Safety switches Preventa XCS

Catalogue

Sensors

Appropriate safety

Ingenious and innovative, Preventa safety solutions assure you of maximum protection with the XCS range of dedicated switches for controlling the safe opening and interlocking of guards and covers in your installations.

>A complete range for all applications:

- For a wide range of machinery guards, covers and doors
- For all types of environments
- A solution tailored to the levels of safety required

>A Schneider Electric package offer:

- Sensors designed to be integrated into Preventa safety solutions
- Present in over 190 countries and 5000 sales outlets, Schneider Electric assures you of an offer available worldwide through its network of distributors

Contents

Generalies p 12 to 23
Miniature safety limit switches XCSM p 24 to 27
Compact safety limit switches XCSD and XCSP p 28 to 33
Safety switches XCSPL, XCSTL, XCSPR and XCSTR p 34 to 37
Safety switches XCSA, XCSB, XCSC, XCSMP, XCSPA and XCSTA p 38 to 51
Safety switches with interlocking by solenoid XCSLF and XCSLE. p 52 to 67
Coded magnetic switches XCSDMC, DMP and DMR p 68 to 79
Coded magnetic system XCSDM3 and DM4 p 80 to 87
Safety modules Preventa XPS p 88 to 101
Product reference index p 102

Make the most of your energy

>Appropriate solutions

The latest operating safety standards propose new methods of risk management right from the design stage, making use of concepts such as Safety Integrity Levels (SIL) and Performance Levels (PL).
Schneider Electric safety solutions enable you to optimise the cost of your installations according to the level of safety required, while assuring you of perfect interoperability.

PL=b (category 1) / SIL 1

Architecture 1

1 XCSPA + 1 LC1D + 2 XB4 (start and stop)

pre-defined safety levels

PL=d (category 3) / SIL 2

1 XCSLF (or series mounting) + XPSAC + 2 LC1D + 1 XB4 start + XPSVNE (for zero speed detection)

Architecture 4

several XCSDM in series with 1 XPSDM + ABL8 + CAD32 (or LC1D)

Architecture 3

2 XCS safety units + XPSMC + 2 LC1D

Used with Preventa modules, controllers or safety PLCs and TeSys motor starter solutions, XCS safety switches offer levels of access protection up to PLe, category 4, SIL3, according to standards requirements in force EN ISO 13849-1 and EN/IEC 62061.

>Preventa XCS guides your choice

Whatever your activity sector, your type of machine or your automated function, Schneider Electric offers you a complete range of safety switches to meet your protection requirements for functional safety.

100 \%
Adaptable to your environment

XCSP:

Plastic body, secured mounting adjustment and cabling access by special screws (XCSM and XCSD also)

Mechanical 5 different actuators head
According to
EN 1088 / ISO 14119

PL=b (category 1) / SIL1
PL=d (category 3) / SIL2
PL=e (category 4) / SLL3
If actuator protected from manual operation

\square

Harsh environment		XCSM: Metal miniature up to 4 contacts XCSD: Metal compact for covers and gates	-	-	
Safety controllers \& modules	PL=d (category 3) / SIL2	XPSACXPSAF, XPSAK, XPSAR			
	PL=e (category 4) / SIL3				

Mechanical by separate key actuators

Mechanical and interlock by separate key manual unlocking

Mechanical and interlock
by separate key
Solenoid locking / unlocking

Contact-free, by coded magnet

By specific key	By coded magnetic key

Reinforced by Hall effect technology

Architecture 1	-		
Architecture 2	-	-	
Architecture 3	Architecture 4	Architecture 6	
	Architecture 5	Architecture 7	

, XPSAXE, XPSMP, XPSMC	XPSAC, XPSVNE	XPSDMB, XPSDME

Selection guide
Safety detection solutions Safety switches Preventa XCS

Switch type
Applications
Design

Enclosure	
Features	
Conformity to standards	Products
	Machine assemblies
Product certifications	
Dimensions ($w \times h \times d$) in $m m$	Switch
	Fixings

Head

Type reference
Pages

Preventa XCS lever or spindle operated switches

Protection of operators by stopping the machine when the operating lever (attached to hinged machine guard) is displaced by 5°.
All light industrial machines fitted with hinged or rotary protective covers with small opening radius.
Compact format
Plastic with 1 or 2 cable entries

Plastic, double insulated

2 types of lever: straight or elbowed (flush with rear of switch)
3 lever positions: to left, centred or to right

2 types of spindle: length 30 mm or 80 mm
EN/IEC 60947-5-1, EN/ISO 13849-1, EN/IEC 62061, UL 508, CSA C22-2 nº 14, JIS C4520

EN/IEC 60204-1, EN/ISO 14119

UL, CSA, BG

$30 \times 87.5 \times 30$	$52 \times 108.4 \times 30$	$30 \times 96 \times 30$	$52 \times 117 \times 30$
Centres: $20 / 22$	Centres: 20/22 or 40.3	Centres: 20/22	
Turret head: 4 positions Rotary actuation (lever)		Turret head: 4 positions Rotary actuation (spindle)	

Protection of operators by stopping the machine when the guard hinge rotates through 5°.
All light industrial machines fitted with hinged access doors.

Slow break safety contacts with positive opening operation
NC contacts open when lever or spindle displaced by more then 5°

1 NC + 1 NO break before make 2 NC 1 NC + 2 NO break before make 2 NC + 1 NO break before make	$1 \mathrm{NC}+2 \mathrm{NO}$ break before make $2 \mathrm{NC}+1$ NO break before make 3 NC	$1 \mathrm{NC}+1$ NO break before make 2 NC $1 \mathrm{NC}+2 \mathrm{NO}$ break before make $2 \mathrm{NC}+1$ NO break before make	$1 \mathrm{NC}+2$ NO break before make $2 \mathrm{NC}+1 \mathrm{NO}$ break before make 3 NC

IP 67
$-25 \ldots+70^{\circ} \mathrm{C}$

1 tapped entry for Pg 11, ISO M16 cable gland or tapped $1 / 2^{\prime \prime}$ NPT	2 tapped entries for Pg 11, ISO M16 cable gland or tapped $1 / 2 "$ NPT	1 tapped entry for Pg 11, ISO M16 cable gland or tapped $1 / 2$ " NPT	2 tapped entries for Pg 11, ISO M16 cable gland or tapped $1 / 2 "$ NPT
-			
XCSPL	XCSTL	XCSPR	XCSTR
34			

Selection guide (continued)
Safety detection solutions Safety switches Preventa XCS

Preventa XCS key operated switches

Protection of operators by stopping the machine when the actuator (attached to machine guard) is withdrawn from the head of the switch. All light industrial machines, with quick rundown time (1).

Miniature format	Compact format
Plastic, pre-cabled	Plastic with 1 or 2 cable entries

Plastic with 1 or 2 cable entries

Switch type
Applications
Design

Enclosure
Features
Conformity to standards

Plastic	
Without locking of actuator.	Without locking of actuator. Optional accessory: guard retaining device.

EN/IEC 60947-5-1, EN/ISO 13849-1, EN/IEC 62061, UL 508, CSA C22-2 $\mathrm{n}^{\circ} 14$ and JIS C4520
EN/IEC 60204-1, EN/ISO 14119

Product certifications	
Dimensions $(w \times h \times d)$ in mm	Switch
	Fixings

Degree of protection	
Ambient air temperature	For operation
Connection	Screw terminals (cable entry via cable gland)
	Pre-cabled

Type reference

Pages

All heavy industrial machines, with quick rundown time (1)
Industrial format with or without locking
Metal with 1 cable entry, without locking
Metal with 1 cable entry, with manual locking/unlocking

Metal
Without locking of actuator.

Manual locking and unlocking of actuator by pushbutton or key operated lock (can be mounted on left or right-hand side of switch head).

EN/IEC 60947-5-1, EN/ISO 13849-1, EN/IEC 62061, UL 508, CSA C22-2 n ${ }^{\circ} 14$ and JIS C4520

EN/IEC 60204-1, EN/ISO 14119

UL, CSA

$40 \times 113.5 \times 44$	$52 \times 113.5 \times 44$
30×60	

Turret head: 8 positions for insertion of actuator.

Selection guide (continued)

Safety detection solutions Safety switches Preventa XCS

Switch type
Applications
Design

Conformity to standards	Products
	Machine assemblies

Product certifications
Dimensions ($\mathrm{w} \times \mathrm{h} \times \mathrm{d}$ or \quad Switch \varnothing) in mm

Head
Contact blocks or outputs

Degree of protection

Ambient air temperature	For operation
Connection	Terminals
	Pre-cabled

Type reference

Pages

EN/IEC 60947-5-1, EN/ISO 13849-1, EN/IEC 62061, UL 508 and CSA C22-2 n ${ }^{\circ} 14$

EN/IEC 60204-1, EN/ISO 12100
UL, CSA, TÜV (pending)
$51 \times 205 \times 43.5$
Centres: 30×153.3
Turret head: 8 positions for insertion of actuator.
Safety contacts actuated by the actuator. Slow break and positive opening operation.

1 NC + 1 NO break before make
2 NC
$1 \mathrm{NC}+2 \mathrm{NO}$ break before make
2 NC + 1 NO break before make
$3 \mathrm{NC}+$ auxiliary contacts controlled by the solenoid,
1 NC + 1 NO break before make
2 NC
$1 \mathrm{NC}+2$ NO break before make
2 NC + 1 NO break before make
3 NC with positive opening operation.
IP 66/IP 67
$-25 \ldots+60^{\circ} \mathrm{C}$

Spring terminals, 3 cable entries.
Tapped entry for ISO M20 cable gland or tapped $1 / 2^{\prime \prime}$ NPT.
M23 (15 + 1 PE or 18 + 1 PE)

XCSLE	XCSLF
52	
(1) Stopping time of machine greater than time taken for operator to access hazardous zone.	

(1) Stopping time of machine greater than time taken for operator to access hazardous zone.

| $\begin{array}{l}\text { Preventa XCS coded magnetic switches for detection without contact } \\ \hline \begin{array}{l}\text { Protection of operators by stopping the machine when the gate is opened } \\ \text { All light industrial machines fitted with access gates with imprecise guidance and/or subjected to frequent washing }\end{array} \\ \hline \text { Miniature rectangular format }\end{array}$ Compact rectangular format | | | Cylindrical format |
| :--- | :--- | :--- | :--- | \(\left.\begin{array}{l}Coded magnetic systems with dedicated

transmitter\end{array}\right]\)

Safety detection solutions
 Key operated switches

Refer to standards

ENISO 12100 and EN/ISO 14119

Removable or movable protective guards for potentially dangerous machine functions must be used in conjunction with locking or interlocking devices.
Application requiring an interlocking device: high inertia (long rundown time) machines.
An interlocking device must be used when the rundown time is greater than the time it takes for a person to reach the danger zone.
This device ensures that the guard remains locked until the potentially dangerous movement has stopped.

Safety interlock switches

Control circuit categories

Safety of personnel

Safety of operation

The safety interlock switches, specifically designed for machine guarding applications, provide an ideal solution for the locking or interlocking of movable guards associated with industrial machinery. They meet the requirements of standards EN/ISO 12100, IEC/ISO 13852, EN/ISO 14119 and EN/IEC 60204-1. They contribute to the protection of operators working on potentially dangerous machines by breaking the start control circuit of the machine when a protective guard is opened or removed, using positive opening operation contacts, thus stopping the dangerous movement of the machine.
The removal/opening of the guard (after the dangerous movement has stopped) can either be:

- at the time the machine is switched-off for low inertia machines (machines where the rundown time is less than the time it takes for the operator to access the hazardous zone), or
- delayed for high inertia machines (machines where the rundown time is greater than the time it takes for the operator to access the hazardous zone).

The safety interlock switch if used in conjunction with a Preventa safety module enables designers to achieve $\mathrm{PL}=e$, category 4 control systems with reference to EN/ISO 13849-1 and SIL CL3 with conforming to EN/IEC 62061. When used on their own or combined with another switch, they can achieve up to category 1, 2 or 3 control circuit.
Safety related parts of control systems should be developed taking into account the results of an appropriate Risk Assessment.

The start command for the machine can only be initiated following correct operation of the safety interlock switch.
On its release, the NC safety contacts are opened by positive action or, for coded magnetic switches, change state (must be monitored using a Preventa safety module).

The safety interlock switches incorporate slow break or snap action contacts with positive opening operation (except for coded magnetic switches where this is not possible). For mechanical safety interlock switches, on closing of the guard the actuator fitted to it enters the head of the switch, operates the multiple interlock device and closes the NC contacts. For coded magnetic switches, the presence of the magnet causes the contacts to change state.

All safety interlock switches are designed to accept a few millimetres of misalignment between the actuator and the switch in order to compensate for mechanical play, vibration, etc.

Both mechanically and magnetically actuated safety interlock switches are designed to be operated by specific actuators so that they cannot be defeated in a simple manner using common tools, rods, metal plates, simple magnets, etc. When loosening the fixing screws for re-orientation of the turret head on safety interlock switches, the head itself remains attached to the switch body and the contact states remain unchanged. All safety interlock switches and safety limit switches are designed to avoid any adjusments in the head setting, removing the key actuator or to access the safety contacts without using the appropriate tool.
There are various methods for obtaining a higher level of tamper proofing, for example:

- using a cage device to prevent the insertion of a spare actuator or magnet, or any other foreign body,
- fixing the actuator or coded magnet to the guard by means that make it very difficult to remove (riveting or welding).

Safety detection solutions
 Key operated switches

Metal key operated switches case

Metal safety interlock switches case, mushroom head pushbutton for escape release on XCSLF

Plastic case guard switches with mechanical actuator

Without locking of actuator

Metal key operated switches case for use on machines with low inertia and operating in normal conditions (no vibration or shock and guard mounted vertically, without risk of rebound on closing), thus eliminating unintentional opening of the guard.

With locking of actuator and manual unlocking

Metal key operated switches case for use on heavy machines with low inertia and operating in arduous conditions (shock or vibration exist), whereby the guard could open unintentionally.
A key operated lock or a pushbutton enables the positive locking of the guard and its subsequent unlocking.

With interlocking and locking of actuator by solenoid

Metal safety interlock switches case for use on machines with high inertia or with a controlled opening of the protective guard.
The locking of the moving guard can either be on de-energisation or energisation of the solenoid
A key operated lock enables manual unlocking of the guard in the event of an interlocking circuit malfunction, and also provides extra safety for maintenance personnel likely to be working on the machine.
The switches incorporate 2 LEDs: one indicating guard "open/closed" and the other, guard "locked/unlocked".

With interlocking and locking of actuator by solenoid

Safety interlock switches type XCSLF are available with a mushroom head pushbutton mounted on the rear of the switch for unlocking the machine guard whilst being held in the locked position by the solenoid.
This manual unlocking using the mushroom head pushbutton for escape release is useful in the following cases:

- whilst the machine or a group of machines is undergoing maintenance, enabling operation at reduced speed or whilst stopped with the guard(s) closed The safety of maintenance personnel is thus improved in the event of:
- a power failure,
- an interlocking circuit malfunction,
- personnel finding themselves in a dangerous situation.

Unlocking using the escape release mushroom head pushbutton takes priority over any other action. It therefore enables a person to leave the zone if the need arises.
The re-initialisation of this function is performed by turning (with or without key) the escape release mushroom head.

Without locking of actuator
Plastic safety interlock switches case for use on light machines with low inertia For use in arduous conditions (shock or vibration exist, guard not vertical or risk of rebound on closing) where the guard could open unintentionally, a guard retaining device (XCSPA or XCSTA) is available as an accessory.

With interlocking and locking of actuator by solenoid

Plastic safety interlock switches case for use on machines with high inertia or with a controlled opening of the protective guard.
The locking of the moving guard can either be on de-energisation or energisation of the solenoid.
A special tool enables manual unlocking of the guard in the event of an interlocking circuit malfunction, and also provides extra safety for maintenance personnel likely to be working on the machine.

Safety detection solutions
Lever or spindle operated switches, safety limit switches and coded magnetic systems

Rotary lever and spindle operated switches for hinged guards

With head for rotary movement (lever or spindle)
Plastic case guard switches with straight or elbowed operating lever or spindle operator. Specifically designed for small industrial machines fitted with small sized hinged doors, covers or protective guards.
They protect the operator by immediately stopping the dangerous movement of the machine as soon as the rotary lever or spindle displacement reaches an angle of 5°.

Safety limit switches

Coded magnetic switches

Coded magnetic systems

With head for linear movement (plunger) or rotary movement (lever)

Metal or plastic case limit switches.
For use on machines with low inertia and also on machines with high inertia, when used in conjunction with actuator operated guard switches, for monitoring access doors and/or guards. When used on their own, they are always installed in "positive mode" or combined in pairs, with one switch being in "positive mode" and the other in "negative mode".

With an associated coded magnet

Plastic case guard switches for use on machines with low inertia
Specifically designed for industrial machines fitted with doors, covers or guards with imprecise guiding They are ideally suited for machines subjected to frequent washing or liquid spray.
They protect the operator by immediately stopping any dangerous movement, as soon as the distance between the switch and its magnet is greater than 8 or 5 mm , depending on the switch model.

With dedicated transmitter

These self-contained SIL 2/category 3, PL=d or SIL 3/ category 4, PL=e systems protect the operator by immediately stopping any dangerous movement, as soon as the distance between the transmitter and the receiver exceeds 10 mm .
Plastic case system for use on machines with low inertia. Specifically designed for industrial machines fitted with one or more doors, covers or guards with imprecise guiding.
They are ideally suited for machines subjected to frequent washing or liquid spray and that are not necessarily equipped with an enclosure or control cabinet.

Safety detection solutions

Metal case key operated switches

Key actuators

Turret head

The key actuators are common to all metal and plastic safety interlock switches case types XCSLF and XCSLE

Their oblong fixing holes enable simple adjustment when mounting on moving guards.
A pivoting actuator (both horizontally and vertically) is available when using safety interlock switches in conjunction with hinged guards or guards with
 imprecise guiding
Straight actuators are supplied with an adaptor shank for simple replacement of an XCSL safety interlock switch by an XCS switch, without the need to drill additional fixing holes for the switch or the key actuator.

