### **Stepping Motors**



# ₽Z mm sq.

1.8°/step RoHS

Bipolar winding, Connector type

Unipolar winding, Connector type ▶p. 45

#### Customizing

Shaft length Shaft shape

Varies depending on the model number and quantity. Contact us for details.

#### Bipolar winding, Connector type

| Model no.    |              | Holding torque at 2-phase energization | Rated current | Wiring resistance | Winding inductance | Rotor inertia           | Mass | Motor<br>length (L) |
|--------------|--------------|----------------------------------------|---------------|-------------------|--------------------|-------------------------|------|---------------------|
| Single shaft | Dual shaft   | N·m min.                               | A/phase       | Ω/phase           | mH/phase           | ×10 <sup>-4</sup> kg⋅m² | kg   | mm                  |
| SF2421-10B41 | SF2421-10B11 | 0.29                                   | 1             | 3.6               | 7                  | 0.031                   | 0.23 | 33±0.5              |
| SF2422-10B41 | SF2422-10B11 | 0.43                                   | 1             | 4.6               | 9.6                | 0.046                   | 0.3  | 39±0.5              |
| SF2423-10B41 | SF2423-10B11 | 0.56                                   | 1             | 5.3               | 12.5               | 0.063                   | 0.38 | 48±0.5              |
| SF2424-10B41 | SF2424-10B11 | 0.8                                    | 1             | 6.5               | 16                 | 0.094                   | 0.51 | 59.5±1              |

#### Characteristics diagram

#### SF2421-10B41 SF2421-10B11

Constant current circuit Source voltage: 24 VDC Operating current: 1 A/phase, 2-phase energization (full-step) Pull-out torque: J.=0.94×10-<sup>4</sup>kg·m² (use the rubber coupling) fs: Maximum self-start fragespace whose part frequency when not loaded

SF2423-10B41

SF2423-10B11

Constant current circuit
Source voltage: 24 VDC
Operating current:
1 A/phase, 2-phase
energization (full-step)
Pull-out torque:
J.=0.94×10-4kg·m² (use the
rubber coupling)
fs: Maximum self-start
frequency when not
loaded

loaded



#### 1000 2000 3000 5000 100 Number of rotations (min-1)

#### 0.7 0.6 0.5 € 0.5 ≥ 0.4 Pull-out torque Torque (1 0.2 0.1 0.1 Pulse rate (kpulse/s) 1000 2000 3000 5000

Number of rotations (min-1)

#### SF2422-10B41 SF2422-10B11

Constant current circuit
Source voltage: 24 VDC
Operating current:
1 A/phase, 2-phase
energization (full-step)
Pull-out torque:
J<sub>1</sub>=0.94×10<sup>-4</sup>kg·m² (use the
rubber coupling)
fs: Maximum self-start
fraguspay whop pet frequency when not loaded

# SF2424-10B41 SF2424-10B11

Constant current circuit Source voltage: 24 VDC Operating current: 1 A/phase, 2-phase energization (full-step) Pull-out torque: Ju-2.6x10-4g-m² (use the rubber coupling) fs: Maximum self-start frequency when not loaded





#### ■ Dimensions (Unit: mm)



#### Internal wiring ( ) connector pin number



Option (sold separately): Motor cable model no. 4835775-1



This motor cable is for model no. SF242□-10B□1.

#### Compatible drivers

Model no.: BS1D200P10

Operating current select switch setting: A

The characteristics diagram shown above is from our experimental circuit.

