(8) 5CHmER5RL

EN Operating instructions. .pages 1 to 12
-

Content

1 About this document
 1 About this document

1.1 Function. 1
1.2 Target group: authorised qualified personnel. 1
1.3 Explanation of the symbols used . 1
1.4 Appropriate use . 1
1.5 General safety instructions . 1
1.6 Warning about misuse . 2
1.7 Exclusion of liability . 2

2 Product description

2.1 Ordering code . 2
2.2 Special versions. 2
2.3 Comprehensive quality insurance to 2006/42/EC 2
2.4 Purpose . 2
2.5 Technical data . 3
2.6 Safety classification 3

3 Mounting

3.1 General mounting instructions 4
3.2 Manual release 5
3.3 Electrical manual release - E (for -ST2). 5
3.4 Emergency exit -T 5
3.5 Assembly with mounting set 5
3.6 Dimensions 6
3.7 Actuator and accessories 6
4 Electrical connection
4.1 General information for electrical connection 7
4.2 Control options in the normal operating mode 7
4.3 Requirements for the connected safety-monitoring module 7
5 Operating principles and actuator encoding5.1 Mode of operation of the safety outputs.8
5.2 Actuator encoding 8
6 Diagnostic functions
6.1 Diagnostic-LEDs8
6.2 Diagnostic information 9
7 Set-up and maintenance
7.1 Functional testing 10
7.2 Maintenance 10
8 Disassembly and disposal
8.1 Disassembly. 10
8.2 Disposal. 10
9 Appendix
9.1 Wiring configuration and accessories 11
10 EU Declaration of conformity

1. About this document

1.1 Function

This operating instructions manual provides all the information you need for the mounting, set-up and commissioning to ensure the safe operation and disassembly of the safety switchgear. The operating instructions must be available in a legible condition and a complete version in the vicinity of the device.

1.2 Target group: authorised qualified personnel

All operations described in this operating instructions manual must be carried out by trained specialist personnel, authorised by the plant operator only.

Please make sure that you have read and understood these operating instructions and that you know all applicable legislations regarding occupational safety and accident prevention prior to installation and putting the component into operation.

The machine builder must carefully select the harmonised standards to be complied with as well as other technical specifications for the selection, mounting and integration of the components.

1.3 Explanation of the symbols used

Information, hint, note:
This symbol is used for identifying useful additional information.

Caution: Failure to comply with this warning notice could lead to failures or malfunctions.
Warning: Failure to comply with this warning notice could lead to physical injury and/or damage to the machine.

1.4 Appropriate use

The products described in these operating instructions are developed to execute safety-related functions as part of an entire plant or machine. It is the responsibility of the manufacturer of a machine or plant to ensure the correct functionality of the entire machine or plant.

The safety switchgear must be exclusively used in accordance with the versions listed below or for the applications authorised by the manufacturer. Detailed information regarding the range of applications can be found in the chapter "Product description".

1.5 General safety instructions

The user must observe the safety instructions in this operating instructions manual, the country specific installation standards as well as all prevailing safety regulations and accident prevention rules.

Further technical information can be found in the Schmersal catalogues or in the online catalogue on the Internet: products.schmersal.com.

The information contained in this operating instructions manual is provided without liability and is subject to technical modifications. There are no residual risks, provided that the safety instructions as well as the instructions regarding mounting, commissioning, operation and maintenance are observed.

1.6 Warning about misuse

In case of improper use or manipulation of the safety switchgear, personal hazards or damages to machinery or plant components cannot be excluded. The relevant requirements of the standard ISO 14119 must be observed.

1.7 Exclusion of liability

We shall accept no liability for damages and malfunctions resulting from defective mounting or failure to comply with this operating instructions manual. The manufacturer shall accept no liability for damages resulting from the use of unauthorised spare parts or accessories.

