## ULTRA SLIMPAK ${ }^{\circledR}$ II model WV478-2000

## Frequency Input I solating Signal Conditioner Installation and Calibration Instructions

NOTE: The unit has been shipped with the Power Clips attached. Please remove the clips before installing the module on the DIN rail. If the Power Clips are chosen as the means to route power, they can be installed once the modules are in place on the DIN rail.

## DIN Rail Mounting

The WV468 mounts on a 35 mm TS35 DIN rail, by simply hooking one side of the mounting foot over the rail and pressing the module towards the rail until it locks into place. To remove the unit from the rail, place the tip of a flat-bladed screwdriver under the release clip on either the top or the bottom of the module and pry up until the module releases from the rail. See Figure 1.


Figure 1

## Wiring Connections

| 52 | 00 | 5141 | Pin | Description |
| :---: | :---: | :---: | :---: | :---: |
| 42 | 00 |  | 11 | DC Power (+) |
|  |  |  | 12 | DC Power (-) |
|  |  |  | 21 | DC Power (+) |
|  |  |  | 22 | DC Power (-) |
|  |  |  | 41 | Input (+) |
|  |  |  | 42 | Input (-) |
| 12 | 00 | 11 | 51 | Output (+) |
| 22 | 00 | 21 | 52 | Output (-) |

## Power Connections

The power jumper clips (see Figure 2) are used to distribute power to a maximum of 16 modules. In applications using more than 16 modules, power wiring must be connected to the first and last module, and distributed to the remaining modules using the power clips. This technique allows for "hot swapping" of a module without interrupting power to the remaining units.

## Opening the Case

The case can be opened by simultaneously pressing in on the two ribbed tabs located at the top and bottom of the front cap of the case and sliding out the circuit board. This provides easy access to the DIP switch for range selection. To close the case, slide the board back in until the two tabs lock firmly in place. This may require pressing on
the front side of the upper and lower terminal blocks for a positive fit. The board slides in where the switch and the switch position chart on the case can be viewed together.


Figure 2

## Input Range Configuration

Unless otherwise specified, the factory presets the Model WV468 as follows:

| Input: | Frequency |
| :--- | :--- |
| Range: | $0-1000 \mathrm{~Hz}$ |
| Sensitivity: | Low (set at 1Vrms) |
| Output: | DC Current |
| Range: | $4-20 \mathrm{~mA}$ |
| Remote Cal: | Off |

1. For other ranges, refer to the SWITCH SETTINGS table. Reconfigure switches S1 and S2 for the desired settings.
2. Set position 1 of S 1 to ON if a WVC16 will be utilized and remote calibration capability is desired.
3. Set position 2 and 3 of S 1 for the desired output type.
4. Set position 1 of S2 for the desired sensitivity.

## Switch Settings



| Function | S2 |
| :---: | ---: |
|  | 1 |
| Voltage Input |  |
| High Range $(500 \mathrm{mVp}$ to 150 Vrms$)$ |  |
| Low Range $(150 \mathrm{mVp}$ to 50 Vrms$)$ | ■ |
| Key: $\mathbf{\square}=1=\mathrm{ON}$ or Closed; $-=\mathrm{n} / \mathrm{a}$ |  |

## Diagnostic LEDs

Other than when executing the pushbutton calibration routine, the LEDs blink under the following conditions:

GREEN: Flashes at 2 Hz when the input is under range. Flashes at 8 Hz when the input is over range.

RED:
Flashes at 2 Hz when the output is under range. Flashes at 8 Hz when the output is over range.
2. Adjust the input signal to the desired maximum and observe that the Green LED is on or flashing. Push the CAL button and hold for more than 4 seconds. The Yellow and Red LEDs should be on. Push the CAL button momentarily and the Yellow and Green LEDs will be on. From this point on, you can exit the calibration procedure at any step, without saving new data, by holding the CAL button for at least 4 seconds.
3. Apply the maximum input signal level desired and push the CAL button. The Yellow LED should now be on.
4. Apply the minimum input signal level desired and push the CAL button. The Green and Red LEDs should now be on. If you do not wish to change the output calibration, press the CAL button rapidly three times to exit the calibration routine.
5. Adjust the input signal upward until the output is at the desired maximum level (e.g. 20.00 mA ), and then push the CAL button. The Red LED should be on.
6. Adjust the input signal level downward until the output is at the desired minimum level (e.g. 4.00 mA ), and then push the CAL button. All three LEDs should now be on.
7. Push the CAL button once more to save the calibration data. The Green LED should be on if the input is within the calibrated range.

An Under Range condition exists when the signal is lower than the operation low value minus $6.25 \%$ of operational span. An Over Range condition exists when the signal is higher than the operation high value plus $6.25 \%$ of operational span.

A voltage output short circuit can cause an under range condition (RED blinking at 2 Hz rate). A current output open circuit can cause an over range condition (RED blinking at an 8 Hz rate).