# Allowable Radial/Thrust Load



|               |                    | Dietance    | from end of    | chaft: mm |     |                      |  |
|---------------|--------------------|-------------|----------------|-----------|-----|----------------------|--|
| Motor size    | Model no.          | 0           | 5              | 10        | 15  | - Thrust load<br>- N |  |
|               |                    | Radial load | Radial load: N |           |     |                      |  |
| 14 mm sq.     | SH214 🗌            | 10          | 11             | 13        | _   | 0.7                  |  |
| 28 mm sq.     | SH228 🗌            | 42          | 48             | 56        | 66  | 3                    |  |
| 35 mm sq.     | SH353 🗌            | 40          | 50             | 67        | 98  | 10                   |  |
|               | SF242 □            | 20          | 29             | 49        | 68  | 10                   |  |
| 42 mm sq.     | SH142 🗌            | 22          | 26             | 33        | 46  | 10                   |  |
|               | SS242 🗌            | 10          | -              | _         | _   | 4.9                  |  |
| E0 mm oa      | 103H670 🗌          | 71          | 87             | 115       | 167 | 15                   |  |
| 50 mm sq.     | SS250 🗆            | 8.5         | -              | -         | _   | 4.9                  |  |
| E6 mm on      | 103H712 🗌          | 52          | 65             | 85        | 123 | 15                   |  |
| 56 mm sq.     | 103H7128           | 85          | 105            | 138       | 200 | 15                   |  |
| 60 mm sq.     | 103H782 🗌          | - 70        | 87             | 114       | 165 | 20                   |  |
| oo iiiiii sq. | SH160 🗆            | 70          | 07             | 114       | 105 | 15                   |  |
| 86 mm sq.     | SM286 ☐<br>SH286 ☐ | 167         | 193            | 229       | 280 | 60                   |  |
| *86 mm        | 103H822 🗆          | 191         | 234            | 301       | 421 | 60                   |  |
| °106 mm       | 103H8922 🗌         | 321         | 356            | 401       | 457 | 100                  |  |

# **Internal Wiring and Rotation Direction**

#### **Unipolar winding**

Connector type model no.: SF242

#### ■ Internal wire connection

() connector pin number



#### Direction of motor rotation

When excited by a direct current in the order shown below, the direction of rotation is clockwise as viewed from the output shaft side.

|                |   | Connector pin no. |     |     |     |      |  |
|----------------|---|-------------------|-----|-----|-----|------|--|
|                |   | (3, 9)            | (1) | (7) | (5) | (11) |  |
|                | 1 | +                 | -   | -   |     |      |  |
| Exciting       | 2 | +                 |     | -   | -   |      |  |
| Exciting order | 3 | +                 |     |     | -   | -    |  |
|                | 4 | +                 | -   |     |     | -    |  |

Connector type model no.: 103H782 □□

#### Internal wire connection

() connector pin number



#### Direction of motor rotation

When excited by a direct current in the order shown below, the direction of rotation is clockwise as viewed from the output shaft side.

|                |   | Connecto | Connector pin no. |     |     |     |  |  |
|----------------|---|----------|-------------------|-----|-----|-----|--|--|
|                |   | (1, 6)   | (4)               | (3) | (5) | (2) |  |  |
| Exciting       | 1 | +        | -                 | -   |     |     |  |  |
|                | 2 | +        |                   | -   | -   |     |  |  |
| Exciting order | 3 | +        |                   |     | -   | -   |  |  |
|                | 4 | +        | -                 |     |     | -   |  |  |

Lead wire type

#### Internal wire connection



#### ■ Direction of motor rotation

When excited by a direct current in the order shown below, the direction of rotation is clockwise as viewed from the output shaft side.

|          |   | Lead wire color |     |      |        |        |  |  |
|----------|---|-----------------|-----|------|--------|--------|--|--|
|          |   | White, black    | Red | Blue | Yellow | Orange |  |  |
|          | 1 | +               | -   | -    |        |        |  |  |
| Exciting | 2 | +               |     | -    | -      |        |  |  |
| order    | 3 | +               |     |      | -      | -      |  |  |
|          | 4 | +               | -   |      |        | -      |  |  |

### **Bipolar winding**

Connector type model no.: SF242

#### Internal wire connection

( ) connector pin number



#### Direction of motor rotation

When excited by a direct current in the order shown below, the direction of rotation is clockwise as viewed from the output shaft side.

|                | _ | Connecto | or pin no. |     |     |
|----------------|---|----------|------------|-----|-----|
|                |   | (3)      | (7)        | (5) | (9) |
|                | 1 | -        | -          | +   | +   |
| Exciting       | 2 | +        | _          | -   | +   |
| Exciting order | 3 | +        | +          | -   | -   |
|                | 4 | _        | +          | +   | _   |

Connector type model no.: 103H782

#### Internal wire connection

( ) connector pin number



#### Direction of motor rotation

When excited by a direct current in the order shown below, the direction of rotation is clockwise as viewed from the output shaft side.