All metal safety interlock switches case are fitted with a square turret head which can be rotated through 360° in 90° steps

8 directions of actuation are possible for the actuator:

- 4 in the horizontal plane
- 4 from above the switch (4 alternative positions of the actuator slot, depending on the orientation of the head). When loosening the fixing screw for re-orientation of the operating head, the head itself remains attached to the body and the contact states remain unchanged.

Metal safety interlock switches case incorporate a 3-pole contact block with positive opening operation, which is actuated by insertion or withdrawal of the actuator attached to the guard.
$\left.\bar{\sim}\left|\frac{m}{1}\right| \underset{\sim}{m} \right\rvert\, \quad$ The withdrawal of the key actuator opens the NC safety contact(s), even in the event of the contact sticking or welding. The 3-pole contact block enables redundant safety circuits to be established (for example: NC + NC or NC + NO) and also, to provide signalling (for example: PLC, illuminated beacon, etc.).
An orange LED (optional for key operated switches type XCSA, XCSB and XCSC,
standard for safety interlock switches type XCSLF and XCSLE) indicates the position
of the machine guard:
LED illuminated: actuator not inserted in head of switch, NC contact(s)
open, guard open.
LED not illuminated: actuator inserted in head of switch, NC contact(s)
closed, guard closed.

A green LED (incorporated on safety interlock switches type XCSLF and XCSLE) indicates the locking of the machine guard:

LED not illuminated: actuator not inserted in head of switch. The machine cannot be operated.

LED illuminated: actuator inserted in head of switch and actuator locked. The machine is either ready for starting, running or decelerating to a standstill.
Note: LED wiring must be done according to schematics indicated in the instruction sheet or in the catalogue pages.

Safety detection solutions

Metal case key operated switches

Manual locking/unlocking by pushbutton or key operated lock on XCSB and XCSC

The pushbutton or key operated lock fitted to key operated switches type XCSB and XCSC allows manual locking/unlocking of the machine guard

Their use is not necessary for the normal operation of the guard switch.
For ease of access, the pushbutton or lock may be mounted on the right or the left of the key operated switch head.
For key operated switches type XCSC, when the machine guard is locked (key in position "LOCK"), the resistance to forcible withdrawal of the actuator fitted to the guard is $\mathbf{1 5 0} \mathbf{~ d a N}$. The key is removable from the locking device in the "LOCK" position.

Locking/unlocking by solenoid on XCSLF

Safety interlock switches type XCSLF incorporate a solenoid for locking/ unlocking of the machine guard

With the machine guard closed and locked, the resistance to forcible withdrawal of the actuator fitted to the guard is Fzh $\mathbf{2 3 0 0} \mathbf{N}$ according to the verification principle GS-ET19 (Fzh=Fmax/1.3). In addition to the 3-pole contacts, positively operated by the actuator fitted to the guard, safety interlock switches XCSLF incorporate $\mathbf{N C}+\mathbf{N O}$ or $\mathbf{2 N C}$ or $\mathbf{1 ~ N C ~ + ~} \mathbf{2} \mathbf{N O}$ or $\mathbf{2 N C}+\mathbf{1 N O}$ or 3NC contact blocks mechanically linked to the solenoid.
The NC contact(s) are for use in the safety circuit of the machine and the NO contact for signalling the status of the solenoid.

Safety interlock switches type XCSLF are fitted with a key operated lock allowing the unlocking of the machine guard whilst being held in the lock position by the solenoid (for use by authorised personnel only)

The manual unlocking of the guard using the key

operated lock is useful in the following cases:

- whilst the machine is undergoing maintenance (with the key turned to the "UNLOCK" position and then removed, the level of protection is higher in preventing an accidental machine start. The safety for maintenance personnel is thus improved):
- in the event of a power failure
- in the event of an interlocking circuit malfunction (interlocked condition maintained: positive safety).
The electrical supply providing the unlocking via the solenoid always takes priority over manual unlocking using the key operated lock. The lock fitted to standard safety interlock switches has key withdrawal from the "LOCK" and "UNLOCK" positions.

Example of operation for an XCSLF key operated switch with locking on de－energisation of solenoid

Machine status	Stopped， de－energised	Stopped， energised	Stopped， ready to start	Running	Stopping sequence	Stopped，energised
Guard position	Open	Open	Closed	Closed	Closed	Closed
Guard status	Free	Free	Free	Locked	Locked	Free
Solenoid status	＂O＂ （de－energised）	＂ 1 ＂ （energised）	＂ 1 ＂ （energised）	$\begin{aligned} & \text { "O" } \\ & \text { (de-energised) } \end{aligned}$	＂O＂ （de－energised）	＂ 1 ＂ （energised）
2－pole contact state for XCSLF25••••						
2－pole contact state for XCSLF27•••						
3－pole contact state for XCSLF35•••						
3－pole contact state for XCSLF37•••						
3－pole contact state for XCSLF38•••	$\begin{aligned} & =\lfloor\bar{n} \mid \bar{m} L \\ & \approx\|\sim\| c\|c\| \end{aligned}$	$\begin{aligned} & F \left\lvert\, \begin{array}{c\|c\|} \bar{N} L \bar{m} L \\ \sim / N / N \end{array}\right. \end{aligned}$	$\begin{array}{l\|l\|l\|} \mp & \bar{N} \mid & \bar{m} \\ & \sim & \approx \\ \sim & \approx \\ \hline \end{array}$		$\begin{array}{l\|c\|c\|} \mp & \bar{N} \mid & \bar{m} \\ \sim & \approx & - \\ \sim & \approx & ल \end{array}$	$\begin{array}{l\|l\|l\|} \mp & \bar{N} \mid & \bar{m} \\ & \sim & \approx \\ \sim & \approx \\ \hline \end{array}$
Functions	Machine at rest．	Machine cannot be operated．	Guard closed， actuator can be locked．It will be locked as soon as the start instruction is given．	Start instruction given，the machine is running．	Stop instruction given，the machine stops gradually （deceleration then complete stop of motor）．	Machine has stopped． The guard can be opened．

Solenoid contact

states

2－pole contact state for XCSLF••25•••						
2－pole contact state for XCSLF••27••••			$\begin{array}{l\|l} \bar{m} L & \bar{\gamma} L \\ \text { ल/ } \end{array}$			
3－pole contact state for XCSLF••35•••						
3－pole contact state for XCSLF••37••••		$\begin{array}{c\|c\|c\|} \mp & \text { in } & 0 \\ \text { O } \\ \text { y } & \text { กิ } & \text { む } \end{array}$	$\begin{array}{c\|c\|c\|} \hline & \text { in } & 0 \\ & 0 \\ \text { y } & \text { กิ } & \text { す } \end{array}$			
3－pole contact state for XCSLFe•38••e						
Orange LED	\otimes	洨	\otimes	\otimes	\otimes	\otimes
Green LED	\bigotimes	\otimes	\bigotimes	沙	沙	\otimes
Safety circuit of the machine	Open	Open	Open	Closed	Closed	Open

Key actuators

The key actuators are common to all plastic case key operated switches (except for XCSLE, see page 15)

Guard switches XCSPA, XCSTA and XCSLE are fitted with a square turret head which can be rotated through 360° in 90° steps. Guard switches XCSMP have a fixed head

8 directions of actuation are possible for the actuator: 4 in the horizontal plane (1 for XCSMP), 4 from above the switch (1 for XCSMP),
(4 alternative positions of the actuator slot, depending on the orientation of the head).

When loosening the 2 fixing screws or the 4 fixing screws (XCSLE) for re-orientation of the operating head, the head itself remains attached to the body and the contact states remain unchanged (XCSPA,
XCSTA).

The key operated switches incorporate either a 2-pole contact block (XCSMP, XCSPA and XCSLE) or a 3-pole contact block (XCSMP, XCSPA and XCSTA and XCSLE), with positive opening operation, which is actuated by insertion or withdrawal of the key actuator attached to the guard

XCSLE

or XCSPA

or XCSPA, XCSTA

or XCSMP

In addition, safety interlock switches type XCSLE incorporate 1 NC or 2 NC contacts (with positive opening operation) actuated by the solenoid. The NC contact(s) are for use in the safety circuit of the machine. The withdrawal of the key actuator opens the NC safety contact(s), even in the event of the contact sticking or welding.
The two-pole 2 NC or three-pole $2 \mathbf{N C}+1 \mathbf{N O}$ or 3 NC (XCSTA/ XCSMP, XCSPA and XCSLE only) contact block enables up to $P L=d$, category 3 control circuit to be established conforming to EN/ISO 13849-1, by using both NC safety contacts in redundancy, or up to PL = b, category 1 control circuit by using one NC contact in the safety circuit and the NO other contact for signalling (for example: PLC, illuminated beacon, etc.).

Safety detection solutions
 Plastic case key operated switches

Guard retaining
device

Locking/unlocking by solenoid on XCSLE

Unlocking by special tool for XCSLE

Resilience

XCSLE / XCSLF

The guard retaining device XCSZ21 can be used with all plastic key operated switches case type XCSPA and XCSTA that are used in conjunction with either the wide (XCSZ12) or pivoting (XCSZ13) actuator

It assists in holding the guard closed by providing an extra retaining force of 5 daN.
It is specially suited for use with light machines operating in arduous conditions (vibration, mechanical shock, guard not vertical, risk of guard rebound on closing, etc.).

It can be used for horizontal actuator actuation directions as well as those from above.

Safety interlock switches type XCSLE incorporate a solenoid for locking/unlocking of the machine

 guardWith the machine guard closed and locked, the resistance to forcible withdrawal of the actuator fitted to the guard is Fzh $1100 \mathbf{N}$ according to the verification principle GS-ET 19 (Fzh =Fmax/1.3) with F max = 1400N. In addition to the 2-pole or 3-pole contact block, positively operated by the actuator fitted to the guard, the switches incorporate 1 or 2 NC contacts mechanically linked to the solenoid.
The NC contact(s) are for use in the safety circuit of the machine.

Safety interlock switches type XCSLE are supplied with a special tool that enables unlocking of the machine guard whilst being held in the locked position by the solenoid (for use by authorised personnel only)

The manual unlocking of the guard using the tool 1 is useful in the following cases: - whilst the machine is undergoing maintenance (with the tool turned to the "UNLOCK" position and then removed, the level of protection is higher in preventing an accidental machine start. The safety for maintenance personnel is thus improved),

- in the event of a power failure,
- in the event of an interlocking circuit malfunction (interlocked condition maintained: positive safety). The electrical supply providing the unlocking via the solenoid always takes priority over manual unlocking using the special tool.

XCSLE against the partition: $\max =1.2 \mathrm{~J}$
XCSLE without partition: $\max =4.9 \mathrm{~J}$

XCSLF against the partition: $\max =9.6 \mathrm{~J}$
XCSLE without partition: $\max =6.4 \mathrm{~J}$

Example of operation for an XCSLE key operated switch with locking on de－energisation of solenoid

Machine status	Stopped， de－energised	Stopped， energised	Stopped， ready to start	Running	Stopping sequence	Stopped，energised
Guard position	Open	Open	Closed	Closed	Closed	Closed
Guard status	Free	Free	Free	Locked	Locked	Free
Solenoid status	$\begin{aligned} & \text { "O" } \\ & \text { (de-energised) } \end{aligned}$	$" 1 "$ （energised）	$" 1 "$ （energised）	$\begin{aligned} & \text { "O" } \\ & \text { (de-energised) } \end{aligned}$	$\begin{aligned} & \text { "O" } \\ & \text { (de-energised) } \end{aligned}$	$\text { " } 1 "$ （energised）
2－pole contact state for XCSLE25•••						
2－pole contact state for XCSLE27•••						
3－pole contact state for XCSLE35•••						
3－pole contact state for XCSLE37•••					$\begin{array}{c\|c\|c\|} \bar{N} \mid & \bar{m} & \stackrel{m}{1} \\ & \approx & \stackrel{y}{n} \\ \approx & \ddagger \end{array}$	
3－pole contact state for XCSLE38•••			$\begin{array}{l\|l\|c\|} \hline & \bar{N} \mid & \bar{m} \\ & \sim & - \\ \sim & \approx & ल \end{array}$	$\begin{array}{l\|l\|l\|l\|} \hline & \bar{N} \mid & \bar{m} \mid \\ \hdashline & \approx & - \\ \sim & \approx & ल \end{array}$		$\begin{array}{l\|c\|c\|} \hline \mp & \bar{N} \mid & \bar{m} \\ & \sim & \approx \\ \sim & \approx & ल \end{array}$
Functions	Machine at rest．	Machine cannot be operated．	Guard closed， actuator can be locked．It will be locked as soon as the start instruction is given．	Start instruction given，the machine is running．	Stop instruction given，the machine stops gradually （deceleration then complete stop of motor）．	Machine has stopped． The guard can be opened．

Solenoid contact states						
2－pole contact state for XCSLE••25•••						
2－pole contact state for XCSLE••27•••						
3－pole contact state for XCSLE•••35•••						
3－pole contact state for XCSLE•••37•••						
3－pole contact state for XCSLEゃe38•••						
Orange LED	\otimes	涊年	\otimes	\otimes	\otimes	\otimes
Green LED	\otimes	\otimes	\otimes	汹总	汹交	\otimes
Safety circuit of the machine	Open	Open	Open	Closed	Closed	Open

2 types of operating lever, 2 spindle lengths

■ Levers

Straight or elbowed (flush with rear of switch), making the lever switches suitable for use with all types of hinged guards, whether:

- flush with the machine framework (use a switch with an elbowed flush lever),
- overhanging in relation to the machine framework (use a switch with a straight lever).
3 alternative operating lever positions allow the switches to be used with guards that open to the left, centre or right.
■ Spindle operators
2 spindle lengths: 30 or 80 mm .

Safety contacts

Safety switches XCSPL and XCSPR incorporate a 2-pole or 3-pole contact block, with positive opening operation. The contact arrangements can be: NC + NO break before make, $2 \mathrm{NC}, 1 \mathrm{NC}+2$ NO break before make or $2 \mathrm{NC}+1$ NO break before make.
Safety switches XCSTL and XCSTR incorporate a 3-pole contact block, with positive opening operation. The contact arrangements can be:
$1 \mathrm{NC}+2 \mathrm{NO}$ break before make or $2 \mathrm{NC}+1$ NO break before make. Opening of the NC safety contact(s) occurs when the operating lever or spindle is displaced by an angle equal to or greater than 5°.

These safety switches provide a solution for monitoring hinged protective guards with small opening radius on machines with low inertia (no rundown time).
They are specially suitable for existing machines which need to be brought in-line with the latest standards and directives since they can be used in conjunction with existing covers, including those whose mounting is somewhat imprecise.
Mounting of the safety switch improves the machine operator's level of safety by limiting the opening of the protective guard and reducing the risk of touching any moving parts before they have come to a stop.

3 types of case

- PBT plastic body.
- Compact rectangular, XCSDMC
Standard rectangular, XCSDMP
- Cylindrical $\varnothing 30$, XCSDMR
- Pre-cabled, length $2 \mathrm{~m}, 5 \mathrm{~m}$ or 10 m .
- Connector on flying lead connection:
- M8: DMC
- M12: DMP, DMR

Contacts

Coded magnetic switches are fitted with 2-pole (XCSDMCIXCSDMRIXCSDMP) or 3-pole (XCSDMP) Reed type contacts and are available with or without a "guard closed" LED indicator.
The NC and NO contacts change state as soon as the magnet is at a distance from the sensor of approximately 8 mm for types XCSDMP and XCSDMR and approximately 5 mm for type XCSDMC

Connection

When used in safety circuits, the Reed technology contacts must always be used in conjunction with a Preventa safety module.

1 type of case
 - PBT plastic body.
 - Self-contained range: SIL2/PL =d, category 3
 XCSDM3 and SIL3/PL =e, category 4 XCSDM4.
 - Pre-cabled, length $2 \mathrm{~m}, 5 \mathrm{~m}$ or 10 m .
 - Flying lead with M12 connector.

Technology

Coded "Hall effect" detection.

PNP safety outputs

Integrated self-monitoring using micro-processors. Detection distance from 0 to 10 mm obtained on approach of dedicated transmitter XCSDMT.

Functions

- Dynamic EDM (External Device Monitoring) only for xCSDM4.
- Fault and short-circuit detection.
- Output diagnostics (non safety related) only for XCSDM4.
- LED indicator.
- Possible chaining of up to a maximum of 32 systems for XCSDM3 only.

These switches provide a solution for monitoring moveable machine guards fitted to machines with quick rundown times.
They are particularly suitable for guards without accurate guidance and for use in difficult environments (dust, liquids, etc.).
Installing self-contained coded magnetic systems provides an optimum solution (no control system required).
They enable:

- monitoring of one or several guards (opening, closing) on small machines,
- savings in space and the elimination of enclosures and/or control cabinets.

Safety limit switches XCSM

With head for linear movement (plunger) or rotary movement (lever)

- Narrow metal case XCSM.
- With protective plate, preventing both access to the fixing screws or adjustment of the head by non authorised personnel.
- Torx fixing screws.
- A removable cable entry to facilitate wiring.

Contacts

XCSM3 limit switches are fitted with 3-pole contacts and XCSM4 switches are fitted with 4-pole contacts.
4 versions of complete switches are available incorporating these contacts:

- metal end plunger,
- roller plunger,
- thermoplastic roller lever,
- diameter 19 mm steel roller lever.

Connection

Pre-cabled switches, either $7 \times 0.5 \mathrm{~mm}^{2}$ or $9 \times 0.34 \mathrm{~mm}^{2}$.

Safety limit switches XCSD and XCSP
With head for linear movement (plunger) or rotary movement (lever)

Contacts

XCSP3・ゃゃ॰ and XCSD3 $\bullet \bullet \bullet$ limit switches are fitted with 3-pole contacts.
4 versions of complete switches are available incorporating these contacts:

- metal end plunger,
- roller plunger,
- thermoplastic roller lever,
- diameter 19 mm steel roller lever.