There could be two or more LEDs blinking at the same time, which means the module has more than one error condition. Only when all error conditions have been removed will the LEDs be back to normal (green on, red and yellow off).

## Calibration

For best results, calibration should be performed in the operating environment, mounted to a piece of DIN rail, allowing at least one hour for thermal equilibrium of the system. If pre-calibration on a test bench is desired, then an output load equal to the input impedance of the devices connected to the WV478 output is recommended, along with the warm-up period.

Note: Many applications do not require calibrating the output levels and simply utilize the default operational output ranges of the unit ( $0-10 \mathrm{VDC}, 0-20 \mathrm{~mA}$ or $4-20 \mathrm{~mA}$ ). If the factory default calibration has been changed, the last saved operational output values are utilized. In those applications, the only calibration required is the operational input values. Once the maximum and minimum input values have been set, the Green and Red LEDs will be on. At that point simply press the CAL button rapidly 3 times and you will exit the calibration routine without effecting the last saved calibration for the operational output values.

1. Connect the input to a calibrated frequency source and the output to a voltage or current meter. Apply power and allow the system to reach thermal equilibrium. Refer to Figure 3 for a detailed flow chart of the procedure. The section in the dotted-line box is all that is required for the user to calibrate operational input and output, and is all that is described in this procedure.


## Specifications

Input
Frequency Input Range
2 Hz to 10 kHz
Minimum Input Span 2 Hz
Amplitude (switch selectable)
Low Range: 150 mVp to 50 Vrms
High Range: 500 mVp to 150 Vrms
Output
Voltage
0 to 10VDC
Source Impedance: <10 ohms
Drive: 10 mA
Current
0 to 20 mA
Source Impedance: >100k ohms Compliance: 20V @ 20mA (1k ohms, max)

## Output Accuracy

$\pm 0.05 \%$ of Full Scale
Local Range Selection
By DIP switch
Response Time
$100 \mathrm{mSec}(10$ to $90 \%$ )
Stability
$\pm 100$ ppm of full scale ${ }^{\circ} \mathrm{C}\left( \pm 0.01 \% /^{\circ} \mathrm{C}\right)$

## Common ModeRejection

120dB @ DC,
$>90 \mathrm{~dB}$ @ 60Hz, or better
Isolation
1800VDC or peak AC between input, output \& power.
ESD Susceptibility Capable of meeting IEC $801-2$ level 3 ( 8 kV )

## Power

9-30VDC
1.0W typ., 2.0W max

Host Module Interface
IR Link
Size
DIN rail case $-0.5^{\prime \prime}$ ( 12.7 mm ) wide
Operating Temperature $0^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$
Storage Temperature
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right.$ to $\left.185^{\circ} \mathrm{F}\right)$
Operating Humidity
$15 \%$ to $95 \%$ RH (non-condensing) @ $45^{\circ} \mathrm{C}$
Storage Humidity 90\% RH (non-condensing @ $60^{\circ} \mathrm{C}$ for 24 hours
Agency Approvals (EMC \& Safety)
CE, EN50081-1, EN50082-2, EN61010
CSA C22.2, No. 0-M91, 142-M1987
UL508


Dimensions
Dimensions are in mm (inches)


E EUROTHERMS
Eurotherm Controls
741-F Miller Drive
Leesburg, VA 20175-8993
703-443-0000
info@eurotherm.com

## Factory Assistance

For additional information on calibration, operation and installation contact our Technical Services Group:

$$
\begin{gathered}
\text { 703-669-1318 } \\
\text { actionsupport@eurotherm.com }
\end{gathered}
$$

HA136738WV478 Rev - Copyright® Eurotherm, Inc 2004

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Schneider manufacturer:
Other Similar products are found below :
ZA2BV05 RE22R2MMW RE22R2MYMR 67SPCX-56 70-454 70S2-01-A-03-V 70S2-05-B-12-S 712XBXC-240A 792XDX3C-24D 7S MMS124 8501NR45 8501NR51 8501NR52 8501RSD41V53 861HSSR410-AC-1 9001KP35LRR9 9001KS11BH13 9007AA1 9007BA1 9007C54D 9007 CA 11 9007HA4 $9007 \mathrm{HA} 69007 \mathrm{KA1} 9007 \mathrm{MA} 18$ 9007MS02S0300 9007MS10S0300 9012GAR4 9012GDW4 9012GFW1 9012GNG3 9013FHG39J69 9013FSG52J33M4 11HPX-75 A283BXX69C-48D A283XAXC-24A GZ1E02 ATS01N212LU 16-711C4 IIHPX-75 RPM12B7 9001KR1BH13 9001KR1GH5 9001KR1UH5 9001KS46BH2 9001SKS11BH2 9001SKS43BH2 9007C54A2 9007C54C