|                |   | Connecto | or pin no. |     |     |
|----------------|---|----------|------------|-----|-----|
|                |   | (3)      | (2)        | (4) | (1) |
|                | 1 | -        | -          | +   | +   |
| Exciting       | 2 | +        | -          | -   | +   |
| Exciting order | 3 | +        | +          | -   | -   |
|                | 4 | -        | +          | +   | -   |

Lead wire type

#### Internal wire connection



#### Direction of motor rotation

When excited by a direct current in the order shown below, the direction of rotation is clockwise as viewed from the output shaft side.

|                |   | Lead wir | e color |        |        |
|----------------|---|----------|---------|--------|--------|
|                |   | Red      | Blue    | Yellow | Orange |
|                | 1 | -        | -       | +      | +      |
| Exciting       | 2 | +        | -       | -      | +      |
| Exciting order | 3 | +        | +       | -      | -      |
|                | 4 | _        | +       | +      | -      |

# **General Specifications**

| Motor model no.                                                                                                                                                                                                                                                                                   | SH214 🗌                                                                                                                                                                                                                                                                                                     | SH228 🗌                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SH353                                                                                                                                | SS242 🗌                                                 | SH142 🗌                                                                                                         | SF242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SS250 🗆                                                                                                                                | 103H670 🗌                                                                                    | 103H712 🗌                                             |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------|--|
| Type                                                                                                                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                           | 311220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 311333 🗆                                                                                                                             | 33242                                                   | 311142                                                                                                          | 31 242 🗆                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 33230                                                                                                                                  | 10311070                                                                                     | 10311712                                              |  |
| Operating ambient temperature                                                                                                                                                                                                                                                                     | -10 to +50°C                                                                                                                                                                                                                                                                                                | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                      |                                                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                        |                                                                                              |                                                       |  |
| Storage temperature                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                      |                                                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                        |                                                                                              |                                                       |  |
| Operating ambient humidity                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nsation)                                                                                                                             |                                                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                        |                                                                                              |                                                       |  |
| Storage humidity                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                             | to 95% RH (no condensation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                      |                                                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                        |                                                                                              |                                                       |  |
| Operation altitude                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                             | 000 m max. above sea level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                      |                                                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                        |                                                                                              |                                                       |  |
| Vibration resistance                                                                                                                                                                                                                                                                              | Vibration fre                                                                                                                                                                                                                                                                                               | ibration frequency 10 to 500 Hz, total amplitude 1.52 mm (10 to 70 Hz), vibration acceleration 150 m/s² (70 to 500 z), sweep time 15 min/cycle, 12 sweeps in each X, Y and Z direction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                      |                                                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                        |                                                                                              |                                                       |  |
| Impact resistance                                                                                                                                                                                                                                                                                 | 500 m/s <sup>2</sup> of a                                                                                                                                                                                                                                                                                   | cceleration fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | r 11 ms with                                                                                                                         | half-sine wave                                          | applying the                                                                                                    | ree times for X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , Y, and Z axe                                                                                                                         | s each, 18 time                                                                              | es in total.                                          |  |