Applications

These switches provide a solution for monitoring covers, guards or grilles on machines with low inertia (quick rundown time), either in conjunction with key operated switches or not. When used on their own, they are always installed in "positive mode" or combined in pairs, with one switch being in "positive mode" and the other in "negative mode", and can, when connected to Preventa safety modules, achieve a PL=e, category 4/SIL 3 system.

Safety detection solutions
Limit switches
Miniature design, metal, type XCSM

XCSM pre-cabled

With head for linear movement (plunger). Fixing by the body

鬯

Page 26
With head for rotary movement (lever). Fixing by the body

谷

Page 26

General characteristics

Safety detection solutions

Limit switches

Miniature design, metal, type XCSM

Environment characteristics		
Conformity to standards	Products	EN/IEC 60947-5-1, UL 508, CSA C22-2 n 14
	Machine assemblies	EN/IEC 60204-1, EN/ISO 14119
Product certifications		UL, CSA
Maximum safety level (1)		PL=e, category 4 conforming to EN/ISO 13849-1 and SIL CL3 conforming to EN/IEC 62061
Reliability data $\mathrm{B}_{10 \mathrm{~d}}$		50000000 (value given for a service life of 20 years, limited by mechanical or contact wear)
Protective treatment		Standard version: "TC"
Ambient air temperature		For operation: $-25 \ldots+70^{\circ} \mathrm{C}$ For storage: $-40 \ldots+70^{\circ} \mathrm{C}$
Vibration resistance		XCSM snap action: 5 gn . XCSM slow break: $25 \mathrm{gn}(10 \ldots 500 \mathrm{~Hz})$ conforming to EN/IEC 60068-2-6
Shock resistance		$25 \mathrm{gn} \mathrm{(18} \mathrm{ms)} \mathrm{conforming} \mathrm{to} \mathrm{EN/IEC} \mathrm{60068-2-27}$
Electric shock protection		Class I conforming to IEC 6140
Degree of protection		IP 66, IP 67 and IP 68 (1) conforming to EN/IEC 60529; IK 06 conforming to EN 50102
Materials		Body: Zamak. Head: Zamak. Protective plate: steel, secured by 5-lobe torque safety screw.
Repeat accuracy		0.05 mm on the tripping points, with 1 million operating cycles for head with end plunger
Contact block characteristics		
Rated operational characteristics		~ AC-15; B300 (Ue = 240 V , le=1.5 A) -. DC-13; R300 ($\mathrm{Ue}=250 \mathrm{~V}$, le = 0.1 A), conforming to EN/IEC 60947-5-1 Appendix A
Rated insulation voltage		$\mathrm{Ui}=400 \mathrm{~V}$ degree of pollution 3 conforming to EN/IEC 60947-5-1 $\mathrm{Ui}=300 \mathrm{~V}$ conforming to UL 508, CSA C22-2 $\mathrm{n}^{\circ} 14$
Rated impulse withstand voltage		U imp $=4 \mathrm{kV}$ conforming to EN/IEC 60947-1, EN/IEC 60664
Positive operation (depending on model)		NC contacts with positive opening operation conforming to IEN/IEC 60947-5-1 Appendix K
Resistance across terminals		$\leq 25 \mathrm{~m} \Omega$ conforming to EN/IEC 60255-7 category 3
Short-circuit protection		6 A cartridge fuse type gG (gl)
Minimum actuation speed		Snap action contact: $0.01 \mathrm{~m} /$ minute, Break before make, slow break contact: $6 \mathrm{~m} /$ minute

(1) Using an appropriate and correctly connected control system.

Electrical durability

(1) Protection against prolonged immersion: the test conditions are subject to agreement between the manufacturer and the user.

References, characteristics

Safety detection solutions
Safety limit switches
Miniature design, metal, type XCSM
Pre-cabled

Type of head	Plunger (fixing by the body)	Rotary (fixing by the body)

Type of operator		Metal end plunger	Roller plunger	$\begin{aligned} & \text { Thermoplastic roller } \\ & \text { lever } \end{aligned}$	Steel roller lever
References					
	3-pole $2 \mathrm{NC}+1$ NO snap action contact	XCSM3910L1	XCSM3902L1 Θ		XCSM3916L1
	3-pole 2 NC + 1 NO break before make, slow break contact		XCSM3702L1 Θ	XCSM3715L1 Θ 	XCSM3716L1 Θ
	4-pole $2 \mathrm{NC}+2 \mathrm{NO}$ snap action contact	XCSM4110L1 Θ		XCSM4115L1 Θ	XCSM4116L1 Θ
$\underline{\text { Contact operation }}$		0.165	0.170	0.205	0.210
		closed open		(A) = cam displacement $(P)=$ positive opening point $\Theta N C$ contact with opening positive operation	
Complementary characteristics not shown under general characteristics (page 25)					
Switch actuation		On end	By $30^{\circ} \mathrm{cam}$		
Type of actuation			$\vec{\square}$		
Maximum actuation speed		$0.5 \mathrm{~m} / \mathrm{s}$ $0.5 \mathrm{~m} / \mathrm{s}$		$1.5 \mathrm{~m} / \mathrm{s}$	
Mechanical durability		10 million operating cycles			
Minimum force or torque	Tripping	8.5 N	7 N	0.5 N.m	
	Positive opening	42.5 N	35 N	0.1 N.m	
Cabling	3 -pole contacts	PvR pre-cabled, $7 \times 0.5 \mathrm{~mm}^{2}$, length 1 m (1)			
	4 -pole contacts	PvR pre-cabled, $9 \times 0.34 \mathrm{~mm}^{2}$, length 1 m (1)			
		(1) For a 2 m long cable, replace L1 with L2. For a 5 m long cable, replace L1 with L5.			

Dimensions, connections

Safety detection solutions
Safety limit switches
Miniature design, metal, type XCSM Pre-cabled

Dimensions XCSM••10L1

(1) Protective plate fixed by 5-lobe torque safety screws.

XCSM••15L1

(1) Protective plate fixed by 5-lobe torque safety screws.

Connections

Wiring up to $\mathrm{PL}=\mathrm{b}$, category 1 conforming to EN/ISO 13849-1
Example with 3-pole $2 \mathrm{NC}+1$ NO contact and protection fuse to prevent shunting of the N / C contacts, either by cable damage or by tampering.

(1) Signalling contact

Example of guard monitoring using 2 switches and 1 safety module (PL=e, category 4 conforming to EN/ISO 13849-1)
Operation in positive and negative (combined) mode

Wiring up to $\mathrm{PL}=\mathrm{d}$, category 3 conforming to EN/ISO 13849-1
Example with 3-pole $2 \mathrm{NC}+1$ NO contact with mixed redundancy of the contacts and the associated control relyas. Opening and closing of the guard necessary to activate K1.

H 1 : "guard closed" indicator light

XCSM••16L1

Presentation

Safety detection solutions

Limit switches
Compact design, metal, type XCSD
Compact design, plastic, type XCSP

Safety detection solutions

Limit switches

Compact design, metal, type XCSD
Compact design, plastic, type XCSP

Environment characteristics

Conformity to standards	Products	EN/IEC 60947-5-1, UL 508, CSA C22-2 n 14
	Machine assemblies	EN/IEC 60204-1, EN/ISO 14119
Product certifications		UL, CSA
Maximum safety level (1)		PL=e, category 4 conforming to EN/ISO 13849-1 and SIL CL3 conforming to EN/IEC 62061
Reliability data $\mathrm{B}_{10 \mathrm{~d}}$		50000000 (value given for a service life of 20 years, limited by mechanical or contact wear)
Protective treatment	Standard version	"TC"
Ambient air temperature	For operation	$-25 . . .+70^{\circ} \mathrm{C}$
	For storage	$-40 \ldots+70^{\circ} \mathrm{C}$
Vibration resistance	Conforming to EN/IEC 60068-2-6	$25 \mathrm{gn}(10 \ldots 500 \mathrm{~Hz})$
Shock resistance	Conforming to EN/IEC 60068-2-27	$50 \mathrm{gn} \mathrm{(11} \mathrm{ms)}$
Electric shock protection		Class I conforming to IEC 61140 for XCSD
		Class II conforming to IEC 61140 for XCSP
Degree of protection	Conforming to EN/IEC 60529	IP 66 and IP 67
	Conforming to EN 50102	IK 06 for XCSD IK 04 for XCSP
Repeat accuracy		0.1 mm on the tripping points, with 1 million operating cycles for head with end plunger
Cable entry	Depending on model	Tapped entry for 13.5 cable gland, tapped ISO M20 1.5 or tapped 1/2" NPT
Materials		XCSD: Zamak bodies and heads, XCSP: plastic bodies, Zamak heads Plastic protective cover, secured by 5 -lobe torque safety screw
Contact block characteristics		
Rated operational characteristics		~AC-15; B300 ($\mathrm{Ue}=240 \mathrm{~V}$, le $=1.5 \mathrm{~A}$); lthe $=6 \mathrm{~A}$ =- DC-13; R300 ($\mathrm{Ue}=250 \mathrm{~V}$, le $=0.1 \mathrm{~A}$), conforming to EN/IEC 60947-5-1 Appendix A
Rated insulation voltage		$\mathrm{Ui}=400 \mathrm{~V}$ degree of pollution 3 conforming to IEN/IEC 60947-1 $\mathrm{Ui}=300 \mathrm{~V}$ conforming to UL 508, CSA C22-2 n ${ }^{\circ} 14$
Rated impulse withstand voltage		U imp $=4 \mathrm{kV}$ conforming to EN/IEC 60947-1, ENIIEC 60664
Positive operation (depending on model)		NC contacts with positive opening operation conforming to IEN/IEC 60947-5-1 Appendix K
Resistance across terminals		$\leqslant 25 \mathrm{~m} \Omega$ conforming to EN/IEC 60255-7 category 3
Short-circuit protection		6 A cartridge fuse type gG (gl)
Connection (screw clamp terminals)		Clamping capacity, min: $1 \times 0.34 \mathrm{~mm}^{2}$, max: $1 \times 1 \mathrm{~mm}^{2}$ or $2 \times 0.75 \mathrm{~mm}^{2}$
Minimum actuation speed (for head with end plunger)	Snap action	$0.01 \mathrm{~m} /$ minute
	Slow break	$6 \mathrm{~m} /$ minute

(1) Using an appropriate and correctly connected control system.

Electrical durability
■ Conforming to EN/IEC 60947-5-1 Appendix C

- Utilisation categories AC-15 and DC-13
- Maximum operating rate: 3600 operating cycles/hour

■ Load factor: 0.5

Slow break contacts

References, characteristics, dimensions

Safety detection solutions

Limit switches

Compact design, metal, type XCSD
Complete switches with 1 cable entry

Type of head	\| Plunger		Rotary	
Type of operator	Metal end plunger	Steel roller plunger	Thermoplastic roller lever	Steel roller lever
References of complete switches with 3-pole 2 NC + 1 NO snap action contact				
With ISO M20 x 1.5 cable entry				
	XCSD3910P20	XCSD3902P20	XCSD3918P20	XCSD3919P20
With Pg 13.5 cable entry				
	XCSD3910G13	XCSD3902G13	XCSD3918G13	XCSD3919G13
With 1/2" NPT cable entry				
	XCSD3910N12 Θ	XCSD3902N12	XCSD3918N12 Θ	XCSD3919N12
Weight (kg)	0.215	0.220	0.255	0.255
Contact function diagrams				
3-pole 2 NC + 1 NO snap action				
 Characteristics	open $(P)=$ positive opening point NC contact with positive opening operation			
Characteristics				
Switch actuation	On end	By $30^{\circ} \mathrm{cam}$		
Type of actuation				
Maximum actuation speed	$0.5 \mathrm{~m} / \mathrm{s}$		$1.5 \mathrm{~m} / \mathrm{s}$	
Mechanical durability (in millions of operating cycles)	15	10		
Minimum force or torque For tripping For positive opening	$15 \mathrm{~N}$	12 N 0.1 N.m 36 N $0.25 \mathrm{~N} . \mathrm{m}$		
	$45 \mathrm{~N}$			
Cable entry	1 entry tapped M20 $\times 1.5 \mathrm{~mm}$ for ISO cable gland, clamping capacity 7 to 13 mm 1 entry tapped Pg 13.5 for cable gland, clamping capacity 9 to 12 mm 1 entry tapped for $1 / 2^{\prime \prime}$ NPT (USAS B2-1) conduit			
Dimensions				
(1) Tapped entry for ISO M20 $\times 1.5$ or Pg 13.5 cable gland or tapped 1/2" NPT. (2) 2 elongated holes $\varnothing 4.3 \times 6.3 \mathrm{~mm}$ on 22 mm centres, 2 holes $\varnothing 4.3$ on 20 mm centres. (3) $2 \times \varnothing 3$ holes for support studs, depth 4 mm .	XCSD3•10•••		XCSD3•02•••	

References, characteristics, dimensions (continued)

Safety detection solutions

Limit switches

Compact design, metal, type XCSD
Complete switches with 1 cable entry

Type of head	Plunger		Rotary	
Type of operator	Metal end plunger	Steel roller plunger Thermoplastic roller lever		Steel roller lever
References of complete switches with 3-pole 2 NC + 1 NO break before make, slow break contact				
With ISO M20 x 1.5 cable entry				
	XCSD3710P20 Θ	XCSD3702P20	XCSD3718P20	XCSD3719P20
With Pg 13.5 cable entry				
	XCSD3710G13 Θ	XCSD3702G13	XCSD3718G13	XCSD3719G13
With 1/2" NPT cable entry				
	XCSD3710N12 Θ	XCSD3702N12 Θ	XCSD3718N12	XCSD3719N12 Θ
Weight (kg)	0.215	0.220	0.255	0.255
Contact function diagrams				
Contact operation	(A) = cam displacement open $(P)=$ positive opening point NC contact with positive opening operation			
Characteristics				
Switch actuation	On end	By $30^{\circ} \mathrm{cam}$		
Type of actuation				
Maximum actuation speed	$0.5 \mathrm{~m} / \mathrm{s}$		$1.5 \mathrm{~m} / \mathrm{s}$	
Mechanical durability (in millions of operating cycles)	15	10		
Minimum force or torque For tripping	15 N	12 N	0.1 N.m	
For positive opening	45 N	36 N	0.25 N.m	
Cable entry	1 entry tapped M20 $\times 1.5 \mathrm{~mm}$ for ISO cable gland, clamping capacity 7 to 13 mm 1 entry tapped Pg 13.5 for cable gland, clamping capacity 9 to 12 mm 1 entry tapped for $1 / 2^{\prime \prime}$ NPT (USAS B2-1) conduit			
Dimensions				
(1) Tapped entry for ISO M20 $\times 1.5$ or Pg 13.5 cable gland or tapped 1/2" NPT. (2) 2 elongated holes $\varnothing 4.3 \times 6.3 \mathrm{~mm}$ on 22 mm centres, 2 holes $\varnothing 4.3$ on 20 mm centres. (3) $2 \times \varnothing 3$ holes for support studs, depth 4 mm .	XCSD3•18••๑,	SD319•••		

References, characteristics, dimensions

Safety detection solutions

Limit switches

Compact design, plastic, type XCSP
Complete switches with 1 cable entry

Type of head	Plunger		Rotary	
Type of operator	Metal end plunger	Steel roller plunger	Thermoplastic roller lever	Steel roller lever
References of complete switches with 3-pole 2 NC + 1 NO snap action contact				
With ISO M20 x 1.5 cable entry				
	XCSP3910P20 Θ	XCSP3902P20 Θ	XCSP3918P20 Θ	XCSP3919P20
With Pg 13.5 cable entry				
	XCSP3910G13	XCSP3902G13	XCSP3918G13	XCSP3919G13
With 1/2" NPT cable entry				
	XCSP3910N12	XCSP3902N12	XCSP3918N12	XCSP3919N12
Weight (kg)	0.215	0.220	0.255	0.255
Contact function diagrams				
Contact operation	closed open (A) = cam displacement $(P)=$ positive opening point NC contact with positive opening operation			
Characteristics				
Switch actuation	On end	By $30^{\circ} \mathrm{cam}$		
Type of actuation				
Maximum actuation speed	$0.5 \mathrm{~m} / \mathrm{s}$		$1.5 \mathrm{~m} / \mathrm{s}$	
Mechanical durability (in millions of operating cycles)	15	10		
$\frac{\text { (in milions of operating cycles) }}{\text { Minimum force or torque }}$ For tripping	$\frac{15 \mathrm{~N}}{45 \mathrm{~N}}$	12 N	0.1 N.m	
For positive opening		36 N	$0.25 \mathrm{~N} . \mathrm{m}$	
Cable entry	1 entry tapped M20 1.5 mm for ISO cable gland, clamping capacity 7 to 13 mm 1 entry tapped Pg 13.5 for cable gland, clamping capacity 9 to 12 mm 1 entry tapped for $1 / 2^{\prime \prime}$ NPT (USAS B2-1) conduit			
Dimensions				
(1) Tapped entry for ISO M20 $\times 1.5$ or Pg 13.5 cable gland or tapped 1/2"NPT. (2) 2 elongated holes $\varnothing 4.3 \times 6.3 \mathrm{~mm}$ on 22 mm centres, 2 holes $\varnothing 4.3$ on 20 mm centres. (3) $2 \times \varnothing 3$ holes for support studs, depth 4 mm .				

