(8) 5CHmER5RL

EN Operating instructions.

Content

1 About this document
1.1 Function 1
1.2 Target group: authorised qualified personnel 1
1.3 Explanation of the symbols used 1
1.4 Appropriate use 1
1.5 General safety instructions 1
1.6 Warning about misuse 2
1.7 Exclusion of liability 2
2 Product description
2.1 Ordering code 2
2.2 Special versions 2
2.3 Comprehensive quality insurance to 2006/42/EC 2
2.4 Purpose 2
2.5 Technical data 3
2.6 Safety classification 3
3 Mounting
3.1 General mounting instructions 3
3.2 Dimensions 4
4 Electrical connection4.1 General information for electrical connection. 4
5 Operating principles and latching force adjustment5.1 Mode of operation of the safety outputs.5
5.2 Description of the latching force adjustment 5
6 Diagnostic functions6.1 Diagnostic LED's6
6.2 Solenoid interlock with conventional diagnostic output 6
6.3 Solenoid interlock with serial diagnostic function 8
7 Set-up and maintenance
7.1 Functional testing 9
7.2 Maintenance 9

There are no residual risks, provided that the safety instructions as well as the instructions regarding mounting, commissioning, operation and maintenance are observed.

1.6 Warning about misuse

In case of improper use or manipulation of the safety switchgear, personal hazards or damages to machinery or plant components cannot be excluded. The relevant requirements of the standard ISO 14119 must be observed.

1.7 Exclusion of liability

We shall accept no liability for damages and malfunctions resulting from defective mounting or failure to comply with this operating instructions manual. The manufacturer shall accept no liability for damages resulting from the use of unauthorised spare parts or accessories.

For safety reasons, invasive work on the device as well as arbitrary repairs, conversions and modifications to the device are strictly forbidden; the manufacturer shall accept no liability for damages resulting from such invasive work, arbitrary repairs, conversions and/or modifications to the device.

2. Product description

2.1 Ordering code

This operating instructions manual applies to the following types:
MZM 100 (1) (2)-(3)(4)(5)-A

No.	Option	Description
(1)		Solenoid interlock monitored \longrightarrow
	B	Actuator monitored
(2)	ST	Connector plug M23, (8+1)-pole
	ST2	Connector plug M12, 8-pole
(3)	1P2P	1 p-type diagnostic output and
		2 p-type safety outputs (only in connection with "Solenoid interlock monitored")
	1P2PW	similar to-1P2P, combined diagnostic signal guard door closed and solenoid interlock locked (only in connection with "Solenoid interlock monitored")
	1P2PW2	similar to-1P2P, combined diagnostic signal guard door closed and can be locked (only in connection with "Actuator monitored")
	SD2P	serial diagnostic output and 2 p-type safety outputs without latching (only in connection with "Solenoid interlock monitored")
(4)	R	electrical latching force, typically 30 N
	RE	adjustable latching force, typically $30 \ldots 100 \mathrm{~N}$
(5)		permanent magnet, typically 15 N

MZM 100-B1.1 Actuator

2.2 Special versions

For special versions, which are not listed in the order code below 2.1, these specifications apply accordingly, provided that they correspond to the standard version.

2.3 Comprehensive quality insurance to 2006/42/EC

Schmersal is a certified company to appendix X of the Machinery Directive. As a result, Schmersal is entitled to autonomously conduct the conformity assessment procedure for the products listed in Appendix IV of the MD without involving a notified body. The prototype test certificates are available upon request or can be downloaded from the Internet at www.schmersal.com

2.4 Purpose

The safety switchgears are classified according to ISO 14119 as type 4 interlocking devices.

The MZM 100 is designed for application in safety circuits and is used for monitoring the position of movable separating safety guards. A door detection sensor monitors the closed condition of the safety guard. The optional variable latching force is activated by the detection of the actuator when the safety guard is closed. The latching force exercised by the permanent magnet keeps the safety guard closed, also in deenergised condition (approx. 15 N).