| Thermal class                                                                                                                                                                                                                                                                                     | Class B (+13                                                                                                                                                                                                                                                                                                | 30°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                      |                                                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                        |                                                                                              |                                                       |  |
| Withstandable<br>voltage                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                             | At normal temperature and humidity, no failure with 500 VAC @50/60 Hz applied for one humidity, no failure with 1000 VAC minute between motor winding and frame.  At normal temperature and humidity, no failure with 1000 VAC @50/60 Hz applied for one minute between motor winding and frame.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                      |                                                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                        |                                                                                              |                                                       |  |
| Insulation resistance                                                                                                                                                                                                                                                                             | At normal to                                                                                                                                                                                                                                                                                                | emperature a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nd humidity                                                                                                                          | , not less thai                                         | n 100 MΩ be                                                                                                     | tween windir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | g and frame                                                                                                                            | by 500 VDC n                                                                                 | negger.                                               |  |
| Protection grade                                                                                                                                                                                                                                                                                  | _                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                      |                                                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                        |                                                                                              |                                                       |  |
| Winding temperature rise                                                                                                                                                                                                                                                                          | 80 K max. (I                                                                                                                                                                                                                                                                                                | Based on SAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NYO DENKI s                                                                                                                          | standard)                                               |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                        |                                                                                              |                                                       |  |
| Static angle error                                                                                                                                                                                                                                                                                | ±0.09°                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                      |                                                         | ±0.054°                                                                                                         | ±0.09°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                        |                                                                                              | ±0.054°                                               |  |
| Thrust play *1                                                                                                                                                                                                                                                                                    | 0.075 mm<br>max.<br>(load: 0.35<br>N)                                                                                                                                                                                                                                                                       | 0.075 mm<br>max.<br>(load: 1.5 N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.075 mm<br>max.<br>(load: 5 N)                                                                                                      | 0.075 mm<br>max.<br>(load: 4 N)                         | 0.075 mm<br>max.<br>(load: 5 N)                                                                                 | 0.075 mm<br>(load: 5 N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.075 mm<br>max.<br>(load: 4 N)                                                                                                        | 0.075 mm<br>(load: 10 N)                                                                     | 0.075 mm<br>(load: 10 N)                              |  |
| Radial play *2                                                                                                                                                                                                                                                                                    | 0.025 mm m                                                                                                                                                                                                                                                                                                  | 0.025 mm max. (load: 5 N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                      |                                                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                        |                                                                                              |                                                       |  |
| Shaft runout                                                                                                                                                                                                                                                                                      | 0.025 mm                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                      |                                                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                        |                                                                                              |                                                       |  |