References, characteristics, dimensions (continued)

Safety detection solutions
Limit switches
Compact design, plastic, type XCSP
Complete switches with 1 cable entry

Presentation

Safety detection solutions

Lever or spindle operated switches
Plastic, double insulated, turret head, types XCSPL, XCSTL, XCSPR and XCSTR

With rotary operating head, with elbowed lever (flush with rear of switch) or straight lever, for hinged covers and guards

With rotary operating head, with spindle operator, for hinged covers and guards

Page 36

With rotary operating head, with elbowed lever (flush with rear of switch) or straight lever, for hinged covers and guards

Page 36

With rotary operating head, with spindle operator, for hinged covers and guards

Page 36

Safety detection solutions

Lever or spindle operated switches
 Plastic, double insulated, turret head, types XCSPL, XCSTL, XCSPR and XCSTR

References, characteristics

Safety detection solutions

Lever or spindle operated switches
Plastic, double insulated, turret head (1), types XCSPL, XCSTL, XCSPR and XCSTR 1 or 2 cable entries
Type \mid Elbowed lever (flush with rear of switch) Spindle

References of complete switches Θ NC contact with positive opening operation) with 1 cable entry tapped ISO M16 x 1.5

2-pole $1 \mathrm{NC}+1$ NO break before make, slow break		XCSPL592	XCSPL582	XCSPL572	XCSPL562	XCSPL552	XCSPR552
$\begin{aligned} & \text { 2-pole } \\ & 2 \text { NC } \\ & \text { slow break } \end{aligned}$		XCSPL792	XCSPL782	XCSPL772	XCSPL762	XCSPL752	XCSPR752
3-pole $1 \mathrm{NC}+2$ NO break before make, slow break		-	-	-	XCSPL862	-	XCSPR852
3-pole $2 \mathrm{NC}+1 \mathrm{NO}$ break before make, slow break		-	XCSPL982	-	XCSPL962	-	XCSPR952
Weight (kg)		0.095	0.095	0.095	0.095	0.095	0.105

References of complete switches (Θ NC contact with positive opening operation) with 2 cable entries tapped ISO M16 x 1.5

3-pole $1 \text { NC + } 2 \text { NO }$ break before make, slow break		XCSTL592	XCSTL582	XCSTL572	XCSTL562	XCSTL552	XCSTR552
$\begin{aligned} & \text { 3-pole } \\ & 2 \text { NC + } 1 \text { NO } \end{aligned}$ break before make, slow break		XCSTL792	XCSTL782	XCSTL772	XCSTL762	XCSTL752	XCSTR752
3-pole 3 NC slow break	$\left.\begin{array}{c\|c\|c\|} \hline & \bar{N} & \bar{\infty} \\ \|c\| c \mid \\ \sim & \sim & ल \end{array} \right\rvert\,$	XCSTL892	XCSTL882	XCSTL872	XCSTL862	XCSTL852	XCSTR852
Weight (kg)		0.145	0.145	0.145	0.145	0.145	0.155

References of complete switches with 1 or 2 cable entries tapped $n^{\circ} 11$ (Pg 11)
To order a complete switch with 1 or 2 Pg 11 cable entries, replace the last number in the reference (2) by 1.
Example: XCSTL592 becomes XCSTL591.
References of complete switches with 1 or 2 cable entries for 1/2" NPT conduit
To order a complete type XCSPL $\bullet \bullet$ or XCSPR $\bullet \bullet \bullet$ switch with 1 cable entry for $1 / 2^{\prime \prime}$ NPT conduit, replace the last number in the reference (2) by 3.
Example: XCSPL592 becomes XCSPL593.
For a complete switch type XCSTL or XCSTR with 2 entries for 1/2" NPT conduit, use adaptor DE9RA1012.

[^0]Setting-up, dimensions, schemes

Safety detection solutions

Lever or spindle operated switches

Plastic, double insulated, turret head,
types XCSPL, XCSTL, XCSPR and XCSTR
1 or 2 cable entries

Setting-up					
Operator displacement					
XCSPL•9•, PL॰7•, PL•6•	XCSPL॰8®, PLe5•	XCSTL•9•, TL•7•, TL•6•	XCSTL•8॰, TL॰5•	XCSPR•5•	XCSTR•5•
				「®	'回
Functional diagrams					
XCSPL59•, PL57•, PL56•	XCSPL58, PL55•	XCSTL56•	XCSTL58॰, TL55•	XCSPR55•	XCSTR55•
$\underbrace{5^{5^{\circ}}}_{10^{\circ}}$					
$\begin{aligned} & \text { XCSPL79•, PL77•, } \\ & \text { PL76• } \end{aligned}$	XCSPL78®, PL75•	$\begin{aligned} & \text { XCSTL79•, TL77•, } \\ & \text { TL76• } \end{aligned}$	XCSTL78@, TL75•	XCSPR75•	XCSTR75•
				$\stackrel{-270^{+55^{\circ}-5^{\circ}}+2+20^{\circ}}{\square}$	
Contact operationclosedopen	XCSPL98•	XCSTL87•, TL86•	XCSTL88@, TL85•	XCSPR85•	XCSTR85-
			$\stackrel{-90^{-5}{ }^{\circ}+5^{\circ}+5^{\circ}+90^{\circ}}{\square}{ }^{1}$		
Dimensions				XCSPR95•	
XCSPL®®®		XCSTL•••		${ }^{-270}{ }^{+5} 5^{\circ}-5^{\circ}+270^{\circ}$	
	$\frac{16}{4 \frac{16}{\operatorname{man}_{44}^{4}}}$	27.4			

Schemes

Wiring up to PL=b, category 1 conforming to EN/ISO 13849-1
Example with cable short-circuit protection fuse

(2) 1 entry tapped
\varnothing : 2 elongated holes $\varnothing 4.3 \times 8.3$ on 22 centres 2 holes $\varnothing 4.3$ on 20 centres

XCSPR•••

[^1]Presentation, characteristics

Safety detection solutions
Key operated switches
Metal, turret head, types XCSA, XCSB and XCSC
Plastic, double insulated, turret head, types XCSMP or XCSPA and XCSTA

Metal, types XCSA, XCSB, XCSC

Key operated switches with or without locking of the actuator

Page 48

Plastic, types XCSMP, XCSPA XCSTA

Key operated switches with or without locking of the actuator

Page 40

Environment characteristics			
Key operated switch type		$\begin{aligned} & \text { XCSA, XCSB, XCSC } \\ & \text { (metal) } \end{aligned}$	XCSMP, XCSPA, XCSTA (plastic)
Conformity to standards	Products	EN/IEC 60947-5-1, UL 508, CSA C22-2 $\mathrm{n}^{\circ} 14$	
	Machine assemblies	EN/IEC 60204-1, EN/ISO 14119	
Product certifications		UL, CSA	UL, CSA (cULus for XCSMP)
Maximum safety level (1)		PL=e, category 4 conforming to EN/ISO 13849-1 and SIL CL3 conforming to EN/IEC 62061	
Reliability data $\mathrm{B}_{10 \mathrm{~d}}$		5000000 (value given for a service life of 20 years, limited by mechanical or contact wear)	
Protective treatment		Standard version: "TC"	
Ambient air temperature	For operation	$-25 . . .+70^{\circ} \mathrm{C}$	
	For storage	$-40 \ldots+70^{\circ} \mathrm{C}\left(-25 \ldots+80^{\circ} \mathrm{C}\right.$ for XCSMP)	
Vibration resistance		$5 \mathrm{gn}(10 \ldots 500 \mathrm{~Hz})$ conforming to EN/IEC 60068-2-6 (6 gn ($10 \ldots 55 \mathrm{~Hz}$) for XCSMP)	
Shock resistance		$10 \mathrm{gn} \mathrm{(duration} 11 \mathrm{~ms}$) conforming to EN/IEC 60068-2-27 (50 gn (duration 11 ms) for XCSMP)	
Electric shock protection		Class 1 conforming to EN/IEC 60536	Class 2 conforming to EN/IEC 60536
Degree of protection		IP 67 conforming to EN/IEC 60529 and EN/IEC 60947-5-1 (2)	
Cable entry		1 entry tapped ISO M20 $\times 1.5$ (clamping capacity 7 to 13 mm) or tapped for $\mathrm{n}^{\circ} 13$ (Pg 13.5) cable gland conforming to NFC 68-300 (clamping capacity 9 to 12 mm) or for 1/2" NPT (USAS B2-1) conduit	1 entry (XCSPA) or 2 entries (XCSTA) tapped for ISO M16 $\times 1.5$ cable gland (clamping capacity 4.5 to 10 mm) or for $\mathrm{n}^{\circ} 11$ (Pg 11) cable gland, or tapped $1 / 2$ " NPT, or for $1 / 2^{\prime \prime}$ NPT (USAS B2-1) conduit using metal adaptor DE9RA1012) for XCSTA (other entry fitted with blanking plug).
Connecting cable		-	Pre-cabled, either $4 \times 0.5 \mathrm{~mm}^{2}$ or $6 \times 0.5 \mathrm{~mm}^{2}$ (XCSMP)
Materials		XCSA/B/C Zamak case	XCSMP/PA/TA Polyamide PA66 fibreglass impregnated case
		Actuators (all types): steel XC60, surface treated	
		(1) Using an appropriate and correctly connected control system. (2) Live parts of these switches are protected against the penetration of dust and water. However, when installing take all necessary precautions to prevent the penetration of solid bodies, or liquids with a high dust content, into the actuator aperture. Not recommended for use in saline atmospheres.	

Safety detection solutions
Key operated switches
Metal, turret head, types XCSA, XCS and XCSC
Plastic, double insulated, turret head,
types XCSMP or XCSPA and XCSTA

Contact block characteristics

Rated operational characteristics	2 and 3 contact, slow break	XCSA, XCSB, XCSC, XCSTA, XCSPA: $\sim A C-15, A 300: ~ U e=240 \mathrm{~V}$, le $=3 \mathrm{~A}$ or $\mathrm{Ue}=120 \mathrm{~V}, \mathrm{le}=6 \mathrm{~A}$ XCSMP: ~AC-15, C300: $\mathrm{Ue}=240 \mathrm{~V}$, le $=0.75 \mathrm{~A}$ or $\mathrm{Ue}=120 \mathrm{~V}$, le $=1.5 \mathrm{~A}$ All models: =- DC-13, Q300: $\mathrm{Ue}=250 \mathrm{~V}$, $\mathrm{le}=0.27 \mathrm{~A}$ or $\mathrm{Ue}=125 \mathrm{~V}$, $\mathrm{le}=0.55 \mathrm{~A}$ conforming to EN/IEC 60947-5-1
	2 contact, snap action	XCSPA: ~AC-15, A300: $\mathrm{Ue}=240 \mathrm{~V}$, le $=3 \mathrm{~A}$; Ithe $=10 \mathrm{~A}$.-. DC-13, Q300: $\mathrm{Ue}=250 \mathrm{~V}$, le $=0.27 \mathrm{~A}$ or $\mathrm{Ue}=125 \mathrm{~V}$, le $=0.55 \mathrm{~A}$ conforming to $\mathrm{EN} / \mathrm{IEC}$ 60947-5-1
	3 contact, snap action	=- DC-13, R300: $\mathrm{Ue}=250 \mathrm{~V}$, le $=0.1 \mathrm{~A}$ or $\mathrm{Ue}=125 \mathrm{~V}$, le $=0.55 \mathrm{~A}$ conforming to EN/IEC 60947-5-1
Conventional thermal current in enclosure		XCSA, XCSB, XCSC, XCSPA (2 \& 3 slow break contact and 2 snap action contact versions) XCSPA (3 snap action contact version): Ithe $=6 \mathrm{~A}$ XCSMP: Ithe $=2.5 \mathrm{~A}$
Rated insulation voltage	2 and 3 contact	3 contact (XCSA, XCSB, XCSC, XCSTA), 2 contact (XCSPA), 2 and 3 contact (XCSMP): $\mathrm{Ui}=500 \mathrm{~V}$ conforming to EN/IEC 60947-1; Ui $=300 \mathrm{~V}$ conforming to UL 508, CSA C22-2 $\mathrm{n}^{\circ} 14$
	3 contact	XCSPA: $\mathrm{Ui}=400 \mathrm{~V}$ degree of pollution 3 conforming to EN/IEC 60947-1 $\mathrm{Ui}=300 \mathrm{~V}$ conforming to UL 508, CSA C22-2 $\mathrm{n}^{\circ} 14$
Rated impulse withstand voltage	2 and 3 contact	3 contact (XCSA, XCSB, XCSC, XCSTA), 2 contact (XCSPA), 2 and 3 contact (XCSMP): Uimp $=6 \mathrm{kV}$ conforming to EN/IEC 60947-5-1
	3 contact	XCSPA: Uimp $=4 \mathrm{kV}$ conforming to EN/IEC 60947-5-4
Positive operation		NC contacts with positive opening operation conforming to EN/IEC 60947-5-1, Section 3
Resistance across terminals		$\leqslant 30 \mathrm{~m} \Omega$ conforming to EN/IEC 60947-5-4
Short-circuit protection	2 and 3 contact	3 contact (XCSA, XCSB, XCSC, XCSTA), 2 contact (XCSPA), 2 and 3 contact (XCSMP): 10 A cartridge fuse type gG (gl)
	3 contact	XCSPA: 6 A cartridge fuse type gG (gl)
Connection $\quad \begin{aligned} & \text { Pre-cabl } \\ & \\ & \begin{array}{l}\text { Screw cla } \\ \text { terminal }\end{array}\end{aligned}$		$4 \times 0.5 \mathrm{~mm}^{2}$ or $6 \times 0.5 \mathrm{~mm}^{2}$ (XCSMP). PVC
	2 contact, snap action	XCSPA, XCSTA: Clamping capacity, min: $1 \times 0.34 \mathrm{~mm}^{2}$, max: $2 \times 1.5 \mathrm{~mm}^{2}$
	2 and 3 contact	3 contact (XCSA, XCSB, XCSC, XCSTA), 2 contact (XCSPA): Clamping capacity, $\mathrm{min}: 1 \times 0.5 \mathrm{~mm}^{2}$, $\max : 2 \times 1.5 \mathrm{~mm}^{2}$ with or without cable end
	3 contact	XCSPA: clamping capacity, min: $1 \times 0.34 \mathrm{~mm}^{2}$, max: $1 \times 1 \mathrm{~mm}^{2}$ or $2 \times 0.75 \mathrm{~mm}^{2}$
Electrical durability		
Conforming to EN/IEC 60947-5-1 Appendix C. Utilisation categories AC-15 and DC-13. Maximum operating rate: 3600 operating cycles/hour.		Only applicable to XCSMP: Conforming to EN/IEC 60947-5-1 Appendix C. Utilisation categories AC-15 and DC-13. Maximum operating rate: 900 operating cycles/hour.

Load factor: 0.5

For XE2S P•151 on ~ or --., NC and NO contacts simultaneously loaded to the values shown with reverse polarity.

AC supply
$50 / 60 \mathrm{~Hz} \sim$ תm inductive circuit

2 snap action contact version
AC supply
$50 / 60 \mathrm{~Hz} \sim$
m inductive circuit

Power broken in W for
5 million operating cycles.

Voltage	V	$\mathbf{2 4}$	$\mathbf{4 8}$	$\mathbf{1 2 0}$
mm	W	10	7	4

3 snap action contact version XCSPA

Voltage	V	$\mathbf{2 4}$	$\mathbf{4 8}$	$\mathbf{1 2 0}$
mm	W	13	9	7

3 slow break contact version XCSPA

DC supply ---
Power broken in W for
5 million operating cycles.

References, characteristics

Safety detection solutions

Key operated switches
Plastic, fixed head, type XCSMP
Pre-cabled, length $2 \mathrm{~m}, 5 \mathrm{~m}$ or 10 m
Type of switch

References of switches without actuator Θ NC contact with positive opening operation) (1)(3)
2-pole 1 NC + 1 NO
break before make, slow break (2)
break before make, slow break (2)

2-pole 2 NC slow break (2)		XCSMP79L•
3-pole 2 NC + 1 NO break before make, slow break (2)		XCSMP70L•
3-pole 3 NC slow break (2)		XCSMP80L•
Weight (kg)		0.110

Weight (kg)
Complementary characteristics not shown under general characteristics (page 38)

Actuation speed	Maximum: $1.5 \mathrm{~m} / \mathrm{s}$, minimum: $0.05 \mathrm{~m} / \mathrm{s}$				
Resistance to forcible withdrawal of actuator	8 N				
Mechanical durability	>1 million operating cycles				
Pre-cabled connection	$4 \times 0.5 \mathrm{~mm}^{2}$ or $6 \times 0.5 \mathrm{~mm}^{2}$				
Maximum operating rate	For maximum durability: 1200 operating cycles per hour				
Minimum force for extraction of actuator	$\geqslant 8 \mathrm{~N}$				
References of actuators					
Description	Straight actuator	Right-angled actuator	Pivoting actuator For right-hand door	\| For left-hand d	
For guard switches XCSMP	XCSZ81	XCSZ84	XCSZ83	XCSZ85	
Weight (kg)	0.015	0.025	0.085	0.085	
Separate components					
Description	Unit reference				Weight kg
Blanking plugs for operating head slot (Sold in lots of 10)	XCSZ29				0.005

(1) Blanking plug for operating head slot included with switch.
(2) Schematic diagrams shown represent the contact states whilst the actuator is inserted in the head of the switch.
(3) Basic reference, to be completed: replace the dot by 2 for a 2 m long cable, by 5 for a 5 m long cable or by 10 for a 10 m long cable. Example: XCSMP59L \bullet becomes XCSMP59L10 for a switch with a 10 m long cable.

Safety detection solutions
Key operated switches
Plastic, fixed head, type XCSMP
Pre-cabled, length $2 \mathrm{~m}, 5 \mathrm{~m}$ or 10 m

Dimensions

XCSMP

XCSZ81

(1) $\varnothing 7.6$, length 2,5 or 10 m .

XCSZ84

XCSZ83

(1) 2 elongated holes $\varnothing 4.2 \times 6$.

XCSZ85

(1) 2 elongated holes $\varnothing 4.2 \times 6$.

Safety detection solutions
Key operated switches
Plastic, fixed head, type XCSMP
Pre-cabled, length $2 \mathrm{~m}, 5 \mathrm{~m}$ or 10 m

Functional diagrams

Contact operation

References:	Characteristics:	Dimensions: page 40

Schemes Note: These schemes are given as examples only, the designer must refer to the relevant safety standards for guidance.
Wiring up to PL=b, category 1 conforming to EN/SO 13849-1
Example with 3 -pole $2 \mathrm{NC}+1 \mathrm{NO}$ contact and protection fuse to prevent shunting of the NC contact, either by cable damage or by tampering.