The different variants can be used as safety switch with interlocking function either as solenoid interlock.

If the risk analysis indicates the use of a monitored interlock then a variant with the monitored interlock is to be used, labelled with the symbol. The actuator monitoring variant (B) is a safety switch with an interlock function for process protection.

The safety function of MZM 100 variant "Solenoid interlock monitored" consists of safely monitoring a magnetic interlocking force for a safety guard, safely switching off the safety outputs when the magnetic force drops below a defined magnetic force and maintaining the safe switched off condition of the safety outputs for as long as the safety guard is open or unlocked.

The safety function of MZM 100 B variant "Actuator monitored" consists of safely switching off the safety outputs when the safety guard is opened and maintaining the safe switched off condition of the safety outputs for as long as the safety guard is open.

Interlocks with power to lock principle may only be used in special cases after a thorough evaluation of the accident risk, since the safety guard can be opened immediately on failure of the power supply or upon activation of the main switch.

Series wiring

Series-wiring can be set up. The risk time is not altered by wiring in series. The number of components is only limited by the external cable protection according to the technical data and the line loss. Up to 31 components can be wired in series.

In devices with the serial diagnostics function (ordering suffix -SD), the serial diagnostics connections are wired in series and connected to a SD Gateway for evaluation purposes.

Wiring examples for series-wiring, refer to appendix

The user must evaluate and design the safety chain in accordance with the relevant standards and the required safety level. If multiple safety sensors are involved in the same safety function, the PFH values of the individual components must be added.

The entire concept of the control system, in which the safety component is integrated, must be validated to the relevant standards.

2.5 Technical data

General data:

Standards:	IEC 60947-5-1, IEC 60947-5-3, ISO 14119 ISO 13849-1, IEC 61508
Material of the housings:	Plastic, glass-fibre reinforced thermoplastic, self-extinguishing
Working principle:	inductive
Coding level according to	14119:
Response time:	$\leq 150 \mathrm{~ms}$
Duration of risk:	< 150 m
Time to readiness:	< 4000
Actuator:	MZM 100-B1

Series-wiring: Unlimited number of components,
please observe external cable protection, max. 31 components in case of serial diagnostics
Length of the sensor chain: max. 200 m;

- Note: Cable length and cable section alter the voltage drop depending on the output current

Mechanical data:

Execution of the electrical connection:	M23 connector, (8+1) poles, - ST: - ST2:
M12 connector, 8 poles	
Tightening torque of the fixing screws:	80 Nm
Electrically adjustable latching force (RE), typically: 100 N	
Permanent magnet (M), typically:	15 N
Holding force $\mathrm{F}_{\text {max }}$ typically:	750 N
Holding force F guaranteed:	500 N
Mechanical life:	$\geq 1,000,000$ operations (for safety guards $\leq 5 \mathrm{~kg}$ and actuating speed $\leq 0.5 \mathrm{~m} / \mathrm{s})$

Switching distances to IEC 60947-5-3:

Assured switching distance $\mathrm{s}_{\mathrm{a} 0}:$	0 mm
Assured switch-off distance s_{ar} :	1 mm
Ambient conditions:	$-25^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$
Ambient temperature:	$-25^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$
Storage and transport temperature:	$30 \% \ldots 95 \%$,

Protection class:	IP65 / IP67
Protection class:	

Resistance to shock: $30 \mathrm{~g} / 11 \mathrm{~ms}$
Switching frequency: 1 Hz

Resistance to vibration: $\quad 10 \ldots 150 \mathrm{~Hz}$, amplitude $0.35 \mathrm{~mm} / 5 \mathrm{~g}$ Insulation values to IEC 60664-1:

- Rated insulation voltage U_{i} : 32 VDC
- Rated impulse withstand voltage $\mathrm{U}_{\mathrm{imp}}$: 0.8 kV
- Over-voltage category: III
- Degree of pollution: 3

Switching frequency: 1 Hz

Electrical data:

Electrical data - Safety outputs:

Safety outputs:	Y1 and Y2
Switching elements:	normally open function, 2 channel,
	OSSD, p-type
Fuse rating:	short-circuit proof

Electrical data - Diagnostic output:

©(UL) us Use isolated power supply only. If the cable and connector
assembly is not listed for Type 12 or higher, then the device
shall be used in a Type 1 environment only.