For safety reasons, invasive work on the device as well as arbitrary repairs, conversions and modifications to the device are strictly forbidden, the manufacturer shall accept no liability for damages resulting from such invasive work, arbitrary repairs, conversions and/or modifications to the device.

2. Product description

2.1 Ordering code

This operating instructions manual applies to the following types:

AZM400Z-(1)-(2)-(3)-(4)-(5)

No.		Option
	(1)	Sescription
(2)	ST2	1 Connector plug M12, 8-pin 2 Connector plug M12, 8-pin / 5-pin Standard coding
(3)	IP2P	Individual coding Individual coding, re-teaching enabled 1 diagnostic output and 2 safety outputs, all p-type (only in connection with ST) 2 diagnostic outputs and 2 safety outputs, all p-type (only in connection with ST2)
(4)	2P2P	Manual release Emergency exit (5)
BOW	With securing holes for Bowden cable assembly Without electrical manual release (only in connection with ST)	
E	With electronic manual release (only in connection with ST2)	

Actuator AZM400-B1

Versions AZM400Z-...-BOW may only be used in connection with Bowden cable release ACC-AZM400-BOW-.M-.M, which is available as an accessory.
Use without the Bowden cable release fitted is not permissible.
Observe the additional information in the operating instructions of the Bowden cable release.

2.2 Special versions

For special versions, which are not listed in the order code below 2.1, these specifications apply accordingly, provided that they correspond to the standard version.

2.3 Comprehensive quality insurance to 2006/42/EC

Schmersal is a certified company to appendix X of the Machinery Directive. As a result, Schmersal is entitled to autonomously conduct the conformity assessment procedure for the products listed in Appendix IV of the MD without involving a notified body. The prototype test certificates are available upon request or can be downloaded from the Internet at products.schmersal.com.

2.4 Purpose

The non-contact, electronic solenoid interlock is designed for application in safety circuits and is used for monitoring the position and locking of movable safety guards.

The safety switchgears are classified according to ISO 14119 as type 4 interlocking devices. Designs with individual coding are classified as highly coded.

The first of the two safety functions is the safe shut-down of both safety outputs when unlocking or opening the guard system and making sure that the switched-off position is maintained when the guard system is open or unlocked (locking function).
The second safety function (interlocking function) is the safe interlocking of a guard system which was locked only once. The locking of the guard system may only be switched off when there is no fault and a valid signal to unlock is present.

When the guard system is closed and there is a valid two-channel control signal applied by the user or through the controller, the locking bolt of the AZM400 can be driven out. As soon as the locking bolt have reached sufficient depth in the locking hole the guard system is considered to be safely locked.

The AZM400 solenoid interlock is a bi-stable system, which means the interlock remains in the last position if power is lost.

The user must evaluate and design the safety chain in accordance with the relevant standards and the required safety level.
If multiple safety sensors are involved in the same safety function, the PFH values of the individual components must be added.

The entire concept of the control system, in which the safety component is integrated, must be validated to the relevant standards.

2.5 Technical data

Standards:
IEC 60947-5-1, ISO 14119, ISO 13849-1, IEC 61508
Material of the enclosure:
Active principle: Aluminium die-cast

Frequency band: RFID / Magnetic field

Transmitter output: max. -6 dBm
Coding level according to ISO 14119:

- I1-version:	high - I2-version:
- Standard coding version:	low
Time to readiness:	$\leq 1.5 \mathrm{~s}$
Response time:	AZM400-B1

Switch distances:
Allowable distance actuator / device incl. angular misalignment:
$1 . . .7 \mathrm{~mm}$
Minimum distance devices: 30 mm
Mechanical data:

Holding force $\mathrm{F}_{\text {max }}$:	$13,000 \mathrm{~N}$
Holding force $\mathrm{F}_{\mathrm{Zh}}:$	$10,000 \mathrm{~N}$
Max. lateral force with bolt return (against tensioned door):	300 N