(1) Signalling contact

Wiring to PL=e, category 4 conforming to EN/ISO 13849-1 and SIL CL3 conforming to EN/IEC 62061. Wiring method used in conjunction with Preventa safety module.
(The guard switch should be used in conjunction with a safety limit switch to give electrical/mechanical redundancy)
Method for machines with quick rundown time (low inertia)
Locking or interlocking device based on the principle of redundancy and self-monitoring.
The safety modules ensure these functions.

[^2]
Safety detection solutions

Key operated switches

Plastic, turret head (1), types XCSPA and XCSTA 1 or 2 cable entries

References of switches without actuator $(\Theta$ NC contact with positive opening operation) with 1 or 2 cable entries tapped ISO M16 $\times 1.5$

2-pole 1 NC + 1 NO (2) break before make, slow break		XCSPA592	Θ	-	
$\text { 2-pole } 1 \text { NC + } 1 \text { NO (2) }$ snap action		XCSPA192	Θ		
2-pole $1 \mathrm{NO}+1 \mathrm{NC}$ (2) make before break, slow break		XCSPA692	Θ	-	
2-pole 2 NC (2) slow break		XCSPA792	Θ	-	
2-pole 2 NC (2) snap action		XCSPA292	Θ		
3-pole $1 \mathrm{NC}+2 \mathrm{NO}$ (2) break before make, slow break		XCSPA892	Θ	XCSTA592	Θ
3-pole $1 \mathrm{NC}+2 \mathrm{NO}$ (2) snap action		XCSPA392	Θ	-	
3-pole $2 \mathrm{NC}+1$ NO (2) break before make, slow break		XCSPA992	Θ	XCSTA792	Θ
$\begin{aligned} & \text { 3-pole } 2 \text { NC + } 1 \text { NO (2) } \\ & \text { snap action } \end{aligned}$		XCSPA492	Θ	-	
$\text { 3-pole } 3 \text { NC (2) }$ slow break		-		XCSTA892	Θ
Weight (kg)		0.110		0.160	

References of switches without actuator $(\Theta$ NC contact with positive opening operation) with 1 or 2 cable entries tapped Pg 11 or 1/2" NPT
To order a switch with 1 or 2 cable entries for $n^{\circ} 11(\mathrm{Pg} 11)$ cable gland (clamping capacity 7 to 10 mm), replace the last number (2) by 1 in the selected reference. Example: XCSPA592 becomes XCSPA591.
To order a switch with 1 or 2 cable entries for $1 / 2^{\prime \prime}$ NPT conduit (one $n^{\circ} 11$ tapped entry fitted with metal adaptor DE9RA1012), replace the last number (2) by 3 in the selected reference. Example: XCA TA592 becomes XCSTA593
Complementary characteristics not shown under general characteristics (page 38)

Actuation speed	Maximum: $0.5 \mathrm{~m} / \mathrm{s}$, minimum: $0.01 \mathrm{~m} / \mathrm{s}$			
Resistance to forcible withdrawal of actuator	XCSPA, XCSTA: 10 N (50 N using actuators XCSZ12 or XCSZ13 together with guard retaining device XCSZ21)			
Mechanical durability	XCSPA, XCSTA: > 1 million operating cycles			
Maximum operating rate	For maximum durability: 600 operating cycles per hour			
Minimum force for positive opening	$\geqslant 15 \mathrm{~N}$			
Cable entry	XCSPA: 1 entry tapped M16 x 1.5 for ISO cable gland. XCSTA: 2 entries tapped M16 $\times 1.5$ for ISO cable gland.			
Materials	Body and head: polyamide PA66, fibreglass impregnated			
References of accessories				
\%	Description	For use with	Unit reference	Weight kg
	Blanking plugs for operating head slot (Sold in lots of 10)	XCSPA, XCSTA	XCSZ28	0.050
	Padlocking device to prevent insertion of actuator, for up to 3 padlocks (padlocks not included)	XCSPA, XCSTA	XCSZ91	0.053
XCSZ91 XCSZ200	Actuator centring device (3) (Fixing screws included)	XCSPA, XCSTA	XCSZ200	0.022

(1) Head adjustable in 90° steps throughout 360°. Blanking plug for operating head slot included with switch. \quad (3) Do not use with XCSZ91.
(2) Schematic diagrams shown represent the contact states whilst the actuator is inserted in the head of the switch.

Other versions: please consult our Customer Care Centre.

References (continued), dimensions

Safety detection solutions

Key operated switches
Plastic, turret head, types XCSPA and XCSTA 1 or 2 cable entries

References of actuators and guard retaining device

References:	Schemes:
page 44	page 47

Safety detection solutions
Key operated switches
Plastic, turret head, types XCSPA and XCSTA 1 or 2 cable entries

\varnothing : 2 elongated holes $\varnothing 4.7 \times 10$

$\mathrm{R}=$ minimum radius

References:	Schemes: page 44
	page 47

Safety detection solutions

Key operated switches
Plastic, turret head, types XCSPA and XCSTA
1 or 2 cable entries

Setting-up

Functional diagrams
XCSTA8••

Contact operation

- Closed
\square Open
- Unstable

Schemes Note: These schemes are given as examples only, the designer must refer to the relevant safety standards for guidance. Wiring to PL=b, category 1 conforming to EN/ISO 13849-1
Example with 3-pole $1 \mathrm{NC}+2 \mathrm{NO}$ contact and protection fuse to prevent shunting of the NC contact, either by cable damage or by tampering.

Wiring to PL=d, category 3 conforming to

EN/ISO 13849-1

Example with 2-pole $1 \mathrm{NC}+1 \mathrm{NO}$ contact with mixed redundancy of the contacts and the associated control relays. To activate K1, it is necessary to remove and re-insert the actuator when the supply is switched on.

(1) Signalling contact.

Wiring to PL=e, category 4 conforming to EN/ISO 13849-1 and SIL CL3 conforming to EN/IEC 62061
Wiring method used in conjunction with safety module
(The key operated switch should be used in conjunction with a safety limit switch to give electrical/mechanical redundancy)

Method for machines with quick rundown time (low inertia)

Locking or interlocking device based on the principle of redundancy and self-monitoring.
The safety modules ensure these functions.

References, characteristics

Safety detection solutions

Key operated switches
Metal, turret head (1), types XCSA, XCSB and XCSC 1 cable entry

Type of switch	Without locking of actuator			With locking of actuator, manual unlocking (2)					
LED indication on opening of NC contacts	Without	1 orange LED $24 / 48 \mathrm{~V} \sim$	1 orange LED 110/ 240 V~	Without	1 orange LED 24/ $48 \mathrm{~V} \sim$	1 orange LED $110 /$ $240 \mathrm{~V} \sim$	Without	1 orange LED $24 / 48 \mathrm{~V} \sim$	1 orange LED 110/ 240 V ~
References of switches without actuator (Θ NC contact with positive opening operation) with 1 cable entry tapped ISO M20 x 1.5									
3 -pole 1 NC + 2 NO break before make, slow break (3)	XCSA502	XCSA512	XCSA522	XCSB502	XCSB512	XCSB522	xcsc502	xCSC512	XCSC522
	XCSA702	XCSA712	XCSA722	XCSB702	XCSB712	XCSB722	xCSC702	XCSC712	XCSC722
	XCSA802	-	-	XCSB802	-	-	xCSC802	-	-
Weight (kg)	0.440	0.440	0.440	0.475	0.475	0.475	0.480	0.480	0.480
References of switches without actuator (Θ NC contact with positive opening operation) with 1 cable entry tapped Pg 13.5									

To order a switch with a Pg 13.5 cable entry, replace the last number (2) by 1 in the selected reference.
Example: XCSA502 becomes XCSA501.

References of switches without actuator (Θ NC contact with positive opening operation) with 1 cable entry tapped 1/2" NPT

To order a switch with a $1 / 2$ " NPT cable entry, replace the last number (2) by $\mathbf{3}$ in the selected reference.
Example: XCSA502 becomes XCSA503.
Complementary characteristics not shown under general characteristics (page 38)

Actuation speed	Maximum: $0.5 \mathrm{~m} / \mathrm{s}$, minimum: $0.01 \mathrm{~m} / \mathrm{s}$
Resistance to forcible withdrawal of actuator	XCSB and XCSC: 1500 N
Mechanical durability	XCSA: >1 million operating cycles XCSB and XCSC: 0.6 million operating cycles
Maximum operating rate	For maximum durability: 600 operating cycles per hour
Minimum force for extraction of actuator	$\geqslant 20 \mathrm{~N}$
Cable entry	XCSA, XCSB, XCSC: 1 cable entry Entry tapped ISO M20 $\times 1.5$, clamping capacity 7 to 13 mm Materials References of actuators

(1) Head adjustable in 90° steps throughout 360°. Blanking plug for operating head slot included with switch.
(2) Unlocking by pushbutton for XCSB $\bullet \bullet \bullet$ and by key operated lock for XCSC $\bullet \bullet \bullet(2$ keys included with switch).
(3) Schematic diagrams shown represent the contact states whilst the actuator is inserted in the head of the switch.

Other versions: please consult our Customer Care Centre.

Key operated switches
Metal, turret head, types XCSA, XCSB and XCSC 1 cable entry

| Separate components | Description | For use
 with | Supply
 voltage | Reference |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Safety detection solutions

Key operated switches
Metal, turret head, types XCSA, XCSB and XCSC 1 cable entry

$\mathrm{R}=$ minimum radius

References:	Schemes:
page 48	page 51

Schemes Note: These schemes are given as examples only, the designer must refer to the relevant safety standards for guidance.

Wiring up to PL=b, category 1 conforming to EN/SO 13849-1

Example with 3-pole $1 \mathrm{NC}+2 \mathrm{NO}$ contact and protection fuse to prevent shunting of the NC contact, either by cable damage or by tampering.

(1) Signalling contact

Wiring up to PL=d, category 3 conforming to EN/ISO 13849-1

Example with 3-pole $1 \mathrm{NC}+2 \mathrm{NO}$ contact with mixed redundancy of the contacts and the associated control relays. To activate K1, it is necessary to remove and re-insert the actuator when the supply is switched on.

H1: "actuator not inserted" indicator

Wiring to PL=e, category 4 conforming to EN/ISO 13849-1 and SIL CL3 conforming to EN/IEC 62061. Wiring method used in conjunction with Preventa safety module. (The key operated switch should be used in conjunction with a safety limit switch to give electrical/mechanical redundancy).
Method for machines with quick rundown time (low inertia)
Locking device based on the principle of redundancy and self-monitoring.
The safety modules ensure these functions.

[^3]
Safety detection solutions

Safety interlock switches

by actuator, with solenoid, turret head
Metal, type XCSLF
Plastic, type XCSLE

Safety interlock switches operating by actuator
With emergency release mushroom head pushbutton

Plastic, type XCSLE

Safety interlock switches operating by actuator

Pages 58 and 59

Environment characteristics			
Guard switch type		XCSLF (metal)	XCSLE (plastic)
Conformity to standards	Products	EN/IEC 60947-5-1, EN/ISO 13849-1, EN/IEC 62061, UL 508, CSA C22-2 n 14	
	Machine assemblies	EN/IEC 60204-1, EN/ISO 14119, EN/ISO 12100	
Product certifications		UL (1), CSA, TÜV (pending)	
Maximum safety level (2)		PL=e, category 4 conforming to EN/ISO 13849-1 and SIL CL3 conforming to EN/IEC 62061	
Reliability data $\mathrm{B}_{10 \mathrm{~d}}$		5500000 (value given for a service life of 20 years, limited by mechanical or contact wear)	
Protective treatment		Standard version: "TC"	
Ambient air temperature	For operation	$-25 \ldots+60^{\circ} \mathrm{C}$	
	For storage	$-40 \ldots+70^{\circ} \mathrm{C}$	
Vibration resistance		$5 \mathrm{gn}(10 \ldots 500 \mathrm{~Hz})$ conforming to EN/IEC 60068-2-6	
Shock resistance		10 gn (duration 11 ms) conforming to EN/IEC 60068-2-27	
Electric shock protection		Class I conforming to EN/IEC 60536	Class II conforming to EN/IEC 60536
Degree of protection		IP 66 and IP 67 (IP 66 for XCSLF $\bullet \bullet \bullet \bullet 4 \bullet \bullet$ and for XCSLF $\bullet \bullet \bullet \bullet 6 \bullet \bullet$) conforming to EN/IEC 60529 and EN/IEC 60947-5-1 (3)	
Connection		3 cable entries tapped M20 $\times 1.5$ for ISO cable gland. Clamping capacity 7 to 13 mm or entries tapped for $1 / 2^{\prime \prime}$ NPT (USAS B2-1) conduit or 1 M23 connector output, $15+1$ PE or $18+1$ PE 24 V -.- versions.	
Material		Zamak case \quad Polyamide case	
		Actuators (all types): steel XC60, sur	

(1) The safety function on this device has not been tested by the UL.
(2) Using an appropriate and correctly connected control system.
(3) Live parts of these switches are protected against the penetration of dust and water. However, when installing take all necessary precautions to prevent the penetration of solid bodies, or liquids with a high dust content, into the actuator aperture. Not recommended for use in saline atmospheres.

Safety detection solutions

Safety interlock switches

by actuator, with solenoid, turret head
Metal, type XCSLF
Plastic, type XCSLE

Contact block characteristics

Switching capacity

conforming to EN/IEC 60947-5-1
Appendix C
Utilization categories AC-15 and DC-13

```
Switching capacity 1:
C300 240 V 0.75 A
R300 250 V 0.1 A
Switching capacity 2 :
C300 120 V 1.5A
R300 125 V 0.22A
```


References, characteristics

Safety detection solutions

Safety interlock switches
by actuator, with solenoid, turret head (1)
With 3 cable entries
Metal, type XCSLF

Type of switch	Locking on de-energization and unlocking on energization of solenoid (2)

Orange LED: "guard open" indication
Green LED:"guard closed and locked" indication
$24 \mathrm{~V}=-\mathrm{or} \sim(50 / 60 \mathrm{~Hz}$ on $\sim)$

References of switches without actuator $(\Theta$ NC contact with positive opening operation) with 3 cable entries tapped ISO M20 x 1.5

2-pole contact 1 NC + 1 NO break before make, slow break (3)		XCSLF2525312	-	-	-	-
2-pole contact 2 NC simultaneous, slow break (3)		XCSLF2725312	XCSLF2727312 Θ	-	-	-
3-pole contact $1 \mathrm{NC}+2$ NO break before make, slow break (3)		-	-	XCSLF3535312	-	-
3-pole contact 2 NC + 1 NO break before make, slow break (3)		-	-	-	XCSLF3737312 Θ	-
$\begin{aligned} & \text { 3-pole contact } \\ & \text { 3 NC } \\ & \text { simultaneous, slow break (3) } \end{aligned}$		-	-	-	-	XCSLF3838312 Θ
Weight (kg)		1.100	1.100	1.100	1.100	1.100

Solenoid and LED characteristics

Load factor	100%
Rated operational voltage (4)	$24 \mathrm{~V} \sim$ or \sim or $120 \mathrm{~V} \sim$ or $230 \mathrm{~V} \sim$
Voltage limits	Conforming to EN/IEC $60947-1$
Consumption	$-15 \%,+10 \%$ of the rated operational voltage (including ripple on $-=-)$

References of complete switches with solenoid supply voltage of 120 V or 230 V
To order a switch with a solenoid voltage of 110/120 V ~, replace the $6^{\text {th }}$ number in the selected reference with 3.
Example: XCSLF3535312 becomes XCSLF3535332.
To order a switch with a solenoid voltage of $220 / 240 \mathrm{~V} \sim$, replace the $6^{\text {th }}$ number in the selected reference with 4.
Example: XCSLF3535312 becomes XCSLF3535342.

References of switches with locking on energization and unlocking on de-energization

To order a guard switch with locking on energization and unlocking on de-energization of the solenoid, replace the $5^{\text {th }}$ number in the selected reference with 5 . Example: XCSLF3535312 becomes XCSLF3535512.

References of complete switches with 3 cable entries tapped for $1 / 2$ " NPT conduit

To order a switch with $31 / 2^{\prime \prime}$ NPT cable entries, replace the last number in the reference with 3.
Example: XCSLF3535312 becomes XCSLF3535313.

References of actuators and separate parts

See page 60.
(1) Head adjustable in 90° steps throughout 360°. Blanking plug for operating head slot included with switch.
(2) A key operated lock (2 keys included with switch) enables forced opening of the interlocking mechanism, by authorized personnel, allowing withdrawal of the actuator and subsequent opening of the NC safety contacts.
(3) Schematic diagrams shown represent the contact states whilst the actuator is inserted in the head of the switch.
(4) Common power supply for the solenoid and the LEDs.

Other versions: consult our Customer Care Centre.

Presentation:	Characteristics:	Dimensions:
page 52	page 53	page 63

Safety detection solutions

Safety interlock switches

by actuator, with solenoid, turret head (1)
Connector output
Metal, type XCSLF

References of switches with locking on energization and unlocking on de-energization

To order a guard switch with locking on energization and unlocking on de-energization of the solenoid, replace the $5^{\text {th }}$ number in the selected reference with 5 . Example: XCSLF272731M2 or XCSLF353531M3 becomes XCSLF272751M2 or XCSLF353551M3.

References of actuators and separate parts

See page 60.
(1) Head adjustable in 90° steps throughout 360°. Blanking plug for operating head slot included with switch
(2) A key operated lock (two keys included with switch) enables forced opening of the interlocking mechanism, by authorized personnel, allowing withdrawal of the actuator and subsequent opening of the NC safety contacts.
(3) Schematic diagrams shown represent the contact states whilst the actuator is inserted in the head of the switch
(4) Common power supply for the solenoid and the LEDs.

