection testing and other standard tests periods, protect the devices from surge of power from the testing device, shorts between the devices and the heatsink.

9-3 放熱用シリコーングリースをご使用の際の注意

Remarks in using silicone grease for a heatsink

● 本製品を放熱板に取付けシリコーングリースをご使用する際は、均一に薄く塗布して下さい。 必要以上に塗布することは、無理な応力を加えることになります。

When silicone grease is used in mounting this product on a heatsink, it shall be applied evenly and thinly. If more silicone grease than required is applied, it may produce forced stress.

● 揮発性の放熱用シリコーングリースは長時間経過しますとヒビ割れが生じ、放熱効果を悪化させます。稠度の小さい(固い)放熱用シリコーングリースは、ビス止め時にモールド樹脂クラックの原因となります。

Volatile type silicone grease may produce cracks after elapse of long term, resulting in reducing heat radiation effect. Silicone grease with low consistency (hard grease) may cause cracks in the mold resin when screwing the product to a heatsink.

弊社では、寿命に影響を与えない下記の放熱用シリコーングリースを推奨しております。 Out recommended silicone grease for heat radiation purpose, which will not cause any adverse effect on the product life is indicated below:

品名 Type	メーカー名	Suppliers
G746	信越化学工業(株)	Shin-Etsu Chemical Co., Ltd.
YG6260	GE 東芝シリコーン(株)	GE Toshiba Silicones Co., Ltd.
SC102	東レ・ダウコーニング (株)	Dow Corning Toray Co., Ltd.

061129

9-4 推奨動作温度

Recommended operating temperature

動作時内部フレーム温度 TF=115 [℃] MAX Inner frame temperature in operation TF=115 [℃] MAX

9-5 半田付け方法

Soldering

- 半田付けの際は、下記条件以内でできるだけ短時間に作業をするよう、ご配慮ください。 When soldering the products, please be sure to minimize the working time, within the following conditions.
 - · 260±5°C 10sec.
 - ・350±5℃ 3sec. (半田ごて)

Soldering iron

半田付けは製品本体より 1.5mm のところまでとする。 at a distance of 1.5mm from the main body of the Products

9-6 静電気破壊防止のための取扱注意

Considerations to protect the Products from Electrostatic Discharge

- デバイスを取り扱う場合は、人体アースを取ってください。人体アースはリストストラップ等を用い、感電防止のため、 $1M\Omega$ の抵抗を人体に近い所へ入れてください。 When handling the devices, operator must be grounded. Grounded wrist straps be worn and should have at least $1M\Omega$ of resistance near operators to ground to prevent shock hazard.
- デバイスを取り扱う作業台は導電性のテーブルマットやフロアマット等を敷きアースを取ってください。
 Workbenches where the devices are handled should be grounded and be provided with conductive

Workbenches where the devices are handled should be grounded and be provided with conductive table and floor mats.

- カーブトレーサーなどの測定器を使う場合、測定器もアースを取ってください。 When using measuring equipment such as a curve tracer, the equipment should also be grounded.
- 半田付けをする場合、半田ごてやディップ槽のリーク電圧がデバイスに印加されるのを防ぐため、半田ごての先やディップ槽をアースしてください。
 When soldering the devices, the head of a soldering iron or a solder bath must be grounded in other to prevent leak voltage generated by them from being applied to the devices.
- デバイスを入れる容器は、弊社出荷時の容器を用いるか、導電性容器やアルミ箔等で、静電 対策をしてください。

The devices should always be stored and transported in our shipping containers or conductive containers, or be wrapped up in aluminum foil.

9-7その他

Others

● 本書に記載されている動作例及び回路例は、使用上の参考として示したもので、これらに起 因する当社もしくは第三者の工業所有権、知的所有権、その他の権利の侵害問題について当 社は一切責任を負いません。

Application and operation examples described in this document are quoted for the sole purpose of reference for the use of the products herein and Sanken can assume no responsibility for any infringement of industrial property rights, intellectual property rights or any other rights of Sanken or any third party which may result from its use.

- 本書に記載されている製品をご使用の場合は、これらの製品と目的物との組み合わせについて使用者の責任に於いて、検討・判断を行って下さい。
 When using the products herein, the applicability and suitability of such products for intended
 - When using the products herein, the applicability and suitability of such products for intended purpose object shall be reviewed at the user's responsibility.
- 当社は品質、信頼性の向上に努めていますが、半導体製品では、ある確率での欠陥、故障の 発生は避けられません。部品の故障により結果として、人身事故、火災事故、社会的な損害 を発生させないよう、使用者の責任に於いて、装置やシステム上で十分な安全設計及び確認 を行って下さい。

Although Sanken undertakes to enhance the quality and reliability of its products, the occurrence of failure and defect of semiconductor products at a certain rate is inevitable.

Users of Sanken products are requested to take, at their own risk preventative measures including safety design of the equipment or systems against any possible injury, death, fires or damages to the society due to device failure or malfunction.

● 本書に記載されている製品は、一般電子機器(家電製品、事務機器、通信端末機器、計測機器など)に使用されることを意図しております。

高い信頼性が要求される装置(輸送機器とその制御装置、交通信号制御装置、防災・防火装置、各種安全装置など)への使用をご検討及び、一般電子機器であっても長寿命を要求される場合につきましては、必ず当社販売窓口へのご相談及び納入仕様書への記載をお願いします。

極めて高い信頼性が要求される装置(航空宇宙機器、原子力制御、生命維持のための医療機器など)には当社の文書による合意がない限り使用しないで下さい。

Sanken products listed in this document are designed and intended for the use as components in general purpose electronic equipment or apparatus (home appliances, office equipment, telecommunication equipment, measuring equipment, etc.).

Whenever Sanken products are intended to be used in the applications where high reliability is required (transportation equipment and its control systems, traffic signal control systems or equipment, fire/crime alarm systems, various safety devices, etc.), and whenever long life expectancy is required even in general purpose electronic equipment or apparatus, please contact your nearest Sanken sales representative to discuss and obtain written consent of your specifications.

The use of Sanken products without the written consent of Sanken in the applications where extremely high reliability is required (aerospace equipment, nuclear power control systems, life support systems, etc.) is strictly prohibited.

● 本書に記載された製品は耐放射線設計をしておりません。 Anti radioactive ray design is not considered for the products listed herein

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Switching Controllers category:

Click to view products by Sanken manufacturer:

Other Similar products are found below:

LV5065VB-TLM-H LV5066V-TLM-H LV5725JAZ-AH 633888R MP2908AGF AZ7500EP-E1 NCP1012AP133G NCP1217P133G

NCP1218AD65R2G NCP1234AD100R2G NCP1244BD065R2G NCP1336ADR2G NCP1587GDR2G NCP6153MNTWG

NCP81005MNTWG NCP81101BMNTXG NCP81205MNTXG HV9123NG-G-M934 IR35207MTRPBF ISL6367HIRZ CAT874-80ULGT3

SJ6522AG SJE6600 TLE63893GV50XUMA1 IR35215MTRPBF SG3845DM NCP1216P133G NCP1236DD65R2G NCP1247BD100R2G

NCP1250BP65G NCP4202MNR2G NCP4204MNTXG NCP6132AMNR2G NCP81141MNTXG NCP81142MNTXG NCP81172MNTXG

NCP81203MNTXG NCP81206MNTXG NX2155HCUPTR UC3845ADM UBA2051C IR35201MTRPBF MAX8778ETJ+

MAX17500AAUB+T MAX17411GTM+T MAX16933ATIR/V+ NCP1010AP130G NCP1063AD100R2G NCP1216AP133G

NCP1217AP100G