2.6 Safety classification

Standards:
ISO 13849-1, IEC 61508
PL:
Control Category: 4

PFH:
$3.54 \times 10^{-9} / \mathrm{h}$
SIL: suitable for SIL 3 applications
Service life:
20 years

3. Mounting

3.1 General mounting instructions

Please observe the relevant requirements of the standards ISO 12100, ISO 14119 and ISO 14120.

The solenoid interlock must be used as an end stop.

Any mounting position. The system must only be operated with an angle of $\leq 2^{\circ}$ between the solenoid interlock and the actuator.

For fitting the solenoid interlock and the actuator, two mounting holes for M6 screws with washers (washers included in delivery) are provided.

After fitting, the mounting holes can be sealed by means of the supplied plugs. The plugs serve as a means of sealing the assembly openings and are also suitable to prevent against tampering with the screw connection.

Minimum distance between two devices: 100 mm

The actuator must be permanently fitted to the safety guards and protected against displacement by suitable measures (e.g. tamperproof screws, gluing, drilling of the screw heads).

At an ambient temperature of $\geq 50^{\circ} \mathrm{C}$, the safety component must be fitted so that it is protected against unintentional contact with persons.

The safety component must be operated in the operating direction of the latching force (refer to image).

Axial misalignment and operating direction of the latching force

3.2 Dimensions

All measurements in mm.

Solenoid interlock

Actuator

Key
M Permanent magnet

4. Electrical connection

4.1 General information for electrical connection

The electrical connection may only be carried out by authorised personnel in a de-energised condition.

The voltage inputs $\mathrm{A} 1, \mathrm{X} 1, \mathrm{X} 2$ and IN must have a protection against permanent overvoltage. supply units according to IEC 60204-1 is recommended.

The safety outputs can be integrated into the safety circuit of the control system. For applications of PL e / control category 4 to ISO 13849-1, the safety outputs of the safety switchgear or the chain of components must be connected to a safety-monitoring module of the same category

Requirements for the connected safety-monitoring module:

- Dual-channel safety input, suitable for 2 p-type semi-conductor outputs
- Digital inputs to EN 61131-2, Table "Standard operating ranges for digital inputs (current sinking)"
- Test function

The safety-monitoring module must tolerate internal functional tests of the solenoid interlock with cyclic switch-off of the safety outputs for max. 2 ms (typically < 1 ms). The switch-off stage of the test cycle is temporarily reduced by an active ohmic discharge of the cable.

> If the safety sensor is connected to electronic safetymonitoring modules, we recommend that you set a discrepancy time of min. 100 ms . The safety inputs of the safety-monitoring module must be able to blank a test impulse of approx. 1 ms . The safety-monitoring module does not need to have a cross-wire short monitoring function, if necessary, the cross-wire short monitoring function must be disabled.

> Information for the selection of suitable safety-monitoring modules can be found in the Schmersal catalogues or in the online catalogue on the Internet: www.schmersal.net.

If the solenoid interlock is wired to relays or to non-safety relevant control components, a new risk analysis must be carried out

Cable design in case of serial diagnostics

On wiring SD devices, pay attention to the voltage drop on the cables and the current carrying capacity of the individual components

The wiring capacity of the connecting cable of the solenoid interlock must not exceed 50 nF . Depending on the strand structure, norma unshielded 30 m long control cables LIYY $0.25 \mathrm{~mm}^{2}$ to $1.5 \mathrm{~mm}^{2}$ have a wiring capacitance of approx. $3 \ldots 7 \mathrm{nF}$