(does not apply to emergency release, manual release and Bowden cable release)
Mechanical life:
$\geq 1,000,000$ switching cycles

- Which have a lateral force $F_{\text {quer }}=100 \mathrm{~N}$: 100,000 switching cycles
Design of the electrical connection:

-ST:	1 connector M12, 8-pin, A-coded
- ST2:	2 connector M12, 8-pin / 5-pin, both A-coded
Fixing screws:	$2 \times \mathrm{M} 6(10.9)$
Tightening torque for fixing screws:	8 Nm

Ambient conditions:

Ambient temperature:	$-20^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$
Storage and transport temperature:	$-40^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$
Relative humidity:	max. 93%,

non condensing, non icing
Protection class:
IP66, IP67 as per IEC 60529

- AZM400Z-...-BOW: Same protection classes with correctly
Protection class: \quad III
Resistance to shock: $30 \mathrm{~g} / 11 \mathrm{~ms}$
Resistance to vibration: $10 \ldots 150 \mathrm{~Hz}$, Amplitude 0.35 mm Insulation values to IEC 60664-1:
- Rated insulation voltage U_{i} : 32 VDC
- Rated impulse withstand voltage Uimp: 0.8 kV
- Over-voltage category: .8 kV
- Degree of pollution: 3

Electrical data:

Operating voltage U_{B} :	24 VDC -15 \% / +10 \%
(stabilised PELV - power supply)	

Electrical data - Safety outputs:

Safety outputs:					Y1 and Y2
Switching elements:			p-type, short-circuit proof		
Utilisation category:			DC-12: $\mathrm{U}_{\mathrm{e}} / I_{\mathrm{e}}: 24$ VDC / 0.25 A DC-13: $\mathrm{U}_{\mathrm{e}} / \mathrm{I}_{\mathrm{e}}: 24$ VDC / 0.25 A		
Rated operating current I_{e} :			0.25 A		
Leakage current I_{r} :			$\leq 0.5 \mathrm{~mA}$		
Voltage drop U_{d} :			$\leq 2 \mathrm{~V}$		
Test pulse duration:			$\leq 0.5 \mathrm{~ms}$		
Test pulse interval:			$1,000 \mathrm{~ms}$		
Classification:			ZVEI CB24I		
Source:	C2	Sink:	C1	C2	

Electrical data - diagnostic outputs:

[^0]
2.6 Safety classification

- of the interlocking function:

Standards:
ISO 13849-1, IEC 61508
PL:
Control Category: 4
PFH: $1.0 \times 10^{-9} / \mathrm{h}$

PFD:	9.0×10^{-5}
SIL:	suitable for SIL 3 applications

Mission time: 20 years

- of the guard locking function:

Standards: ISO 13849-1, IEC 61508
PL:
e
Control Category: 4
PFH: $\quad 1.8 \times 10^{-9} / \mathrm{h}$
PFD: 1.6×10^{-4}

SIL: \quad suitable for SIL 3 applications
Mission time: 20 years

3. Mounting

3.1 General mounting instructions

Please observe the relevant requirements of the standards ISO 12100, ISO 14119 and ISO 14120.

Any mounting position.
The accumulation of fine-grained contamination in the area of the bolt is to be prevented.
In such a case it is therefore not advised to have vertical mounting, where the bolt goes upwards from below.

For the correct fixing of the solenoid interlock, the device is provided with two mounting holes for M6 screws.

The M6 screws should have at least the strength class 10.9 The tightening torque of the M 6 screws is 8 Nm .

The actuator must be permanently fitted to the safety guards and protected against displacement by suitable measures (tamperproof screws, gluing, drilling of the screw heads).

Use in temperatures below freezing is permitted only with dry cold. The customer must take this into account when assembling the safety switch.