Note: Due to existing cable connections and to ensure your personal safety, safety screws have been used in front of the product to prevent unauthorized access.
Other versions: consult our Customer Care Centre

References, characteristics (continued)

Safety detection solutions

Safety interlock switches

by actuator, with solenoid, turret head (1)
With 3 cable entries
Metal, type XCSLF

Type of switch		Locking on de-energization and unlocking on energization of solenoid (2) or in emergency by mushroom head pushbutton (3)	
LED indication		Orange LED: "guard open" indication Green LED: "guard closed and locked" indication	
Power supply for the solenoid and	LEDs	$24 \mathrm{~V}=$ or $\sim(50 / 60 \mathrm{~Hz}$ on \sim)	
Type of contact on solenoid		$1 \mathrm{NC}+2 \mathrm{NO}$ break before make	$2 \mathrm{NC}+1$ NO break before make
References of switches without actuator $\Theta N C$ contact with positive opening operation) with trigger action mushroom head pushbutton, diameter 40 mm , "turn to release" reset, with 3 entries tapped ISO M20 x 1.5			
$\begin{aligned} & \text { 3-pole contact } \\ & 1 \text { NC + } 2 \text { NO } \end{aligned}$ break before make, slow break (4)		XCSLF3535412 Θ	-
3-pole contact 2 NC + 1 NO break before make, slow break (4)		-	XCSLF3737412
Weight (kg)		1.220	1.220
Solenoid and LED characteristics			
Load factor		100 \%	
Rated operational voltage (5)		$24 \mathrm{~V}=$ - or \sim or $120 \mathrm{~V} \sim$ or $230 \mathrm{~V} \sim$	
Voltage limits	Conforming to EN/IEC 60947-1	-15\%,+10\% of the rated operational voltage (including ripple on ---)	
Consumption		$<5.4 \mathrm{~W}$ at $20^{\circ} \mathrm{C}$ and max. voltage	
References of switches with trigger action mushroom head pushbutton, diameter 40 mm , key no. 455 reset			

To order a switch with trigger action mushroom head pushbutton, key no. 455 release, diameter 40 mm at the rear of the product, replace the $5^{\text {th }}$ number in the selected reference with 6
Example: XCSLF3535412 becomes XCSLF3535612.

References of complete switches with solenoid supply voltage of 120 V or 230 V

To order a switch with a solenoid voltage of $110 / 120 \mathrm{~V} \sim$, replace the $6^{\text {th }}$ number in the selected reference with 3.
To order a switch with a solenoid voltage of $220 / 240 \mathrm{~V} \sim$, replace the $6^{\text {th }}$ number in the selected reference with 4.

References of complete switches with 3 cable entries tapped for 1/2" NPT conduit

To order a switch with $31 / 2^{\prime \prime}$ NPT cable entries, replace the last number in the reference with 3.
Example: XCSLF3737412 becomes XCSLF3737413.

References of actuators and separate parts

See page 60.
(1) Head adjustable in 90° steps throughout 360°. Blanking plug for operating head slot included with switch.
(2) A key operated lock (2 keys included with switch) enables forced opening of the interlocking mechanism, by authorized personnel, allowing withdrawal of the actuator and subsequent opening of the NC safety contacts.
(3) Trigger action, diameter 40 mm , "turn to release" or "key no. 455 " reset type.
(4) Schematic diagrams shown represent the contact states whilst the actuator is inserted in the head of the switch.
(5) Common power supply for the solenoid and the LEDs.

Other versions: consult our Customer Care Centre.

Presentation:	Characteristics:	Dimensions:
page 52	page 53	Schemes:

Safety detection solutions

Safety interlock switches
by actuator，with solenoid，turret head（1）
Connector output
Metal，type XCSLF

Type of switch	Locking on de－energization and unlocking on energization of solenoid（2）or in emergency by mushroom head pushbutton（3）	
LED indication	Orange LED：＂guard open＂indic Green LED：＂guard closed and I	
Power supply for the solenoid and the LEDs	$24 \mathrm{~V}=-$ or $\sim(50 / 60 \mathrm{~Hz}$ on \sim ）	
Type of contact on solenoid	$1 \mathrm{NC}+2 \mathrm{NO}$ break before make	$2 \mathrm{NC}+1$ NO break before make
References of switches without actuator $(\Theta$ NC contact with positive opening operation） with trigger action mushroom head pushbutton，diameter 40 mm ，＂turn to release＂reset，19－pin M23 connector output（6 contacts）		
3－pole contact 1 NC＋ 2 NO break before make，slow break（4）	XCSLF353541M3	－
3－pole contact 2 NC＋ 1 NO break before make，slow break（4）	－	XCSLF353541M3 Θ
Weight（kg）	1.220	1.220
Solenoid and LED characteristics		
Load factor	100 \％	
Rated operational voltage（5）	$24 \mathrm{~V}=-\mathrm{or} \sim$	
Voltage limits Conforming to EN／IEC 60947－1	$-15 \%,+10 \%$ of the rated opera	（including ripple on－－－）
Consumption	$<5.4 \mathrm{~W}$ at $20^{\circ} \mathrm{C}$ and max．voltag	
References of switches with trigger action mushroom head pushbutton，diameter 40 mm ，key no． 455 reset		

To order a switch with trigger action mushroom head pushbutton，unlocked by key no． 455 ，diameter 40 mm at the rear of the product，replace the $5^{\text {th }}$ number in the selected reference with 6
Example：XCSLF353541M3 becomes XCSLF353561M3

References of actuators and separate parts

See page 60.

（1）Head adjustable in 90° steps throughout 360° ．Blanking plug for operating head slot included with switch．
（2）A key－operated lock（two keys included with switch）enables forced opening of the interlocking mechanism，by authorized personnel，allowing withdrawal of the actuator and subsequent opening of the NC safety contacts．
（3）Trigger action，diameter 40 mm ，＂turn to release＂or＂key no．455＂reset type．
（4）Schematic diagrams shown represent the contact states whilst the actuator is inserted in the head of the switch
（5）Common power supply for the solenoid and the LEDs．
Note：Due to existing cable connections and to ensure your personal safety，safety screws have been used in front of the product to prevent unauthorized access．
Other versions：consult our Customer Care Centre．

References, characteristics

Safety detection solutions

Safety interlock switches
by actuator, with solenoid, turret head (1)
With 3 cable entries, double insulated Plastic, type XCSLE

Type of switch
LED indication
Power supply for the solenoid and the LEDs
Type of contact on solenoid

References of switches without actuator Θ NC contact with positive opening operation)

 with 3 cable entries tapped ISO M20 x 1.52-pole contact
1 NC + 1 NO
break before make, slow break (3)

XCSLE2525312	-	-	-	-
-	XCSLE2727312 Θ	-	-	-
-	-	XCSLE3535312	-	-
-	-	-	XCSLE3737312	-
-	-	-	-	XCSLE3838312
0.530	0.530	0.530	0.530	0.530

Solenoid and LED characteristics

Load factor	100%	
Rated operational voltage (4)	$24 \mathrm{~V}-\mathrm{-}$ or \sim or $120 \mathrm{~V} \sim$ or $230 \mathrm{~V} \sim$	
Voltage limits	Conforming to EN/IEC $60947-1$	$-15 \%,+10 \%$ of the rated operational voltage (including ripple on --)
Consumption	$<5.4 \mathrm{~W}$ at $20^{\circ} \mathrm{C}$ and max. voltage	

References of complete switches with solenoid supply voltage of 120 V or 230 V

To order a switch with a solenoid voltage of $110 / 120 \mathrm{~V} \sim$, replace the $6^{\text {th }}$ number in the selected reference with 3 .
Example: XCSLE2525312 becomes XCSLE2525332.
To order a switch with a solenoid voltage of $220 / 240 \vee \sim$, replace the $6^{\text {th }}$ number in the selected reference with 4.
Example: XCSLE2525312 becomes XCSLE2525342.

References of switches with locking on energization and unlocking on de-energization

To order a guard switch with locking on energization and unlocking on de-energization of the solenoid, replace the $5^{\text {th }}$ number in the selected reference with 5 Example: XCSLE2525312 becomes XCSLE2525512

References of complete switches with three cable entries tapped for 1/2" NPT conduit

To order a switch with $1 / 2^{\prime \prime}$ NPT cable entries, replace the last number in the reference with $\mathbf{3}$.
Example: XCSLE2727312 becomes XCSLE2727313.

References of actuators and separate parts

See page 60.
(1) Head adjustable in 90° steps throughout 360°. Blanking plug for operating head slot included with switch.
(2) A special tool included with the guard switch enables forced opening of the interlocking mechanism, by authorized personnel, allowing withdrawal of the actuator and subsequent opening of the NC safety contacts.
(3) Schematic diagrams shown represent the contact states whilst the actuator is inserted in the head of the switch.
(4) Common power supply for the solenoid and the LEDs.

Other versions: consult our Customer Care Centre.

Presentation:	Characteristics: page 53	Dimensions: page 63

Safety detection solutions

Safety interlock switches

by actuator, with solenoid, turret head (1)
Connector output, double insulated
Plastic, type XCSLE
Type of switch

LED indication	Orange LED: "guard open" indication Green LED: "guard closed and locked" indication				
Power supply for the solenoid and the LEDs	$24 \mathrm{~V}=-$ or $\sim(50 / 60 \mathrm{~Hz}$ on \sim)				
Type of contact on solenoid	1 NO + 1 NC break before make	2 NC simultaneous	$1 \mathrm{NC}+2 \mathrm{NO}$ break before make	$2 \mathrm{NC}+1 \mathrm{NO}$ break before make	3 NC simultaneous
	$\left\lvert\, \begin{array}{cc} \wedge & \circ \\ \infty & -\cdots \\ \infty & \circ \end{array}\right.$				

References of switches without actuator $\Theta \mathrm{NC}$ contact with positive opening operation),
16-pin (4 contacts) or 19-pin (6 contacts) M23 connector output

2-pole contact 1 NC + 1 NO break before make, slow break (3)	XCSLE252531M2 Θ	-	-	-	-
2-pole contact 2 NC simultaneous, slow break (3)	-	XCSLE272731M2	-	-	-
3-pole contact 1 NC + 2 NO break before make, slow break (3)	-	-	XCSLE353531M3	-	-
3-pole contact 2 NC + 1 NO break before make, slow break (3)	-	-	-	XCSLE373731M3	-
3-pole contact 3 NC simultaneous, slow break (3)	-	-	-	-	XCSLE383831M3
Weight (kg)	0.530	0.530	0.530	0.530	0.530
Solenoid and LED characteristics					
Load factor	100 \%				
Rated operational voltage (4)	$24 \mathrm{~V}=$ or \sim				
Voltage limits Conforming to EN/IEC 60947-1	-15\%,+10\% of the rated operational voltage (including ripple on ---)				
Consumption	$<5.4 \mathrm{~W}$ at $20^{\circ} \mathrm{C}$ and max. voltage				

References of switches with locking on energization and unlocking on de-energization

To order a guard switch with locking on energization and unlocking on de-energization of the solenoid, replace the $5^{\text {th }}$ number in the selected reference with 5. Example: XCSLE252531M2 becomes XCSLE252551M2 and XCSLE353531M3 becomes XCSLE353551M3

References of actuators and separate parts

See page 60.

(1) Head adjustable in 90° steps throughout 360°. Blanking plug for operating head slot included with switch
(2) A special tool included with the guard switch enables forced opening of the interlocking mechanism, by authorized personnel, allowing withdrawal of the actuator and subsequent opening of the NC safety contacts.
(3) Schematic diagrams shown represent the contact states whilst the actuator is inserted in the head of the switch.
(4) Common power supply for the solenoid and the LEDs.

Note : Due to existing cable connections and to ensure your personal safety, safety screws have been used in front of the product to prevent unauthorized access.
Other versions: consult our Customer Care Centre.

Safety detection solutions

Safety interlock switches
by actuator, with solenoid, turret head
Metal, type XCSLF and plastic, type XCSLE
Accessories

xCSZ01

XCSZ02

xCSZ03

xCSZ90

Actuator references		Unit	
Description	Used for	Unight reference	
Straight actuator	XCSLF, kg		
	XCSLE	XCSZ01	0.020

Actuator with wide fixing	XCSLF,	XCSZ02	0.020
	XCSLE		

Pivoting actuator	XCSLF, XCSLE	XCSZ03	0.095

Latch for sliding doors	XCSLF, XCSLE	XCSZ05	0.600

Separate parts	Used for	Unit reference	Weight Description
Blanking plugs for operating head slot (Sold in lots of 10)	XCSLF, XCSLE	XCSZ30	0.050
Keys for interlock "forced opening" device (Sold in lots of 10)	XCSLF	XCSZ25	0.100
Padlocking device to prevent insertion of actuator, for up to 3 padlocks (padlocks not included)	XCSLF,	XCSLE	XCSZ90
Tool for forced opening of interlocking device (Sold in lots of 10)	XCSLE	XCSZ100	0.055
Cover safety kit consisting of: ■ 4 5-lobe torque screws ■ 1 magnetic screwdriver bit	XCSLF	XCSLE	XCSZ210

References (continued), characteristics, dimensions, connections

Safety detection solutions
Safety interlock switches
by actuator, with solenoid, turret head
Metal, type XCSLF and plastic, type XCSLE Cabling accessories

M23 connectors						
Characteristics						
Type of connection	Screw threaded (metal clamping ring)					
Degree of protection	IP 65 (with clamping ring correctly tightened)					
Ambient air temperature	$-25 \ldots+110^{\circ} \mathrm{C}$					
Connection	To solder terminals. Maximum conductor c.s.a.: $1 \mathrm{~mm}^{2}$ Cable gland: no. 13 metal (Pg 13.5) Clamping capacity: 9 to 12 mm					
LED signalling	-					
Nominal voltage	$60 \mathrm{~V} \sim, 75 \mathrm{~V}=-$					
Nominal current	7.5 A					
Insulation resistance	$>10^{12} \Omega$					
Contact resistance	$\leq 5 \mathrm{~m} \Omega$					
References						
	Type of connector	Number of contacts	Cable connection	Type	Reference	Weight kg
Posorsor	Female, M23	16	To solder terminals	Straight	XZCC23FDM160S	0.080
				Elbowed	XZCC23FCM160S	0.150
Wen		19	To solder terminals	Straight	XZCC23FDM190S	0.080
				Elbowed	XZCC23FCM190S	0.150

Dimensions
XZCC23FDM160S and XZCC23FDM190S XZCC23FCM160S and XZCC23FCM190S

(1) No. 13 metal cable gland.

Connections

XZCC23F•M160S

XZCC23F•M190S

References (continued), characteristics, dimensions, connections

Safety detection solutions
Safety interlock switches
by actuator, with solenoid, turret head
Metal, type XCSLF and plastic, type XCSLE
Cabling accessories

Connector adaptors

Dimensions

XZCE20M231•M

(1) $M 20 \times 1.5$

Connections

XZCE20M2316M
XZCE20M2319M

Safety detection solutions
Safety interlock switches
by actuator, with solenoid, turret head
Metal, type XCSLF
Plastic, type XCSLE

$\bar{\varnothing}: 2$ elongated holes $\varnothing 6.2 \times 4.2$
(1) 3 tapped entries for cable gland.
(2) Version with M23 connector.

Safety detection solutions
Safety interlock switches
by actuator, with solenoid, turret head
Metal, type XCSLF
Plastic, type XCSLE

Actuation radius

xCsz02

$\mathrm{R}=$ minimum radius

Safety detection solutions

Safety interlock switches
by actuator, with solenoid, turret head
Metal, type XCSLF
Plastic, type XCSLE

Operation Functional diagrams XCSLF/LE25•••

Connections

Wiring to PL=e, category 4 conforming to EN/ISO 13849-1 and SIL CL3 conforming to EN/IEC 62061. Wiring method used in conjunction with Preventa safety module (the safety interlock switch should be used in conjunction with a safety limit switch to achieve electrical/mechanical redundancy).
Method for machines with long rundown time (high inertia)

Interlocking device for actuator fitted on guard and zero speed detection.

Safety detection solutions
Safety interlock switches
by actuator, with solenoid, turret head
Metal, type XCSLF
Plastic, type XCSLE

Wiring up to PL=b, category 1 conforming to EN/ISO 13849-1
Wiring example with protection fuse to prevent shunting of the NC contact, either by cable damage or by tampering.
1 NC +1 NO locking on de-energization
and 1 NC + 1 NO auxiliary contacts
XCSLF/LE25253••

E1-E2: Solenoid supply

13-14: Safety contact, available for redundancy
13-X2/E2: LED (orange): actuator withdrawn
41-X1/E2: LED (green): actuator inserted and locked
22-41 : Safety pre-wiring obligatory
S1: Manual release button
X: Unlocking signal

Wiring up to PL=d, category 3 conforming to EN/ISO 13849-1
Wiring example with redundancy for the guard switch contacts, without monitoring or redundancy in the power circuit.