Accessories for the series-wiring

For convenient wiring and series-wiring of SD components, the SD junction boxes PFB-SD-4M12-SD (variant for the field) and PDM-SD-4CC-SD (variant for control cabinet on carrier rail) are available along with additional comprehensive accessories. Detailed information available on the internet at www.schmersal.net.
5. Operating principles and latching force adjustment

5.1 Mode of operation of the safety outputs

 - of MZM 100 variant "Solenoid interlock monitored"The safety outputs are enabled, when the following conditions are met:

- the actuator has been detected and
- the interlock is locked, the magnetic force is $>500 \mathrm{~N}$

The unlocking of the solenoid interlock causes the safety outputs to be disabled within the risk time. As long as the actuator is present on the solenoid interlock, the unlocked solenoid interlock can be locked again. In that case, the safety outputs are re-enabled.

The latching force F is permanently measured and checked. In this way, soiling of the solenoid interlock can be detected. If the latching force drops below 500 N , the release signal for the safety outputs $\mathrm{Y} 1 / \mathrm{Y} 2$ is not given.

- of MZM 100 B variant "Actuator monitored"

The safety outputs are enabled, when the following conditions are met:

- the actuator has been detected, the latching force is active and
- locking with magnetic force > 500 N possible

Due to the permanent monitoring of the closed magnetic circuit, the safety outputs $\mathrm{Y} 1 / \mathrm{Y} 2$ are only enabled during the latching, when the magnetic circuit is properly closed and the latching force can also be obtained when activated. If the metal surfaces are soiled or damaged, the enabling signal is not transmitted.
The unlocking of the MZM 100 B does not lead to a switch-off.

Violent separation of solenoid interlock and actuator

 (only in connection with "Solenoid interlock monitored") The solenoid interlock has a latching force F of 500 N . When the actuator and the interlock are separated in an unauthorized and violent way, the safety guard is opened and the enabling paths are switched off within 150 ms . This is signalled through the yellow and red LED blinking alternatively. To bring the system back in operational condition, the safety guard needs to be closed first and the solenoid control must be switched off and back on; the yellow and red LED now are blinking simultaneously. With the safety guard closed, an anti-tampering period of 10 minutes must be waited until the LEDs go out. Now, the system is back operational after the soilenoid control has been switched off and back on. (The actuator nor the solenoid interlock are damaged!)
5.2 Description of the latching force adjustment

The latching force of the MZM 100 with ordering suffix -RE can be set in 8 steps of approx. 10 N each within a range of approx. 30 N to approx. 100 N. To this end, the adjustment target MZM 100 TARGET is used directly on the fitted MZM 100.

Adjustment of the latching force

1.) Open the safety guard and isolate the MZM 100 from the voltage supply. Either switch off the voltage supply or pull out the connector.
2.) Put the adjustment target with the active side on the identification plate of the MZM 100.
3.) Switch the voltage supply of the MZM 100 back on and wait at least 10 seconds before removing the adjustment target. The component searches for the adjustment target. When the adjustment mode is active, the safety outputs remain disabled.
4.) Remove the adjustment target again from the component. The yellow LED of the MZM 100 will repeatedly flash briefly to show the currently set latching force level (e.g. 4 flashes $=4$ th latching force level approx. 60 N).
5.) Put the adjustment target approx. 1 second back on the solenoid interlock with the safety guard open to gradually increase the latching force by steps of approx. 10 N each. The number of flashes will increase accordingly.

The modified latching force can be checked directly on the safety guard. If necessary, the latching force can be increased by another step. When latching force level 8 is reached, level 1 will be activated when the adjustment target is placed back on the component.
6.) Switch off the voltage supply of the MZM 100 once more to permanently save the chosen latching force.

When the component is switched off, the adjustment mode is quit. After the voltage supply is switched back on, the MZM 100 is ready for operation.