Actuating directions and switch distances

The AZM400 can be operated within the following tolerance limits:
X - axis: $\pm 4 \mathrm{~mm}$
Y - axis: $\pm 4 \mathrm{~mm}$
Z - axis: Distance between actuator and solenoid interlock $1 . . .7 \mathrm{~mm}$ with max. angle offset of 2°

The actuating curves show the typical detection range of the actuator depending on the actuating direction.

The approach direction must only be from the X and Y directions.

The maximum distance of 7 mm between the actuator and the solenoid interlock must be maintained so that the stipulated clamping force and the safe clamping function is achieved according to SIL 3.
The construction of the guard door is to be designed so that it is not possible to move the guard system with the actuator on the Z axis so far that the distance between the interlock and the actuator is greater than 7 mm .

The safety equipment must be designed so that there is no crushing hazard due to the movement of the bolt.

Mounting of the solenoid interlock and the actuator
Refer to the mounting instructions manual for the corresponding actuator.

To avoid any interference inherent to this kind of system and any reduction of the switching distances, please observe the following guidelines:

- Metal parts and magnetic fields in the area of the solenoid interlock and the actuator can influence the switch distance or lead to malfunctions.
- Keep away from metal chips.

Minimum distance between two solenoid interlocks
as well as other systems with same frequency (125 kHz): 30 mm .

3.2 Manual release

For the machine set-up, the solenoid interlock can be unlocked in a deenergised condition. Turning the triangle of the manual release using the triangular key to the position releases the solenoid interlock.
The normal locking function is only restored after the manual release has been returned to its original position 0 .

Triangular key, 101100887, available as an accessory.
Structurally, after turning back the mechanical release a mechanical release that is still active can be indicated by the LEDs (all three LEDs flash). These will be reset after the control inputs are driven again.

Do not turn the manual release beyond the end stop.

After successful commissioning the attached cover is to be screwed onto the manual release and then secured with the appropriate seal. The maximum tightening torque for screwing on the cover is 0.55 Nm .

Locked position:

Unlocked position:

3.3 Electrical manual release - E (for -ST2)

The electrical manual release can be implemented with an additional auxiliary power supply. The auxiliary power supply unit H 1 is for this purpose.
The AZM400 should only be supplied with the auxiliary power supply, this is so the locking bolt can be released independently of the control inputs.
Then no other actions are required, the safety and diagnostic units remain off.

System condition (only valid during the initialising phase):

Main supply	Auxiliary supply	System condifion
0	0	Locking bolt remains in position (safety outputs switched off)
24 V	0	dependent on the control inputs 0
24 V	Locking bolt is retracted automatically (unlock)	
24 V	24 V	Locking bolt remains in position (fault)

The wiring and actuation of the electrical manual release is to undergo a technical safety validation. After switching off the main supply any cross-wire shorts of the auxiliary supply inputs to other supply sources are not detected.

3.4 Emergency exit -T

Emergency exit for use within the hazardous area.

To activate the emergency exit, turn the red lever in the direction of the arrow to the end stop. The bolt moves due to spring force to the unlocked position so that the guard system can be opened in this position and the safety outputs switch off. In the unlocked position, the guard system is secured against unintentional locking.

Do not turn beyond the end stop.

Locked position:

Unlocked position:

To ensure correct operation of emergency exit -T the safety door/guard must not be in a mechanically tensioned state.

3.5 Assembly with mounting set

When using 40 mm aluminium profile, the optimum mounting set MSAZM400 can be used. This consists of two mounting plates including four bolt and four nuts.

3.6 Dimensions

All measurements in mm.

Device for emergency exit

Key
A1: Manual release with cover
A2: Emergency exit
C1: Connector plug M12, 8-pole
C2: Connector plug M12, 5-pole
B: Locking bolt (extended)
D: RFID sensor

AZM400Z-ST2..-T

3.7 Actuator and accessories

Actuator AZM400-B1 (not included in delivery)

7.4

Mounting plate, part of the mounting set MS-AZM400 (available as accessory)

Lockout tag SZ400
(available as accessory)
For detailed information and assembly instructions, see operating instructions SZ400.