2 NC + 1 NO locking on de-energization
and 2 NC + 1 NO auxiliary contacts
XCSLFILE37373••

E1-E2: Solenoid supply
21-22 and 31-32: Safety contacts, available for redundancy
13-X2/E2: LED (orange): actuator withdrawn
51-X1/E2: LED (green): actuator inserted and locked
22-41 and 32-51: Safety pre-wiring obligatory
S1: Manual release button
X : Zero speed or unlocking signal

Safety detection solutions
Safety interlock switches
by actuator, with solenoid, turret head
Metal, type XCSLF
Plastic, type XCSLE

Connection by M23 connectors
16-pin M23 connectors

XCSLF/LE2525••

XCSLF/LE2727••

XCSLF/LE3838••

Présentation: page 52	Caractéristiques: page 53	Références: page 54

Presentation

Safety detection solutions

Coded magnetic switches
Plastic

XCSDMC

XCSDMP

XCSDMR

Page 70
Page 71

Rectangular, standard: $88 \times 25 \times 13$
Pre-cabled connection
Connector on flying lead connection

Page 70

Page 71

Cylindrical, diameter: 30, length: $\mathbf{3 8 . 5}$
Pre-cabled connection
Connector on flying lead connection

Page 71

Environment

Conformity to standards	Products		EN/IEC 60947-5-1, UL 508, CSA C22-2 ${ }^{\circ} 14$
	Machine assemblies		EN/IEC 60204-1, EN/ISO 14119
Product certifications			UL, CSA, BG
Maximum safety level (1)			PL=e, category 4 conforming to EN/ISO 13849-1 and SIL 3 conforming to EN/IEC 61508
Reliability data $\mathrm{B}_{10 \mathrm{~d}}$			50000000 (value given for a service life of 20 years, limited by mechanical or contact wear)
Protective treatment			Standard version: "TH"
Ambient air temperature	For operation	${ }^{\circ} \mathrm{C}$	$-25 \ldots+85$
	For storage	${ }^{\circ} \mathrm{C}$	$-40 \ldots+85$
Vibration resistance			$10 \mathrm{gn} \mathrm{(10..}$.150 Hz) conforming to EN/IEC 60068-2-6
Shock resistance			30 gn (11 ms) conforming to EN/IEC 60068-2-7
Sensitivity to magnetic fields		mT	$\geqslant 0.3$
Electric shock protection			Class II conforming to EN/IEC 60536
Degree of protection	Conforming to IEC 60529		IP 66 and IP 67 for coded magnetic switches with pre-cabled connection IP 67 for coded magnetic switches with connector on flying lead connection
Materials			Thermoplastic case (PBT) PVC cable (ROHS)

Contact block characteristics

Rated operational characteristics			Ue: $24 \mathrm{~V}=-$, le: 100 mA max.
Rated insulation voltage (Ui)			Ui: 100 V --
Rated impulse withstand voltage (U imp)		kV	2.5 conforming to EN/IEC 60947-5-1
Resistance across terminals	Contact with LED	Ω	57
	Contact without LED	Ω	10
Protection (not using safety module)			External cartridge fuse: $500 \mathrm{~mA} \mathrm{gG} \mathrm{(gl)}$
Connection XCSDMC	2 contact model		Pre-cabled, $4 \times 0.25 \mathrm{~mm}^{2}$, length: 2,5 or 10 m depending on model or M8 connector on 0.15 m flying lead
XCSDMP	2 contact model		Pre-cabled, $4 \times 0.25 \mathrm{~mm}^{2}$, length: 2,5 or 10 m depending on model or M12 connector on 0.15 m flying lead
	3 contact model		Pre-cabled, $6 \times 0.25 \mathrm{~mm}^{2}$, length: 2,5 or 10 m depending on model or M12 connector on 0.15 m flying lead
XCSDMR	2 contact model		Pre-cabled, $4 \times 0.25 \mathrm{~mm}^{2}$, length: 2,5 or 10 m depending on model or M12 connector on 0.15 m flying lead
Contact material			Rhodium
Electrical durability			1.2 million operating cycles
Maximum switching voltage		V	$100=$
Switching capacity	Contact with LED	mA	5... 100
	Contact without LED	mA	0.1... 100
Insulation resistance		M Ω	1000
Maximum breaking capacity	Contact with LED	VA	3
	Contact without LED	VA	10
Maximum switching frequency		Hz	150

[^4]
Safety detection solutions

Coded magnetic switches
Plastic, pre-cabled

Type

Rectangular	Ctandard	Cylindrical
Compact	$88 \times 25 \times 13$	Diameter 30
$51 \times 16 \times 7$	Length 38.5	

References of switches (1) \triangle must be used in conjunction with safety modules XPS (see page 76)
Contact states shown are with the magnet positioned in front of the switch

$\begin{aligned} & \text { 2-pole } 1 \text { NC + } 1 \text { NO } \\ & \text { (staggered) } \end{aligned}$		XCSDMC5902	XCSDMP5902	XCSDMR5902
$\begin{aligned} & \text { 2-pole } 2 \text { NC (2) } \\ & \text { (staggered) } \\ & \hline \end{aligned}$		XCSDMC7902	XCSDMP7902	XCSDMR7902
3-pole 1 NC + 2 NO (1 NO staggered)		-	XCSDMP5002	-
3-pole 2 NC + 1 NO (2) (1 NC staggered)		-	XCSDMP7002	-
2-pole 1 NC + 1 NO (staggered)		XCSDMC5912	XCSDMP5912	XCSDMR5912
2-pole 2 NC (2) (staggered)		XCSDMC7912	-	XCSDMR7912
3-pole $1 \mathrm{NC}+2 \mathrm{NO}$ (1 NO staggered)		-	XCSDMP5012	-
3-pole $2 \mathrm{NC}+1$ NO (2) (1 NC staggered)		-	XCSDMP7012	-
Weight (kg)		0.101	0.180	0.146

(1) Magnetic switch + coded magnet (XCSZC $\bullet \bullet \bullet$).

Switch pre-cabled with 2 m long cable. For other cable lengths, replace the last number of the reference (2) by 5 for a 5 m long cable or by 10 for a 10 m long cable.
Example: rectangular, compact switch with 1 NC +1 NO contacts and 10 m cable becomes XCSDMC59010.
(2) Only to be wired in conjunction with an XPSAF module (see page 77).

Complementary characteristics not shown under general characteristics (page 69)

Complementary characteristics not Shown under general characteristics (page 69)			
Operating zone	Sao: 5 mm Sar: 15 mm	Sao: 8 mm Sar: 20 mm	Sao: 8 mm Sar: 20 mm
Approach directions	3 directions	3 directions	1 direction

Accessories (page 72)

Safety detection solutions

Coded magnetic switches

Plastic, connector on flying lead
Type

References of switches (1) \triangle must be used in conjunction with safety modules XPS (see page 76)
Contact states shown are with the magnet positioned in front of the switch

2-pole 1 NC + 1 NO (staggered)		XCSDMC590L01M8	XCSDMP590L01M12	XCSDMR590L01M12
2-pole 2 NC (2) (staggered)		XCSDMC790L01M8	XCSDMP790L01M12	XCSDMR790L01M12
3-pole $1 \mathrm{NC}+2 \mathrm{NO}$ (1 NO staggered)		-	XCSDMP500L01M12	-
3-pole $2 \mathrm{NC}+1$ NO (2) (1 NC staggered)		-	XCSDMP700L01M12	-
2-pole 1 NC + 1 NO (staggered)		XCSDMC591L01M8	XCSDMP591L01M12	XCSDMR591L01M12
2-pole 2 NC (2) (staggered)		XCSDMC791L01M8	XCSDMP791L01M12	XCSDMR791L01M12
3-pole $1 \mathrm{NC}+2 \mathrm{NO}$ (NO staggered)		-	XCSDMP501L01M12	-
3-pole $2 \mathrm{NC}+1 \mathrm{NO}$ (2) (NC staggered)		-	XCSDMP701L01M12	-
Weight (kg)		0.101	0.180	0.146

(1) Magnetic switch + coded magnet (XCSZC••••).
(2) Only to be wired in conjunction with an XPSAF module (see page 77).

Complementary characteristics not shown under general characteristics (page 69)

| Operating zone | Sao: 5 mm
 Sar: 15 mm | Sao: 8 mm
 Sar: 20 mm | Sao: 8 mm
 Sar: 20 mm |
| :--- | :--- | :--- | :--- | :--- |
| Approach directions | 3 directions | 3 directions | 1 direction |

Accessories (page 72)

References， characteristics

Safety detection solutions

Coded magnetic switches
Accessories

Accessories			
Accessories for coded magnetic switches	XCSDMC•••2 XCSDMC••๗L	XCSDMP•・ゃ2 XCSDMP•・ョL	XCSDMR•••2 XCSDMR•••L
Fixing clamp	－		XSZB130
Weight（kg）	－		0.080
Additional coded magnet	xCSZC1	XCSZP1	XCSZR1
Weight（kg）	0.009	0.050	0.018
Non－magnetic shims	XCSZCC（lot of 2）	XCSZCP（lot of 2）	XCSZCR
Weight（kg）	0.008	0.012	0.002

Pre－wired female connectors for connector version switches
Pre－wired connector characteristics

Pre－wired connector type		XZCP0941L®，XZCP1041L•	XZCP29P11L•	XZCP1141L®，XZCP1241L•
Type of connection		Screw threaded （metal clamping ring）	Screw threaded （metal clamping ring）	Screw threaded （metal clamping ring）
Number of contacts		4	8	4
Degree of protection		IP 67 （with clamping ring correctly tightened）		
Ambient air temperature	Static	$-35 . . .+90^{\circ} \mathrm{C}$	$-35 \ldots+90^{\circ} \mathrm{C}$	$-35 . .+90^{\circ} \mathrm{C}$
	Dynamic	$-5 \ldots+90^{\circ} \mathrm{C}$	$-5 . .+90^{\circ} \mathrm{C}$	$-5 \ldots+90^{\circ} \mathrm{C}$
Cabling		$\varnothing 5.2 \mathrm{~mm}$ cable， wire c．s．a．： $4 \times 0.34 \mathrm{~mm}^{2}$	$\varnothing 5.2 \mathrm{~mm}$ cable， wire c．s．a．： $8 \times 0.25 \mathrm{~mm}^{2}$	$\varnothing 5.2 \mathrm{~mm}$ cable， wire c．s．a．： $4 \times 0.34 \mathrm{~mm}^{2}$
LED signalling		－	－	－
Nominal voltage		$60 \mathrm{~V} \sim, 75 \mathrm{~V}=-$	$30 \mathrm{~V} \sim, 36 \mathrm{~V}=-$	$250 \mathrm{~V} \sim, 300 \mathrm{~V}=-$
Nominal current		4A	2A	4A
Insulation resistance		$>10^{9} \Omega$	$>10^{9} \Omega$	$>10^{9} \Omega$
Contact resistance		$\leqslant 5 \mathrm{~m} \Omega$	$\leqslant 5 \mathrm{~m} \Omega$	$\leqslant 5 \mathrm{~m} \Omega$

XZCP1141L• XZCP1241L•

Dimensions： page 75	
72	軍 $\frac{\text { Telemecanique }}{\text { Sensors }}$

Function diagrams with magnet present (pre-cabled version)											
XCSDMC59•๑			XCSDMC79•๑			XCSDMP50・セ			XCSDMP70•๑		
$\begin{array}{cc} 0 & 5 \\ \text { \|Saol } \\ \stackrel{F}{\circ} \\ \hline \square \end{array}$		Colour (NC): BN/BU (NO): BK/WH			Colour (NC): BN/BU (NC): BK/WH	$\begin{gathered} 0 \\ \text { \|Saol } \\ \text { \| } \\ 0 \\ 0 \\ 0 \end{gathered}$		Colour (NC): BN/BU (NO): BK/WH (NO): GY/PK			Colour (NC): BN/BU (NC): BK/WH (NO): GY/PK
XCSDMR59•@/XCSDMP59•๑			XCSDMR79•e/CS DMP79•๑								
	1420 mm ISar \square	Colour (NC): BN/BU (NO): BK/WH			Colour (NC): BN/BU (NC): BK/WH						

Function diagrams with magnet present (connector on flying lead version)										
XCSDMC59•๑			XCSDMC79•๑			XCSDMP50•๑			XCSDMP70	
$\begin{array}{cc} 0 & 5 \\ \text { \|Saol } \\ \hline \mathrm{F} \\ \hline \end{array}$		Pin (NC): 1/3 (NO): 4/2			Pin (NC): 1/3 (NC): $4 / 2$			Pin (NC): 1/3 (NO): 4/2 (NO: 6/7		Pin (NC): 1/3 (NC): $4 / 2$ (NO): 6/7
XCSDMR59•e/XCSDMP59•๑			XCSDMR79•®/CS DMP79•๑							
	1420 mm ISar 4	Pin (NC): $1 / 3$ (NO): 4/2	$\begin{aligned} & 0 \\ & { }_{\mathrm{F}}^{\|\mathrm{Sao}\|^{8}} \\ & { }_{\mathrm{F}} \end{aligned}$		Pin (NC): 1/3 (NC): $4 / 2$					

Contact closed	Sao: assured operating distance. Sar: assured tripping distance. Conforming to EN/IEC 60947-5-3
\square Contact open	
Contact unstable	
\square	

Safety detection solutions
Coded magnetic switches
Plastic

Coded magnetic switches
XCSDMC
Pre-cabled connection

Connector on flying lead connection

(1) Counterbored: $\varnothing 6 \times 3.5 \mathrm{~mm}$.

XCSDMP
Pre-cabled connection
Connector on flying lead connection

(1) M12 4 or 6-pin connector.

XCSDMR
Pre-cabled connection

Connector on flying lead connection

(1) M12 4-pin connector

Coded magnet for XCSDMC xcszC1

(1) Counterbored: $\varnothing 6 \times 3.5 \mathrm{~mm}$.

Coded magnet for XCSDMP
XCSZP1

Coded magnet for XCSDMR XCSZR1

(1) $2 \times \varnothing 4.3$, countersunk: $\varnothing 7.5$ at 45°.

References

page 70

Dimensions (continued), schemes, mounting

Safety detection solutions
Coded magnetic switches
Plastic

(1) 2 elongated holes $\varnothing 4 \times 8$

Pre-wired connectors
XZCP0941L•

XZCP1041L

XZCP1141L• XZCP1241L•

XZCP29P11L•

Schemes

M8 pre-wired connector
XZCP0941L•

M12 pre-wired connector
XZCP1141L•, XZCP1241L•

XZCP29P11L

XCS	a	b	c	d	e
DMC	40	13 min.	-	81×55	-
DMP	100	10 min.	-	118×55	-
DMR	40	12 min.	>10	$\varnothing 45$	20
		-	>10	$\varnothing 45$	13
		-	$<10 \mathrm{~min}$.	<10	-
		-	-	17	

Non-magnetic shims	
\mathbf{A}	XCSZCC
B	XCSZCP
\mathbf{C}	XCSZCR

Schemes， connections

Safety detection solutions
Coded magnetic switches
Plastic，pre－cabled

XCSDMP5 $\bullet \bullet \bullet$ with XPSDMB
Wiring to PL＝e，category 4 conforming to EN／ISO 13849－1 and SIL 3 conforming to EN／IEC 61508．Example with 3－pole 1 NC +2 NO（1 NO staggered）contact．

ESC：External start conditions．
XCSDMC5•・ゃ，XCSDMP5ゃゃゃ，XCSDMR5・ゃゃ with XPSDME
Wiring to PL＝e，category 4 conforming to EN／ISO 13849－1 and SIL 3 conforming to EN／IEC 61508．Example with 2－pole 1 NC＋ 1 NO（staggered）contact．

$\overline{\text { ESC：External start conditions．}}$

page 70

Coded magnetic switches

Plastic, pre-cabled

Connection of up to 3 magnetic switches, with an LED on one input, with XPSDM• (1)
Wiring up to PL=d, category 3 conforming to EN/ISO 13849-1 and SIL 2 conforming to EN/IEC 61508

Example with 2-pole $1 \mathrm{NC}+1 \mathrm{NO}$ contact

Example with 3-pole $1 \mathrm{NC}+2 \mathrm{NO}$ contact

(1) Input: S11, S12, S13 or S21, S22, S23.

XCSDM•7・ゃゃ with XPSAF
Wiring up to $\mathrm{PL=e}$, category 4 conforming to EN/ISO 13849-1 and SIL 3 conforming to EN/IEC 61508. Example with 2-pole 2 NC contact

[^5]ESC: External start conditions.

Schemes， connections

Safety detection solutions
Coded magnetic switches
Plastic，connector on flying lead

XCSDMP5•eゃ with XPSDMB
Wiring to PL＝e，category 4 conforming to EN／ISO 13849－1 and SIL 3 conforming to EN／IEC 61508．Example with 3－pole 1 NC +2 NO（1 NO staggered）contact．

ESC：External start conditions．
XCSDMC5•・ゃ，XCSDMP5ゃゃゃ，XCSDMR5・ゃゃ with XPSDME
Wiring to PL＝e，category 4 conforming to EN／ISO 13849－1 and SIL 3 conforming to EN／IEC 61508．Example with 2－pole 1 NC＋ 1 NO（staggered）contact．

$\overline{\mathrm{ESC}}$ ：External start conditions．

References
page 70
page 70

Coded magnetic switches

Plastic, connector on flying lead

Connection of up to 3 magnetic switches, with an LED on one input, with XPSDM• (1)
Wiring to PL=d, category 3 conforming to EN/ISO 13849-1 and SIL 2 conforming to EN/IEC 61508

Example with 2-pole $1 \mathrm{NC}+1 \mathrm{NO}$ contact

Example with 3-pole $1 \mathrm{NC}+2 \mathrm{NO}$ contact

(1) Input: S11, S12, S13 or S21, S22, S23.

XCSDM•7・ゃゃ with XPSAF
Wiring to PL=e, category 4 conforming to EN/ISO 13849-1 and SIL 3 conforming to EN/IEC 61508. Example with 2-pole 2 NC contact

[^6](2) Without start button monitoring

ESC: External start conditions.