| Concentricity of mounting pilot relative to shaft                                                                                                                                                                                                                                                 | ø0.05 mm                                                                                                                                                                                                                                                                                                    | ø0.05 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ø0.075 mm                                                                                                                            | ø0.075 mm                                               | ø0.05 mm                                                                                                        | ø0.05 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ø0.075 mm                                                                                                                              | ø0.075 mm                                                                                    | ø0.075 mm                                             |  |
| Squareness of mounting surface relative to shaft                                                                                                                                                                                                                                                  | 0.1 111111                                                                                                                                                                                                                                                                                                  | 0.1 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.1 mm                                                                                                                               | 0.1 mm                                                  | 0.1 mm                                                                                                          | 0.1 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.1 mm                                                                                                                                 | 0.075 mm                                                                                     | 0.075 mm                                              |  |
| Direction of motor mounting                                                                                                                                                                                                                                                                       | Can be free                                                                                                                                                                                                                                                                                                 | ly mounted v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ertically or h                                                                                                                       | orizontally                                             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                        |                                                                                              |                                                       |  |
| Motor model no.                                                                                                                                                                                                                                                                                   | SH160 🗆                                                                                                                                                                                                                                                                                                     | 103H782 🗆                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SH286 □                                                                                                                              | 103H8922                                                | SM286 □                                                                                                         | 103H712 ☐ -6<br>CE Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6 🗆 0   103H822<br>CE Mode                                                                                                             |                                                                                              | 8H8922 □ -63 □ 1<br>Model                             |  |
| Type                                                                                                                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                      |                                                         | S1 (contin                                                                                                      | uous operati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | on)                                                                                                                                    |                                                                                              |                                                       |  |
| Operating ambient temperature                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                      |                                                         | -10 to +40                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                        |                                                                                              |                                                       |  |
| Storage temperature                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                      |                                                         | -20 to +60                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                        |                                                                                              |                                                       |  |
|                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                      |                                                         | RH max. at 40°C or less (no condensation)                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                        |                                                                                              |                                                       |  |
|                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nsation)                                                                                                                             |                                                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 to 95% RH (no condensation)  95% RH max. at 40°C or less, 57% RH max. at 50°C or less, 35% RH max. at 60°C or less (no condensation) |                                                                                              |                                                       |  |
|                                                                                                                                                                                                                                                                                                   | 20 to 90% R                                                                                                                                                                                                                                                                                                 | H (no conder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                      |                                                         | 95% RH m                                                                                                        | nax. at 40°C o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                        |                                                                                              | C or less,                                            |  |