Bowden cable release ACC-AZM400-BOW-.M-.M

(available as accessory)
Observe the additional notes in the operating instructions of the Bowden cable release.

4. Electrical connection

4.1 General information for electrical connection

The electrical connection may only be carried out by authorised personnel in a de-energised condition.

The voltage inputs A1 (and H1 with the AZM400Z-ST2..), and the control inputs E1, E2 and E3 must have a permanent protection against over-voltage. The use of PELV supply units according to IEC 60204-1 is recommended. The safety outputs can be integrated into the safety circuit of the control system.

4.2 Control options in the normal operating mode

Due to the control inputs E1, E2 and E3 for controlling the guard locking function it is possible to use different control options to be able to drive the AZM400 with a different safety controller. The function of the control inputs is the same for both ST and ST2 versions.
Setting the operational control inputs according to the following table causes the interlock to unlock.

Input condition	Version P/P		Version P/N		
	E1	E2	E3	E1 = E2	E3
Lock	open	open	GND	open	open
Unlock	24 V	24 V	GND	24 V	GND

Use of safety outputs of the type P/P:
Safety controller

Use of safety controls of the type P/N:
Safety controller

The outputs used for the control must correspond to the Performance Level (PL) of the guard system. To achieve the PL e the control must have tested outputs as these are not tested by the AZM400.

Independent of the version used, the notes in the Operating Instructions of the used controller should be observed. These could include:

- Shielded installed cable
- Minimum test interval every 24 hours - etc.

Block drive

If the locking bolt does not reach the "locked" condition with the first attempt, the AZM400 makes an autonomous attempt. If the second attempt also fails, the AZM400 signals a fault (comp. table 2). After a malfunction, condition of the control inputs has to be changed to allow the locking bolt to be driven out again.

When the guard system closes slowly, a block drive can occur if the actuator that is opening is not in front of the bolt being driven out (see Chapter "Operating equipment and distances").

Unlocking after Power On

If after switching on, the AZM400 is already in the locked position, the device must first be unlocked and then locked again. This is to verify the causality of the drive signals and to check the sufficient depth of the locking bolt. The yellow LED flashes after power-on in the locked position.

4.3 Requirements for the connected safety-monitoring module

- Dual-channel safety input, suitable for 2 p-type semi-conductor outputs (OSSD)

The solenoid interlock cyclically switch off the safety output to test them. The safety-monitoring module therefore does not need to be equipped with a cross-wire short detection. The test impulse time of $\leq 0.4 \mathrm{~ms}$ must be tolerated by the evaluation. The test impulse, the switch-off time of the solenoid interlock can be extended depending on the cable length and the capacity of the cable used.

Configuration of the safety controller

If the solenoid interlock is connected to electronic safety-monitoring modules, we recommend that you set a discrepancy time of 100 ms . The safety inputs of the safety-monitoring module must be able to blank a test impulse of $<1 \mathrm{~ms}$.

Information for the selection of suitable safety-monitoring modules can be found in the Schmersal catalogues or in the online catalogue on the Internet: products.schmersal.com.

5. Operating principles and actuator encoding

5.1 Mode of operation of the safety outputs

With the solenoid interlock AZM400, the unlock signals immediately switch off the safety outputs. The unlocked guard system can be locked again as long as the actuator is within the detection range of the solenoid interlock. In that case, the safety outputs are re-enabled.

If the safety outputs are already enabled, any error that does not immediately affect the functionality of the solenoid interlock (e.g. too high an ambient temperature, interference potential at the safety outputs, cross-wire short) will lead to a warning message, the disabling of the diagnostic output OUT of the ST version and OUT2 of the ST2 version and the delayed shutdown of the safety outputs. safety outputs are disabled if the error warning is active for 30 minutes. The signal combination, diagnostic output OUT of the ST version and OUT2 of the ST2 version disabled and safety channels still enabled, can be used to stop the production process in a controlled manner. After rectifying the fault, the fault message is acknowledged by opening and closing the associated safety door or by switching the operating voltage off and on again.