Latching force indication

If the voltage supply of the MZM 100 B is switched on when the safety guard is open, the yellow LED will show the set latching force for 10 seconds by means of repeated brief flashes (e.g. $4 \times$ flashes $=4$ th latching force level approx. 60 N).

Description of the latching force adjustment for the MZM 100-...-SD with serial diagnostic function
The latching force can be adjusted through the latching force bits 1-3 of the request byte in 8 steps within a range of $30 \ldots 100 \mathrm{~N}(45 \ldots 115 \mathrm{~N}$ with permanent magnet).

Latching force bit				Latching force RE
Latching force REM				
3	2	1		
0	0	0	approx. 30 N	approx. 45 N
0	0	1	approx. 40 N	approx. 55 N
0	1	0	approx. 50 N	approx. 65 N
0	1	1	approx. 60 N	approx. 75 N
1	0	0	approx. 70 N	approx. 85 N
1	0	1	approx. 80 N	approx. 95 N
1	1	0	approx. 90 N	approx. 105 N
1	1	1	approx. 100 N	approx. 115 N

[^0]When the guard system is opened for the first time from the locked status, higher latching forces may be experienced on account of residual magnetism.

6. Diagnostic functions

6.1 Diagnostic LED's

The MZM 100 signals the operational state as well as errors through three coloured LED's installed on the front side of the device
green Supply voltage on
yellow Operating condition
red Fault (refer to table 2: Flash codes of the red diagnostic LED)
6.2 Solenoid interlock with conventional diagnostic output

The short-circuit proof diagnostic output OUT can be used for central visualisation or control functions, e.g. in a PLC.

The diagnostic output is not a safety-related output!
Depending on the variant used, specific diagnostic signals are emitted (refer to table 1).

Error

Errors, which no longer guarantee the function of the MZM 100 solenoid interlock (internal error)s cause the safety outputs to be disabled within the risk time. Any error that does not immediately affect the safe functionality of the MZM 100 solenoid interlock (e.g. the ambient temperature too high, interference potential at a safety output, cross-wire short) will lead to a delayed shut-down (refer to table 2).

After the rectification of the error, the error message is reset by opening the corresponding safety guard.

Error warning

A fault has occurred, which causes the safety outputs to be disabled after 30 minutes. The safety outputs initially remain enabled.
This enables the shutdown of the process in a controlled manner. An error warning is deleted when the cause of error is eliminated.

If more than one fault is detected at the safety outputs, the component will be electronically locked and a normal fault reset will no longer be possible.
To reset this type of interlocking, the component must be isolated from the power supply after elimination of the error causes.

Behaviour of the diagnostic outputs of the W and W2 variants

Input signal magnet control

IN

Normal sequence, door was locked
OUT

Door could not be locked or fault
OUT

Key

Safety guard open Safety guard closed Unlock safety guard

Locking time
typically: 100 ... 150 msSafety guard not locked or fault max.: 1 s

Evaluation of the diagnostic outputs of the W and W2 variants

$$
\text { IN = } 1 \text { = locking }
$$

Table 1: Diagnostic function
The diagnostic output "OUT" signals faults before the safety outputs are disabled, thus enabling a controlled shutdown.

Diagnostic function of MZM 100 variant "Solenoid interlock monitored"

System condition	Solenoid control N	LED			Safety outputs $\mathrm{Y}_{1}, \mathrm{Y}_{2}$	Diagnostic output OUT	
		green	red	yellow		-1P2P	-1P2PW
Safety guard open	0 V	On	Off	Off	0 V	0 V	0 V
Safety guard closed, actuator in	0 V	On	Off	Flashes	0 V	24 V	24 V
Safety guard closed and locked	24 V	On	Off	On	24 V	24 V	24 V
Solenoid interlock cannot be locked. Safety guard not correctly closed or magnet soiled	24 V	On	Off	Flashes	0 V	24 V	0 V
Error warning ${ }^{1}$, Safety guard locked	24 V	On	Flashes ${ }^{2)}$	On	24 V	0 V	0 V
Error	$0 \mathrm{~V} / 24 \mathrm{~V}$	On	Flashes ${ }^{2)}$	Off	0 V	0 V	0 V
Violent separation of solenoid interlock and actuator	24 V	On	Flashes ${ }^{2)}$	Flashes ${ }^{2)}$	0 V	0 V	0 V