| Operating ambient humidity                                                                                                                                                                                                                                                                        | 20 to 90% R<br>5 to 95% RH<br>1000 m max                                                                                                                                                                                                                                                                    | H (no conder<br>I (no condens<br>c. above sea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | sation)<br>evel                                                                                                                      |                                                         | 95% RH m<br>35% RH m                                                                                            | nax. at 40°C o<br>nax. at 60°C o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | r less (no con                                                                                                                         | densation)                                                                                   |                                                       |  |
| Operating ambient humidity Storage humidity Operation altitude Vibration resistance                                                                                                                                                                                                               | 20 to 90% R<br>5 to 95% RH<br>1000 m max<br>Vibration fre<br>500 Hz), swe                                                                                                                                                                                                                                   | H (no conder<br>I (no condens<br>c. above sea<br>equency 10 to<br>eep time 15 r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | evel<br>5 500 Hz, tota<br>nin/cycle, 12                                                                                              | sweeps in ea                                            | 95% RH m<br>35% RH m<br>1.52 mm (10<br>ch X, Y and                                                              | nax. at 40°C on ax. at 60°C on ax. a | r less (no con                                                                                                                         | densation)<br>ration 150 m/s                                                                 | s² (70 to                                             |  |
| Operating ambient humidity Storage humidity Operation altitude                                                                                                                                                                                                                                    | 20 to 90% R<br>5 to 95% RH<br>1000 m max<br>Vibration fre<br>500 Hz), swe                                                                                                                                                                                                                                   | H (no conder<br>I (no condens<br>c. above sea<br>equency 10 to<br>eep time 15 r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | evel<br>5 500 Hz, tota<br>nin/cycle, 12                                                                                              | sweeps in ea                                            | 95% RH m<br>35% RH m<br>1.52 mm (10<br>ch X, Y and<br>ve applying                                               | nax. at 40°C on ax. at 60°C on ax. a | r less (no con                                                                                                                         | densation)<br>ration 150 m/s                                                                 | s² (70 to                                             |  |
| Operating ambient humidity Storage humidity Operation altitude Vibration resistance                                                                                                                                                                                                               | 20 to 90% R<br>5 to 95% RH<br>1000 m max<br>Vibration fre<br>500 Hz), swe<br>500 m/s <sup>2</sup> of a<br>Class B (+13                                                                                                                                                                                      | H (no condent<br>I (no condent<br>I above seal<br>equency 10 to<br>eep time 15 nacceleration f<br>30°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | eation)<br>evel<br>5 500 Hz, tota<br>nin/cycle, 12<br>or 11 ms with                                                                  | sweeps in ean half-sine wa                              | 95% RH m<br>35% RH m<br>1.52 mm (10<br>ch X, Y and<br>ve applying<br>Class F<br>(+155°C)                        | to 70 Hz), vib Z direction. three times for Class B (+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | r less (no con<br>ration acceler<br>or X, Y and Z a<br>130°C)                                                                          | densation)<br>ration 150 m/s                                                                 | s² (70 to<br>times in total                           |  |
| Operating ambient humidity Storage humidity Operation altitude Vibration resistance Impact resistance                                                                                                                                                                                             | 20 to 90% R<br>5 to 95% RH<br>1000 m max<br>Vibration fre<br>500 Hz), swe<br>500 m/s² of a<br>Class B (+13<br>At normal terr<br>ure with 1000                                                                                                                                                               | H (no conders I (no condens c. above sea lequency 10 to eep time 15 r acceleration f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | evel 5 500 Hz, tota nin/cycle, 12 or 11 ms with umidity, no fail applied for one                                                     | sweeps in ean half-sine wa                              | 95% RH m 35% RH m 1.52 mm (10 ch X, Y and ve applying Class F (+155°C) temperature                              | to 70 Hz), vib Z direction. three times for Class B (+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | r less (no con<br>ration acceler<br>or X, Y and Z a                                                                                    | densation) ration 150 m/s exes each, 18                                                      | s² (70 to<br>times in total                           |  |
| Operating ambient humidity Storage humidity Operation altitude Vibration resistance Impact resistance Thermal class Withstandable voltage Insulation resistance                                                                                                                                   | 20 to 90% R<br>5 to 95% RH<br>1000 m max<br>Vibration fre<br>500 Hz), swe<br>500 m/s² of a<br>Class B (+13<br>At normal tem<br>ure with 1000<br>minute betwe                                                                                                                                                | H (no condense. Above sea lequency 10 to eep time 15 racceleration f 80°C)  hereture and h VAC @50/60 Hz en motor winding.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | evel 0 500 Hz, tota nin/cycle, 12 or 11 ms with umidity, no fail applied for one                                                     | At normal applied for                                   | 95% RH m 35% RH m 1.52 mm (10 ch X, Y and ve applying Class F (+155°C) temperature one minute                   | to 70 Hz), vib Z direction. three times for Class B (+ and humidity between mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | r less (no con<br>ration acceler<br>or X, Y and Z a<br>130°C)<br>/, no failure w                                                       | densation) ration 150 m/s exes each, 18 rith 1500 VAC nd frame.                              | s² (70 to<br>times in total<br>c @50/60 Hz            |  |
| Operating ambient humidity Storage humidity Operation altitude Vibration resistance Impact resistance Thermal class Withstandable voltage Insulation resistance Protection grade                                                                                                                  | 20 to 90% R<br>5 to 95% RH<br>1000 m max<br>Vibration fro<br>500 Hz), swe<br>500 m/s² of a<br>Class B (+13<br>At normal tem<br>ure with 1000<br>minute betwe<br>At normal te                                                                                                                                | H (no condense. Above sea lequency 10 to eep time 15 racceleration f 80°C)  In perature and h VAC @50/60 Hz en motor winding emperature and e | evel 5 500 Hz, tota nin/cycle, 12 or 11 ms with umidity, no fail applied for oning and frame. nd humidity                            | At normal applied for, not less their                   | 95% RH m 35% RH m 1.52 mm (10 ch X, Y and ve applying Class F (+155°C) temperature one minute                   | to 70 Hz), vib Z direction. three times for Class B (+ and humidity between mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | r less (no con<br>ration acceler<br>or X, Y and Z a<br>130°C)<br>/, no failure w<br>tor winding a                                      | densation) ration 150 m/s exes each, 18 rith 1500 VAC nd frame.                              | s² (70 to<br>times in total<br>c @50/60 Hz            |  |