5.2 Actuator encoding

Solenoid interlocks with standard coding are ready to use upon delivery Individually coded solenoid interlocks and actuators will require the following "teach-in" procedure:

1. Switch the solenoid interlock's voltage supply off and back on.
2. Introduce the actuator in the detection range. The teach-in procedure is signalled at the solenoid interlock, green LED off, red LED on, yellow LED flashes (1 Hz).
3. After 10 seconds, brief yellow cyclic flashes (5 Hz) request the switch-off of the operating voltage of the solenoid interlock. (If the voltage is not switched off within 5 minutes, the solenoid interlock cancels the "teach-in" procedure and signals a false actuator by 5 red flashes).
4. After the operating voltage is switched back on, the actuator must be detected once more in order to activate the taught actuator code. In this way, the activated code is definitively saved!
For ordering suffix -l1, the executed allocation of safety interlock and actuator is irreversible.

For ordering suffix - 12 , the "teach-in" procedure for a new actuator can be repeated an unlimited number of times. When a new actuator is taught, the code, which was applicable until that moment, becomes invalid. Subsequent to that, an enabling inhibit will be active for ten minutes, thus providing for an increased protection against tampering. The green LED will flash until the expiration of the time of the enabling inhibit and the detection of the new actuator. In case of power failure during the lapse of time, the 10-minutes tampering protection time will restart.

Make organisational measures against possible manipulation with other actuators in case that a standard coded variant is used.

6. Diagnostic functions

6.1 Diagnostic-LEDs

The solenoid interlock signals the operating condition, as well as errors through 3-colour LEDs.
green (Power) supply voltage on
yellow (Status) operating condition
red (Fault) Fault (see Table 2: Flash codes of the red diagnostic LED)
Arrangement of the LEDs

The short-circuit proof diagnostic output OUT or OUT1 and OUT2 of the ST2 version can be used for central visualisation or control functions, e.g. in a PLC. It indicates the switching condition as shown in the table 1.

The diagnostic output OUT or OUT1 and OUT2 are not safety relevant outputs!

Error

Errors, which no longer guarantee the safe function of the solenoid interlock (internal error)s cause the safety outputs to be immediately disabled. Any error that does not immediately affect the safe functionality of the solenoid interlock (e.g. excess ambient temperature, safety output to external potential, short circuit) will lead to a delayed shut-down (refer to table 2). After the rectification of the error, the error message is reset by opening the corresponding safety guard. Errors on the control inputs do not cause the shut-down of the safety outputs.

Error warning

A fault has occurred, which causes the safety outputs to be disabled after 30 minutes (LED "fault" flashes, see Table 2). The safety outputs initially remain enabled (max. 30 min). This enables the shutdown of the process in a controlled manner. An error warning is deleted when the cause of error is eliminated.