Diagnostic function of MZM 100 B variant "Actuator monitored"

System condition	Solenoid control IN	LED green	red	yellow	Safety outputs Y1, Y2	Diagnostic output OUT -1P2PW2
Safety guard open	0 V	On	Off	Off	0 V	0 V
Safety guard closed, actuator in, safety guard can be locked	0 V	On	Off	Flashes	24 V	24 V
Safety guard closed and locked	24 V	On	Off	On	24 V	24 V
Solenoid interlock cannot be locked. Safety guard not correctly closed or magnet soiled	24 V	On	Off	Off	0 V	0 V
Error warning ${ }^{1}$, actuator in	$0 \mathrm{~V} / 24 \mathrm{~V}$	On	Flashes ${ }^{2)}$	flashes/ on	24 V	0 V
Error	$0 \mathrm{~V} / 24 \mathrm{~V}$	On	Flashes ${ }^{2)}$	Off	0 V	0 V

${ }^{1)}$) after $30 \mathrm{~min}->$ fault
${ }^{2)}$ refer to flash code

Table 2: flash codes of the red diagnostic LED

Flash codes	Designation	Autonomous switch-off after	Error cause
1 flash pulse	Error (warning) at output Y1	30 min	Fault in output test or voltage at output Y1, although the output is disabled.
2 flash pulses	Error (warning) at output Y2	30 min	Fault in output test or voltage at output Y2, although the output is disabled.
3 flash pulses	Error (warning) cross-wire short	30 min	Cross-wire short between the output cables or fault at both outputs. After 30 minutes, voltage switch-off/on required
5 flash pulses	Actuator fault	0 min	Wrong or defective actuator.
6 flash pulses	Latching force fault	0 min	Latching force has dropped below 500 N (e.g. actuator misalignment)
10 flash pulses	Magnet temperature too high	0 min	The magnet is too hot: $\mathrm{T}>70^{\circ} \mathrm{C}$
Continuous red signal	Internal error	0 min	Device defective

6.3 Solenoid interlock with serial diagnostic function

Solenoid interlocks with serial diagnostic function have a serial input and output instead of the conventional diagnostic output. If SD devices are wired in series, the safety channels as well as the inputs and outputs of the diagnostic channels are wired in series. The diagnostic data are transmitted through the series-wiring of the inputs and outputs.

Max. 31 safety switchgear with serial diagnostics can be wired in series For the evaluation of the serial diagnostics line either the PROFIBUSGateway SD-I-DP-V0-2 or the Universal-Gateway SD-I-U-... are used. This SD-Gateway is integrated as a slave in an existing field bus system. In this way, the diagnostic signals can be evaluated by means of a PLC. The necessary software for the integration of the SD-Gateway is available for download at www.schmersal.net.

The response data and the diagnostic data are automatically and permanently written in an input byte of the PLC for each safety device in the series-wired chain. The request data for each safety device is transmitted to the component through an output byte of the PLC.

In case of a communication error between the SD-gateway and the safety device, the switching condition of the solenoid interlock is maintained.

Error

A fault has occurred, which causes the safety outputs to be disabled.
The fault is reset, when the cause is eliminated and bit 7 of the request byte changes from 1 to 0 or the safety guard is opened. Faults at the safety outputs are only deleted upon the next release, as the fault rectification cannot be detected sooner.

Error warning

A fault has occurred, which causes the safety outputs to be disabled after 30 minutes. The safety outputs initially remain enabled.
This enables the shutdown of the process in a controlled manner. An error warning is deleted when the cause of error is eliminated.