| Operating ambient humidity Storage humidity Operation altitude Vibration resistance Impact resistance Thermal class Withstandable voltage Insulation resistance Protection grade Winding temperature rise                                                                                         | 20 to 90% R<br>5 to 95% RH<br>1000 m max<br>Vibration fro<br>500 Hz), swe<br>500 m/s² of a<br>Class B (+13<br>At normal tem<br>ure with 1000<br>minute betwe<br>At normal to                                                                                                                                | H (no condense. Above sea lequency 10 to eep time 15 racceleration f 80°C)  In perature and h VAC @50/60 Hz en motor winding emperature a Based on SAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | evel 5 500 Hz, tota nin/cycle, 12 or 11 ms with umidity, no fail applied for oning and frame. nd humidity                            | At normal applied for, not less their                   | 95% RH m 35% RH m 1.52 mm (10 ch X, Y and we applying Class F (+155°C) temperature one minute m 100 MΩ be       | to 70 Hz), vib Z direction. three times for Class B (+ and humidity between most                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | r less (no con<br>ration acceler<br>or X, Y and Z a<br>130°C)<br>/, no failure w<br>tor winding a<br>lig and frame                     | densation) ration 150 m/s exes each, 18 rith 1500 VAC nd frame.                              | s² (70 to<br>times in total<br>c @50/60 Hz            |  |
| Operating ambient humidity Storage humidity Operation altitude Vibration resistance Impact resistance Thermal class Withstandable voltage Insulation resistance Protection grade Winding temperature rise Static angle error                                                                      | 20 to 90% R<br>5 to 95% RH<br>1000 m max<br>Vibration from<br>500 Hz), swe<br>500 m/s² of a<br>Class B (+13<br>At normal terrure with 1000<br>minute between<br>At normal terrure with 2000<br>At normal terrure with 2000<br>Minute between At normal terrure with 2000<br>4 to 2000<br>80 K max. (Fig. 1) | H (no condense (no | evel o 500 Hz, tota nin/cycle, 12 or 11 ms with umidity, no fail applied for oning and frame. nd humidity                            | At normal applied for, not less their                   | 95% RH m 35% RH m 1.52 mm (10 ch X, Y and we applying Class F (+155°C) temperature one minute m 100 MΩ be       | to 70 Hz), vib Z direction. three times for Class B (+ and humidity between mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | r less (no con<br>ration acceler<br>or X, Y and Z a<br>130°C)<br>/, no failure w<br>tor winding a                                      | densation) ration 150 m/s exes each, 18 rith 1500 VAC nd frame.                              | s² (70 to<br>times in total<br>c @50/60 Hz            |  |
| Operating ambient humidity Storage humidity Operation altitude Vibration resistance Impact resistance Thermal class Withstandable voltage Insulation resistance Protection grade Winding temperature rise Static angle error Thrust play *1                                                       | 20 to 90% R 5 to 95% RH 1000 m max Vibration fre 500 Hz), swe 500 m/s² of a Class B (+13 At normal tem ure with 1000 minute betwe At normal te  80 K max. (I ±0.054° 0.075 mm m 0.025 mm                                                                                                                    | H (no condense (no | evel 5 500 Hz, tota nin/cycle, 12 or 11 ms with umidity, no fail applied for oning and frame. nd humidity. NYO DENKI s  N)  0.025 mm | At normal applied for not less then standard)  0.025 mm | 95% RH m 35% RH m 1.52 mm (10 ch X, Y and ve applying Class F (+155°C) temperature one minute in 100 MΩ be IP43 | to 70 Hz), vib Z direction. three times for Class B (+ and humidity between more tween windir ±0.054°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | r less (no con<br>ration acceler<br>or X, Y and Z a<br>130°C)<br>/, no failure w<br>tor winding a<br>g and frame<br>±0.09°             | densation) ration 150 m/s exes each, 18 rith 1500 VAC nd frame. by 500 VDC n                 | s² (70 to<br>times in total<br>c @50/60 Hz<br>negger. |  |
| Operating ambient humidity Storage humidity Operation altitude Vibration resistance Impact resistance Thermal class Withstandable voltage Insulation resistance Protection grade Winding temperature rise Static angle error Thrust play *1 Radial play *2                                        | 20 to 90% R<br>5 to 95% RH<br>1000 m max<br>Vibration fre<br>500 Hz), swe<br>500 m/s² of a<br>Class B (+13<br>At normal tem<br>ure with 1000<br>minute betwe<br>At normal te<br>                                                                                                                            | H (no condense. A look of the condense.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | evel o 500 Hz, tota nin/cycle, 12 or 11 ms with umidity, no fail applied for oning and frame. nd humidity, NYO DENKI s               | At normal applied for not less then standard)  0.025 mm | 95% RH m 35% RH m 1.52 mm (10 ch X, Y and ve applying Class F (+155°C) temperature one minute m 100 MΩ be IP43  | to 70 Hz), vib Z direction. three times for Class B (+ and humidity between more tween windir ±0.054°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | r less (no con<br>ration acceler<br>or X, Y and Z a<br>130°C)<br>/, no failure w<br>tor winding a<br>g and frame<br>±0.09°             | densation) ration 150 m/s exes each, 18 rith 1500 VAC nd frame. by 500 VDC n                 | s² (70 to<br>times in total<br>; @50/60 Hz<br>negger. |  |
| Operating ambient humidity Storage humidity Operation altitude Vibration resistance Impact resistance Thermal class Withstandable voltage Insulation resistance Protection grade Winding temperature rise Static angle error Thrust play *1 Radial play *2 Shaft runout Concentricity of mounting | 20 to 90% R 5 to 95% RH 1000 m max Vibration fre 500 Hz), swe 500 m/s² of a Class B (+13 At normal tem ure with 1000 minute betwe At normal te  80 K max. (I ±0.054° 0.075 mm m 0.025 mm                                                                                                                    | H (no condense (no | evel 5 500 Hz, tota nin/cycle, 12 or 11 ms with umidity, no fail applied for oning and frame. nd humidity. NYO DENKI s  N)  0.025 mm | At normal applied for not less then standard)  0.025 mm | 95% RH m 35% RH m 1.52 mm (10 ch X, Y and ve applying Class F (+155°C) temperature one minute in 100 MΩ be IP43 | to 70 Hz), vib Z direction. three times for Class B (+ and humidity between more tween windir ±0.054°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | r less (no con<br>ration acceler<br>or X, Y and Z a<br>130°C)<br>/, no failure w<br>tor winding a<br>g and frame<br>±0.09°             | densation) ration 150 m/s exes each, 18 rith 1500 VAC nd frame. by 500 VDC n                 | s² (70 to<br>times in total<br>c @50/60 Hz<br>negger. |  |
| Operating ambient humidity Storage humidity Operation altitude Vibration resistance Impact resistance Thermal class Withstandable voltage Insulation resistance Protection grade Winding temperature rise Static angle error Thrust play *1 Radial play *2 Shaft runout                           | 20 to 90% RH 5 to 95% RH 1000 m max Vibration fre 500 Hz), swe 500 m/s² of a Class B (+13 At normal tem ure with 1000 minute betwee At normal te = 80 K max. (E ±0.054° 0.075 mm m 0.025 mm (load: 5 N) 0.025 mm ø0.075 mm                                                                                  | H (no condense (no | evel 5 500 Hz, tota nin/cycle, 12 or 11 ms with umidity, no fail applied for oning and frame. nd humidity. NYO DENKI s  N)  0.025 mm | At normal applied for not less then standard)  0.025 mm | 95% RH m 35% RH m 1.52 mm (10 ch X, Y and ve applying Class F (+155°C) temperature one minute in 100 MΩ be IP43 | to 70 Hz), vib Z direction. three times for Class B (+ and humidity between more tween windir ±0.054°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | r less (no con<br>ration acceler<br>or X, Y and Z a<br>130°C)<br>/, no failure w<br>tor winding a<br>g and frame<br>±0.09°             | densation) ration 150 m/s exes each, 18 rith 1500 VAC nd frame. by 500 VDC n mm 0.0 5 N) (lo | s² (70 to<br>times in total<br>c @50/60 Hz<br>negger. |  |