6.2 Diagnostic information

Table 1: Diagnostic information of the solenoid interlock AZM400

System condition	Control system of the guard locking function	LED's			Safety outputs Y1, Y2	Diagnostic outputs			
					ST version	ST2 v	rsion		
		green	red	yellow		OUT	OUT1	OUT2	
Door open and unlocked (bolt retracted)	Unlock	On	Off	Off		0 V	0 V	0 V	0 V
Door closed and unlocked (bolt retracted)	Unlock	On	Off	Flashes	0 V	24 V	0 V	24 V	
Door closed, lock action active (Bolt moving forwards)	Lock	On	Off	Flashes	0 V	0 V	0 V	24 V	
Door closed and locked (Bolt extended)	Lock	On	Off	On	24 V	24 V	24 V	24 V	
Door closed, unlocking action active (Bolt being retracted)	Unlock	On	Off	Flashes	0 V	0 V	24 V	24 V	
Error states									
Error warning ${ }^{1)}$	Without meaning	On	Flashes ${ }^{2)}$	On	24 V	0 V	24 V	0 V	
Error	Without meaning	On	Flashes ${ }^{2)}$	Off	0 V	0 V	24 V	0 V	
Mechanical auxiliary release, emergency release or Bowden cable release active	Without meaning	Flashes	Flashes	Flashes	0 V	24 V	0 V	24 V	
Electronic manual release active	Without meaning	Flashes	Flashes	Flashes	0 V	-	0 V	0 V	
Teaching the actuator at execution 11/2									
Teach-in procedure actuator started	Unlock	Off	On	Flashes slowly	0 V	0 V	0 V	0 V	
Actuator teaching can be completed	Unlock	Off	On	Flashes quickly	0 V	0 V	0 V	0 V	
Only I2: Actuator has been taught (Manipulation protection time is running)	Unlock	Flashes	Off	Off	0 V	24 V	0 V	24 V	

${ }^{1)}$ after 30 min. disabling due to fault
${ }^{2)}$ refer to flash code

Table 2: Error messages / flash codes red diagnostic LED

Flash codes (red)	Designation	Autonomous switch-off after	
1 flash pulse	Error (warning) at output Y1	30 min.	Fault in output test or voltage at output Y 1, although the output is disabled.
2 flash pulses	Error (warning) at output Y2	30 min.	Fault in output test or voltage at output Y2, although the output is disabled.
3 flash pulses	Error (warning) cross-wire short	30 min.	Cross-wire short between the output cables or fault at both outputs
4 flash pulses	Error (warning) temperature too high	30 min.	The temperature measurement reveals an internal temperature that is too high
5 flash pulses	Actuator fault	0 min.	Incorrect or defective actuator

7. Set-up and maintenance

7.1 Functional testing

The safety function of the safety components must be tested.
The following conditions must be previously checked and met:

1. Check max. axial misalignment of actuator and solenoid interlock.
2. Check max. angle displacement.
3. Make sure that it is not possible to lift the actuator in the Z axis above the extended bolt.
4. Check for tight installation of the actuator and the switch.
5. Fitting and integrity of the cable connections.
6. Check the switch enclosure for damage.
7. Remove particles of dust and soiling.
8. For versions with emergency exit, the following should also be considered: It must be possible to open the guard system from within the hazardous area; it must not be possible that the guard system is blocked from the inside.

7.2 Maintenance

In the case of correct installation and adequate use, the safety switchgear features maintenance-free functionality.
A regular visual inspection and functional test, including the following steps, is recommended:

1. Check for tight installation of the actuator and the switch.
2. Check max. axial misalignment of actuator and solenoid interlock.
3. Check max. angle displacement.
4. Make sure that it is not possible to lift the actuator in the Z axis above the extended bolt
5. Fitting and integrity of the cable connections.
6. Check the switch enclosure for damage.
7. Remove particles of dust and soiling

Measures must be taken to protect against manipulation or against the bypassing of safety device, for example, using an extra actuator.

Damaged or defective components must be replaced.

8. Disassembly and disposal

8.1 Disassembly

The safety switchgear must be disassembled in a de-energised condition only.

8.2 Disposal

The safety switchgear must be disposed of in an appropriate manner in accordance with the national prescriptions and legislations.
9. Appendix

9.1 Wiring configuration and accessories

Pin assignment of the version AZM400Z-ST-...
Connector plug M12, 8-pole

\(\left.\left.$$
\begin{array}{c|c|c|c|c}\text { Function safety switchgear } & \begin{array}{c}\text { Pin configuration of the } \\
\text { connector }\end{array} & \begin{array}{c}\text { Colour code of } \\
\text { the Schmersal connector to } \\
\text { DIN 47100 }\end{array} & \begin{array}{c}\text { Possible colour codes for more } \\
\text { commercially available connectors } \\
\text { based on }\end{array}
$$