Diagnostic error (warning)

If an error (warning) is signalled in the response byte, detailed fault information can be read out

Table 3: I/O data and diagnostic data
Communication directions: request byte: from the PLC to the local electronic safety switchgear response byte: from the local electronic safety switchgear to the PLC warning/error byte: from the local electronic safety switchgear to the PLC

Bit n°	Request byte	Response byte Error warning	Diagnostic Error	
Bit 0:	Magnet in, error reset	Safety output activated	Error output Y1	Error output Y1
Bit 1:	Latching force bit	Actuator detected	Error output Y2	Error output Y2
Bit 2:	Latching force bit	Solenoid interlock locked	Cross-wire short	Cross-wire short
Bit 3:	Latching force bit	---	Magnet temperature too high	Magnet temperature too high
Bit 4:	---	Input condition X1 and X2	Focking blocked or	
F < 500 N				

The described condition is reached, when Bit = 1

Table 4: Function of the visual diagnostic LED`s, the serial status signals and the safety outputs by means of an example

- of MZM 100 variant "Solenoid interlock monitored"

System condition	LED			Safety outputs$\mathbf{Y} 1, \mathrm{Y}_{2}$	Response byte bit n° :							
	green	red	yellow		7	6	5	4	3	2	1	0
Safety guard open	On	Off	Off	0 V	0	0	0	X	0	0	0	0
Safety guard closed, actuator in	On	Off	Flashes	0 V	0	0	0	X	0	0	1	0
Safety guard closed and locked	On	Off	On	24 V	0	0	0	X	0	1	1	1
Solenoid interlock cannot be locked. Safety guard not correctly closed or magnet soiled	On	Off	Flashes	0 V	0	0	0	X	0	0	1	0
Error warning1) Safety guard locked	On	Flashes ${ }^{2)}$	On	24 V	0	1	0	X	0	1	1	1
Error	On	Flashes ${ }^{2)}$	Off	0 V	1	0	0	X	0	X	X	0

- of MZM 100 B variant "Actuator monitored"

System condition	LED			Safety outputs Y1, Y2	Response byte bit n° :							
	green	red	yellow		7	6	5	4	3	2	1	0
Safety guard open	On	Off	Off	0 V	0	0	0	X	0	0	0	0
Safety guard closed, actuator in, safety guard can be locked	On	Off	Flashes	24 V	0	0	0	X	0	0	1	0
Safety guard closed and locked	On	Off	On	24 V	0	0	0	X	0	1	1	1
Solenoid interlock cannot be locked. Safety guard not correctly closed or magnet soiled	On	Off	Flashes	0 V	0	0	0	X	0	0	0	0
Error warning ${ }^{1}$, actuator in	On	Flashes ${ }^{2)}$	On	24 V	0	1	0	X	0	X	1	1
Error	On	Flashes ${ }^{2)}$	Off	0 V	1	0	0	X	0	X	X	0

${ }^{1)}$ after 30 min -> fault
${ }^{2)}$ refer to flash code

7. Set-up and maintenance

7.1 Functional testing

The safety function of the safety components must be tested.
The following conditions must be previously checked and met:

1. Check max. axial misalignment of actuator and safety switchgear
2. Check max. angular misalignment (see "Mounting" part)
3. Check the integrity of the cable entry and connections.
4. Check the switch enclosure for damage.
5. Remove particles of dust and soiling.

7.2 Maintenance

In the case of correct installation and adequate use, the safety switchgear features maintenance-free functionality. A regular visual inspection and functional test, including the following steps, is recommended:

- Check of the safety function
- Check the fixing of the safety switch and the actuator
- Check max. axial misalignment of actuator and solenoid interlock
- Check max. angular misalignment (see "Mounting" part)
- Check the integrity of the cable entry and connections.
- Check the switch enclosure for damages
- Remove soiling

Adequate measures must be taken to ensure protection against tampering either to prevent tampering of the safety guard, for instance by means of replacement actuators.

Damaged or defective components must be replaced.