#### ■ Safety standards

Model no.: SM286  $\ \square$  CE/UL marked models

| CE    | Standard category      |                      | Applicable standard    |  |
|-------|------------------------|----------------------|------------------------|--|
| (TÜV) | Low-voltage directives |                      | EN 60034-1, EN 60034-5 |  |
|       |                        | Applicable standard  | File no.               |  |
| UL    | UL                     | UL 1004-1, UL 1004-6 | E170922                |  |
|       | UL for Canada          | CSA C22.2 No.100     | - E179832              |  |

| Model no | .: 103H712 🗆 -6 🗆 0, 103H822 🗆 -6 🗆 0, 103H | 18922 🗌 -63 🗌 1 | CE marked model |
|----------|---------------------------------------------|-----------------|-----------------|
|          |                                             |                 |                 |

|       | ·                      |                        |
|-------|------------------------|------------------------|
| CE    | Standard category      | Applicable standard    |
| (TÜV) | Low-voltage directives | EN 60034-1, EN 60034-5 |

<sup>\*1</sup> Thrust play: Shaft displacement under axial load.
\*2 Radial play: Shaft displacement under radial load applied 1/3rd of the length from the end of the shaft.

## **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Stepper Motors category:

Click to view products by Sanyo Denki manufacturer:

Other Similar products are found below:

HT17-275 HT11-021 80910003 HT23-598 HT08-221 82929001 82924031 82924028 82924033 82924027 82924039 82924052 82924062 82924024 PM42S-048-HHC8 PM20L-020-HHC3 PM42L-048-HHC9 PM25L-024-HHC5 HT23-598D-ZAA 82930002 103H7121-0410 103H7123-0140 103H7126-6740 103H7823-0440 103H7126-0440 103H8223-5141 103H8222-5141 103H8223-6340 103H5210-5240 103H7126-0740 103H7126-5840 103H8221-6240 103H7126-5740 103H7822-5740 103H7823-5740 103H8222-6340 STEPPER MOTOR BIPOLAR 42X38MM 2.8V 1.7A SY20STH30-0604A SH2141-5541 STEPPER MOTOR: UNIPOLAR/BIPOLAR 57×56MM PM25S-048-HHC4 NSANYO PANCAKE STEPPER MOTOR: BIPOLAR 42× STEPPER MOTOR: UNIPOLAR/BIPOLAR 57×76MM PD28-1-1021-TMCL PD28-3-1021-TMCL PD42-1-1140-TMCL PD42-3-1141 PD57-1-1276-TMCL 103H7123-5740 82924048