IEC 60947-5-2: 2007\end{array}\right] $$
\begin{array}{c}\text { BN }\end{array}
$$\right]\)| WH |
| :--- |
| A1 |

Pin assignment of the version AZM400Z-ST2-..
Connector plug M12, 8-pole

\(\left.$$
\begin{array}{c|c|c|c|c}\text { Function safety switchgear } & \begin{array}{c}\text { Pin configuration of the } \\
\text { connector }\end{array} & \begin{array}{c}\text { Colour code of } \\
\text { the Schmersal connector } \\
\text { to DIN 47100 }\end{array} & \begin{array}{c}\text { Possible colour codes for more } \\
\text { commercially available connectors } \\
\text { based on }\end{array}
$$

IEC 60947-5-2: 2007\end{array}\right]\)

Connector plug M12, 5-pole

Function safety switchgear

	connector	
A1	U_{B}	1
H 2	GND	2
A 2	GND	3
H 1	$\mathrm{U}_{\text {he }}$	4
FE	Functional earth connection	5

Accessories: Pre-wired cables
Pre-wired cables with socket (female)
IP67, M12, 8-pole - 8×0.25 mm 2

Cable length	Ordering code	Cable length	Ordering code
5.0 m	103007358	5.0 m	103010816
10.0 m	103007359	10.0 m	103010818

Further versions in other lengths and with angled cable exit are available upon request.

The currently valid declaration of conformity can be downloaded from the internet at products.schmersal.com.
K.A. Schmersal GmbH \& Co. KG

Möddinghofe 30, 42279 Wuppertal
Germany
Phone: +49 202 6474-0
Telefax: +49 202 6474-100
E-Mail: info@schmersal.com
Internet: www.schmersal.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Emergency Stop Switches / E-Stop Switches category:
Click to view products by Schmersal manufacturer:

Other Similar products are found below :
84-6830.0020 AVN302N-R 3050.1302Y 44-710 84-6841.2B20 ZA2BV05 951FY000-WO ER6022-022N 952+2000-00 ES3S51653001 601+0000-OP E100-A2A22S05A XCSA802 XCSB502 2TLA030051R0100 D2D 1009M D2D 1013H AZM 170SK-02ZRKA 24VAC/DC 84-5141-2B40 84-6820.0020A 84-6820.0040 XY2CH13250H29 XCSDMR590L01M12 XCSTA892 XCSMP80L5 FB1W-HW1B-M220B FB1W-HW1B-X401R 84-5221.2B20 AYD311NUS AZM KEY (M5) AZ 17/170-B15 AZM 161SK-12/12RKA-110/230 AZM 41511/11ZPK 24VAC/DC AZM 415-11/11ZPKA 24VAC/DC AZM 161-B1S AZ 15/16-B1-2245 AZ 17/170-B11 AZ 17-11ZI B5 BNS 40S-12Z 10,0M AZ 16-02ZVRK-ST AZ/AZM 415-B2 AZ/AZM 415-B3 MZM 100-B1.1 A-K8P-M12-S-G-5M-BK-2-X-A-4-69 A-K8P-M12-S-G-10M-BK-2-X-A-4-69 A-K5P-M12-S-G-10M-BK-2-X-A-4-69 A-K4P-M12-S-G-2M-BK-2-X-A-4-69 SK-BETÄTIGER M3 SK-BET.M4 KPL. M.KAP. BETÄTIGER A1 KPL.

[^0]: (UL) For use in NFPA 79 Applications only. Use Limited Voltage/Current power supply only. Adapters providing field wiring means are available from the manufacturer. Refer to manufacturer's information.
 This device shall be powered with the use of a Listed (CYJV) cable/connector assembly rated $24 \mathrm{Vdc}, 0.6 \mathrm{~A}$ minimum.