8. Disassembly and disposal

8.1 Disassembly

The safety switchgear must be disassembled in a de-energised condition only.

8.2 Disposal

The safety switchgear must be disposed of in an appropriate manner in accordance with the national prescriptions and legislations.

9. Appendix

9.1 Wiring examples

The application examples shown are suggestions. They however do not release the user from carefully checking whether the switchgear and its set-up are suitable for the individual application.

Wiring example 1: Series-wiring of the MZM 100 with conventional diagnostic output
The voltage is supplied at both safety inputs of the terminal safety component of the chain (considered from the safety-monitoring module). The safety outputs of the first safety component are wired to the safety-monitoring module.

Wiring example 2: series-wiring of the MZM 100 with serial diagnostic function
The safety outputs of the first safety component are wired to the safety-monitoring module. The serial Diagnostic Gateway is connected to the serial diagnostic input of the first safety component.

9.2 Wiring configuration and connector accessories

| Function safety switchgear | Pin configuration of the
 connector | Conductor numbering or
 colour code of the
 Schmersal connectors | Poss. colour codes of other
 customary connectors |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Connector plug ST M23, (8+1)-pole

Connecting cables with female connector IP67, M23, (8+1)-pole - $8 \times 0.75 \mathrm{~mm}^{2}$

Cable length	Part number	Cable length Cart number	
		2.5 m	Part
5.0 m	101209959	5.0 m	103011415
10.0 m	101209958	10.0 m	103007358
			103007359

Connector with plug (female)
IP67, M23, (8+1)-pole - $8 \times 0.75 \mathrm{~mm}^{2}$

Design	Part number
with soldering terminals with crimp terminals	101209970
101209994	

The currently valid declaration of conformity can be downloaded from the internet at www.schmersal.net
K. A. Schmersal GmbH \& Co. KG

Möddinghofe 30, D-42279 Wuppertal
Postfach 2402 63, D-42232 Wuppertal
Phone: $\quad+49-(0) 2$ 02-6474-0
Telefax: $\quad+49-(0) 2$ 02-64 74-100
E-Mail: info@schmersal.com
Internet: http://www.schmersal.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Emergency Stop Switches / E-Stop Switches category:
Click to view products by Schmersal manufacturer:

Other Similar products are found below :
84-6830.0020 AVN302N-R 3050.1302Y 44-710 84-6841.2B20 ZA2BV05 951FY000-WO ER6022-022N 952+2000-00 ES3S51653001 601+0000-OP E100-A2A22S05A XCSA802 XCSB502 2TLA030051R0100 D2D 1009M D2D 1013H AZM 170SK-02ZRKA 24VAC/DC 84-5141-2B40 84-6820.0020A 84-6820.0040 XY2CH13250H29 XCSDMR590L01M12 XCSTA892 XCSMP80L5 FB1W-HW1B-M220B FB1W-HW1B-X401R 84-5221.2B20 AYD311NUS AZM KEY (M5) AZ 17/170-B15 AZM 161SK-12/12RKA-110/230 AZM 41511/11ZPK 24VAC/DC AZM 415-11/11ZPKA 24VAC/DC AZM 161-B1S AZ 15/16-B1-2245 AZ 17/170-B11 AZ 17-11ZI B5 BNS 40S-12Z 10,0M AZ 16-02ZVRK-ST AZ/AZM 415-B2 AZ/AZM 415-B3 MZM 100-B1.1 A-K8P-M12-S-G-5M-BK-2-X-A-4-69 A-K8P-M12-S-G-10M-BK-2-X-A-4-69 A-K5P-M12-S-G-10M-BK-2-X-A-4-69 A-K4P-M12-S-G-2M-BK-2-X-A-4-69 SK-BETÄTIGER M3 SK-BET.M4 KPL. M.KAP. BETÄTIGER A1 KPL.

[^0]: The actual latching forces may deviate from the specified values owing to the different influences (e.g. angled position of actuator, contamination or damage to metal surface, etc.).