Coded magnetic system
Pre-cabled connection

Coded magnetic system

M12 connector connection

SIL 2/PL=d, category 3 and SIL 3/PL=e, category 4 XCSDM3791॰0/XCSDM4801•॰

Page 82

SIL 2/PL=d, category 3 and SIL 3/PL=e, category 4 XCSDM3791M12/XCSDM4801M12

Page 83

Coded magnetic system type

SIL 2/PL= d, category 3 XCSDM3

SIL 3/PL=e, category 4 XCSDM4

Environment

Conformity to standards			EN/IEC 60947-5-1; EN/IEC 60947-5-2; EN/IEC 60947-5-3EN/ISO 14119	
Product certifications			C \in, UL, CSA, TÜV	
Maximum safety level (1)			SIL 2 conforming to EN/IEC 61508,PL=d, category 3 conforming to EN/ISO 13849-1	SIL 3 conforming to EN/IEC 61508, PL=e, category 4 conforming to EN/ISO 13849-1
Reliability data			$\begin{aligned} & \mathrm{MTTF}_{\mathrm{d}}=182 \text { years } \\ & \mathrm{PFH}=3.94 \mathrm{E}^{-9} / \mathrm{PFD}=1.15 \mathrm{E}^{-5} \\ & \text { SFF }=92.5 \% / \mathrm{HFT}=1 \end{aligned}$	
Ambient air temperature	For operation	${ }^{\circ} \mathrm{C}$	$-25 \ldots+70^{\circ} \mathrm{C}$	
	For storage	${ }^{\circ} \mathrm{C}$	$-40 \ldots+85^{\circ} \mathrm{C}$	
Vibration resistance	Conforming to EN/IEC 60068-2-6		$10 \mathrm{gn}(10 \ldots 500 \mathrm{~Hz})$	
Shock resistance	Conforming to EN/IEC 60068-2-7		$30 \mathrm{gn}, 11 \mathrm{~ms}$	
Sensitivity to magnetic fields		mT	$\leqslant 0.5$	
Electric shock protection	Conforming to EN/IEC 61140		Class III	
Degree of protection	Conforming to EN/IEC 60529		Pre-cabled version: IP 66, IP 67 Connector version: IP 67	
	Conforming to DIN 40050		Pre-cabled version: IP 69K	
Materials			Thermoplastic case (PBT); PVC cable	
Characteristics				
Rated operational characteristics			Ub: $24 \mathrm{~V}=-\mathrm{+}$ + $10 \%-20 \%$	
Rated insulation voltage (Ui)			Ui: $36 \mathrm{~V}=-$	
Rated impulse withstand voltage (U imp)	Conforming to EN/IEC 60947-5-1	kV	2.5	
Integrated output protection			Overload and short-circuit protection	
Connection	Conforming to EN/IEC 60947-5-2-A3 and EN/IEC 61076		Pre-cabled, $6 \times 0.25 \mathrm{~mm}^{2}$, length: 2,5 or 10 m depending on model or M12 connector (A coding)	Pre-cabled, $8 \times 0.25 \mathrm{~mm}^{2}$, length: 2,5 or 10 m depending on model or M12 connector (A coding)
Cable diameter		mm	$6.1+/-0.3$	
Cable resistance		$\mathrm{m} \Omega / \mathrm{m}$	90	
Safety outputs OSSD (Output Signal Switching Devices)			2 PNP type (NO) solid-state outputs, $1.5 \mathrm{~A}\left(2 \mathrm{~A}\right.$ up to $60^{\circ} \mathrm{C}$) 24 V --. (short-circuit protected)	
Alarm output			-	1 solid-state output, 0.5A, $24 \mathrm{~V}=-$, PNP
Signalling			LED (green/red/orange)	
Maximum switching frequency		Hz	3	
Activation delay		ms	100	
Discordance time		s	2	
HFT (Hardware Fault Tolerance)			1	
			Test interval: 12 months	
Tightening torque		Nm	1.8 max.	
Chaining in series			32 maximum with 2 m long cable	-
Functions				
Functions			- LED status signalling	- Auto/Manual start via "Start"input - Monitoring of external switching devices (EDM: External Device Monitoring) - Display of operating modes (LED) - Monitoring of the function (open or closed) as well as the response time of the power components.

[^7]
References, characteristics

Safety detection solutions
Coded magnetic systems
Plastic, solid-state PNP type output
Type Magnetic system with dedicated transmitter

References				
Description	Type of connection	SIL 2/PL=d, category 3	SIL 3/PL=e, category 4	Weight kg
Coded magnetic system with dedicated transmitter (1)	Pre-cabled $\mathrm{L}=2 \mathrm{~m}$	XCSDM379102	XCSDM480102	0.320
	Pre-cabled, $\mathrm{L}=5 \mathrm{~m}$	XCSDM379105	XCSDM480105	0.480
	Pre-cabled, $\mathrm{L}=10 \mathrm{~m}$	XCSDM379110	XCSDM480110	0.745

(1) Self-contained system not requiring the use of a safety module or non-magnetic shim.

Detection characteristics

Assured operating distance	Sao: 10 mm
Assured tripping distance	Sar: 20 mm
Approach directions	9
Approach speed	$0.01 \mathrm{~m} / \mathrm{s} \mathrm{min}$.

Output status (pre-cabled connection)

Output states shown are with the dedicated transmitter positioned in front of the receiver.
Output closed Output open

Approach directions

Safety detection solutions

Coded magnetic systems
Plastic, solid-state PNP type output
Type

| References | | | |
| :--- | :--- | :--- | :--- | :--- |
| Description | Type of
 connection | SIL 2/PL=d, category 3 | SIL 3/PL=e, category 4 |
| Magnetic system with dedicated
 transmitter (1) | M12 connector | XCSDM3791M12 | Weight |

(1) Self-contained system not requiring the use of a safety module or non-magnetic shim.

Detection characteristics

Assured operating distance	Sao: 10 mm
Assured tripping distance	Sar: 20 mm
Approach directions	9
Approach speed	$0.01 \mathrm{~m} / \mathrm{s} \mathrm{min}$.
Output Status (M12 connector connection)	
Output states shown are with the dedicated transmitter positioned in front of the receiver	

XCSDM3791M12

Output closedOutput open
Transitional state

XCSDM4801M12

"OFF" = Error

Sao: Assured operating distance
Sar: Assured tripping distance
Conforming to EN/IEC 60947-5-3

References, characteristics (continued)

Safety detection solutions

Coded magnetic systems
Accessories

Accessories				
	Description	For use with	Reference	Weight kg
	Replacement dedicated transmitter	XCSDM3/4•••02/05/10 XCSDM3/4•••M12	XCSDMT	0.100
	Arc suppressor (pair)	XCSDM3/4•••02/05/10 XCSDM3/4•••M12	XUSLZ500	0.020

Pre-wired female connectors for connector version coded magnetic systems
Pre-wired connector characteristics

XZCP29P12L•

Pre-cabled connection

XCSDM3/4•••02/05/10

M12 connector (A coding) connection
XCSDM3/4•・ゃM12

$\varnothing 4$

Accessory

Replacement dedicated transmitter

XCSDMT

Pre-wired connectors
XZCP29P12L•

Connection

M12 pre-wired female connector
XZCP29P12L•

Mounting

XCSDM3/DM4

Schemes

Category 3 （this scheme can achieve SIL 2／PL＝d，category 3）

Pre－cabled connection
XCSDM3791•e

SIL 3／PL＝e，category 4
Pre－cabled connection
XCSDM4801••

Chaining coded magnetic systems（2）
XCSDM3791•॰

M12 connector（A coding）connection
XCSDM3791M12

M12 connector（A coding）connection

XCSDM4801M12

Wiring to SIL 3／PL＝e，category 4 with Preventa module
Example：XCSDM3ゃゃゃゃゃ＋XPSAFL5130

（1）The K1 and K2 coils must be protected with arc suppressors．
（2）Maximum chaining： 32 maximum with 2 m long cable．
（3） 2 A max．
（4）Mechanically linked contacts．

$\frac{24 \mathrm{~V} / 48 \mathrm{~V} \text { version }}{24 \mathrm{~V} / 48 \mathrm{~V}}$
or $110 \mathrm{~V} / 120 \mathrm{~V} / 230 \mathrm{~V}$ version

Module type

Pages

For Emergency stop and switch monitoring

Unlimited	
and $24 \mathrm{~V}--/ 48 \mathrm{~V} \sim$	$24 \mathrm{~V}=-$
$115 \mathrm{~V} \sim / 230 \mathrm{~V}$	-
	-

XPSAC	XPSAXE	XPSAF
91	93	

For Emergency stop, switch, sensing mat/edges or solid-state output safety light curtain monitoring

For Emergency stop, switch
or solid-state output safety light curtain monitoring

PLe/Category 4 conforming to EN/ISO 13849-1
SILCL 3 conforming
to EN/IEC 62061
(

EN/IEC 60204-1,
EN 1088/ISO 14119,
EN/ISO 13850 ,
EN/IEC 60947-1,
EN/IEC 60947-5-1

For zero speed detection of AC or DC motors which produce a remanent voltage in their windings due to residual magnetism

PL d/Category 3 conforming to EN/ISO 13849-1,
SILCL 2 conforming to EN/IEC 62061

EN/IEC 60204-1,
EN/IEC 60947-1,
EN/IEC 60947-5-1

For coded magnetic switch monitoring

For 2 max.

PL e/Category 4 conforming
to EN/ISO 13849-1 SILCL 3 conforming to EN/IEC 62061

EN/IEC 60204-1,
EN 1088/ISO 14119,
EN/IEC 60947-1,
EN/IEC 60947-5-1,
EN/IEC 60947-5-3
UL, CSA, TÜV

3	7	2		
1 relay +4 solid-state outputs for signalling to PLC	2 relay +4 solid-state outputs for signalling to PLC	2 solid-state outputs for signalling to PLC		
4 LEDs			3 LEDs	15 LEDs
$\begin{aligned} & \sim \text { and } 24 \mathrm{~V}=- \\ & 48 \mathrm{~V} \sim \\ & 110 \mathrm{~V} \sim \text { and } 24 \mathrm{~V}= \\ & 120 \mathrm{~V} \sim \text { and } 24 \mathrm{~V}=- \\ & 230 \mathrm{~V} \sim \text { and } 24 \mathrm{~V}=- \end{aligned}$	~ and 24 V - $115 \mathrm{~V} \sim$ and $24 \mathrm{~V}=$ $230 \mathrm{~V} \sim$ and $24 \mathrm{~V}=$	$\begin{aligned} & 24 \mathrm{~V}=- \\ & 115 \mathrm{~V} \sim \\ & 230 \mathrm{~V} \sim \end{aligned}$	$24 \mathrm{~V}=-$	
Unlimited or $2 \mathrm{~s}, 4 \mathrm{~s}$ (depending on wiring)	Unlimited	-		
$24 \mathrm{~V}=-\mathrm{/}-$		-		
$24 \mathrm{~V}=-/ 24 \mathrm{~V} / 24 \mathrm{~V}$	$24 \mathrm{~V} \sim / 24 \mathrm{~V}$	-		

XPSAK	XPSAR	XPSVNE	XPSDMB	XPSDME
95	97	99	101	

Operating principle, characteristics

Safety automation solutions
 Preventa safety modules types XPSAC, XPSAXE
 For Emergency stop and switch monitoring

Operating principle
Safety modules XPSAC and XPSAXE are used for monitoring Emergency stop circuits conforming to standards EN/ISO 13850 and EN/IEC 60204-1 and also meet the safety requirements for the electrical monitoring of switches in protection devices conforming to standard EN 1088/ISO 14119. They provide protection for both the machine operator and the machine by immediately stopping the dangerous movement on receipt of a stop instruction from the operator, or on detection of a fault in the safety circuit itself.
To aid diagnostics, the modules have LEDs which provide information on the monitoring circuit status.
The XPSAC module has 3 safety outputs and a solid-state output for signalling to the PLC.
The XPSAXE module has 3 safety outputs and a relay output for signalling to the PLC.

Characteristics				
Module type			XPSAC, XPSAC•๑७०P	XPSAXE॰८๑๑P, XPSAXE॰๑๑๑C
Maximum achievable safety level			PLe/Category 4 conforming to EN/ISO 13849-1, SILCL 3 conforming to EN/IEC 62061	PLe/Category 4 conforming to EN/ISO 13849-1 SILCL 3 conforming to EN/IEC 62061
Reliability data	Mean Time To dangerous Failure (MTTF ${ }_{\mathrm{d}}$)	Years	210.4	457
	Diagnostic Coverage (DC)	\%	> 99	> 99
	Probability of dangerous Failure per Hour ($\mathrm{PFH}_{\mathrm{d}}$)	1/h	3.56×10^{-9}	3×10^{-8}
Conformity to standards			EN/IEC 60204-1, EN 1088/ISO 14119, EN/ISO 13850, EN/IEC 60947-1, EN/IEC 60947-5-1	EN/IEC 60204-1, EN 1088/ISO 14119, EN/ISO 13850, EN/IEC 60947-1, EN/IEC 60947-5-1
Product certifications			UL, CSA, TÜV	UL, CSA, BG
Supply	Voltage	v	\sim and $24-$ - $48 \sim, 115 \sim, 230 \sim$	\sim and 24 --
	Voltage limits		$\begin{aligned} & -20 \ldots+10 \%(24 \vee \sim) \\ & -20 \ldots+20 \%(24 \vee-=) \\ & -15 \ldots+10 \%(48 \vee \sim) \\ & -15 \ldots+15 \%(115 \mathrm{~V}) \\ & -15 \ldots+10 \%(230 \mathrm{~V}) \end{aligned}$	-15...+10\%
	Frequency	Hz	50/60	50/60
Consumption		W	<1.2 (24V =--)	-
		VA	$\begin{aligned} & <2.5(24 \vee \sim) \\ & <6(48 \vee \sim) \\ & <7(115 \vee \sim) \\ & <6(230 \vee \sim) \end{aligned}$	< 4
Start button monitoring			No	No
Control unit voltage (at nominal supply voltage)			Identical to supply voltage	
	24 V version	V	$24 \sim$ (approx. 90 mA), 24 --- (approx. 40 mA)	24 --
	48 V version	V	$48 \sim$ (approx. 100 mA)	-
	115 V version	V	$115 \sim$ (approx. 60 mA)	-
	230 V version	V	$230 \sim$ (approx. 25 mA)	-
Outputs	Voltage reference		Volt-free	Volt-free
	Number and type of safety circuits		3 NO (13-14, 23-24, 33-34)	3 NO (13-14, 23-24, 33-34)
	Number and type of additional circuits		1 solid-state	1 NC relay (41-42)
	Breaking capacity in AC-15	VA	C300: inrush 1800, maintained 180	B300
	Breaking capacity in DC-13		$24 \mathrm{~V} / 2 \mathrm{AL} / \mathrm{R}=50 \mathrm{~ms}$	$24 \mathrm{~V} / 1.5 \mathrm{AL} / \mathrm{R}=50 \mathrm{~ms}$
	Max. thermal current (lthe)	A	6	8
	Max. total thermal current	A	10.5	-
	Output fuse protection, using fuses conforming to IEC/EN 60947-5-1, DIN VDE 0660 part 200	A	4 gG (gl) or 6 fast acting	6 gG
	Minimum current	mA	10	10
	Minimum voltage	V	17	17
Electrical durability			Please refer to our catalogue "Safety functions and solutions using Preventa".	
Response time on input opening		ms	< 100	< 80
Rated insulation voltage (Ui)		V	300 (degree of pollution 2 conforming to IEC/EN 60947-5-1, DIN VDE 0110 parts 1 \& 2)	
Rated impulse withstand voltage (Uimp)		kV	3 (overvoltage category III, conforming to IEC/EN 60947-5-1, DIN VDE 0110 parts 1 \& 2)	4 (overvoltage category III, conforming to IEC/EN 60947-5-1, DIN VDE 0110 parts 1 \& 2)
LED display			2	2
Operating temperature		${ }^{\circ} \mathrm{C}$	-10... +55	-25... 55
Storage temperature		${ }^{\circ} \mathrm{C}$	-25... 85	-25... 75
Degree of protection conforming to IEC/EN 60529	Terminals		IP 20	IP 20
	Enclosure		IP 40	IP 40

Characteristics (continued), references

Safety automation solutions

Preventa safety modules types XPSAC,

 XPSAXEFor Emergency stop and switch monitoring

Operating principle, characteristics

Safety automation solutions
Preventa safety modules type XPSAF
For Emergency stop and switch monitoring

Safety modules XPSAF meet the requirements of Performance Level PL e/Category 4 conforming to standard EN/ISO 13849-1.

They are used for:
■ Monitoring Emergency stop circuits conforming to standards EN/ISO 13850 and
EN/IEC 60204-1.
■ Electrical monitoring of switches activated by protection devices conforming to standard EN 1088.
Housed in a compact enclosure, the modules have 3 safety outputs.
Preventa safety modules XPSAF $\bullet \bullet \bullet$ P incorporate removable terminal blocks, thus optimising machine maintenance.
To aid diagnostics, the modules have 3 LEDs on the front face which provide information on the monitoring circuit status.
The Start button monitoring function is configurable depending on the wiring.

Characteristics					
Module type				XPSAF5130	XPSAF5130P
Maximum achie	ety level			PLe/Category 4 conforming to EN/ISO 13849-1, SILCL 3 conforming to EN/IEC 62061	
Reliability data	Mean Time To dangerous Failure (MTTF $_{\mathrm{d}}$)		Years	243	
	Diagnostic Coverage (DC)		\%	> 99	
	Probability of dangerous Failure per Hour ($\mathrm{PFH}_{\mathrm{d}}$)		1/h	4.62×10^{-9}	
Conformity to standards				EN/IEC 60204-1, EN 1088/ISO 14119, EN/IEC 60947-5-1, EN/IEC 60947-1, EN/ISO 13850	
Product certifications				UL, CSA, TÜV	
Supply	Voltage		V	\sim and $24 .-$	
	Voltage limits			-15... $+10 \%$	
	Frequency		Hz	50/60	
Consumption			VA	$\leqslant 5$	
Module inputs fuse protection				Internal, electronic	
Start button monitoring				Yes/No (configurable by terminal connections)	
Control unit voltage and currentMaximum wiring resistance RL				$24 \mathrm{~V}=-/ 30 \mathrm{~mA}$ approx. (at nominal supply voltage)	
Maximum wiring resistance RL			Ω	90	
Synchronisation time between inputs A and B				Unlimited	
Outputs	Voltage reference			Volt-free	
	Number and type of safety circuits			3 NO (13-14, 23-24, 33-34)	
	Breaking capacity in AC-15		VA	C300: inrush 1800, maintained 180	
	Breaking capacity in DC-13			$24 \mathrm{~V} / 1.5 \mathrm{~A}-\mathrm{L} / \mathrm{R}=50 \mathrm{~ms}$	
	Max. thermal current (lthe)		A	6	
	Max. total thermal current		A	18	
	Output fuse protection		A	4 gG or 6 fast acting, conforming to IEC/EN 60947-5-1, DIN VDE 0660 part 200	
	Minimum current		mA	10	
	Minimum voltage		V	17	
Electrical durability				Please refer to our catalogue "Safety functions and solutions using Preventa".	
Response time on input opening			ms	$\leqslant 40$	
Rated insulation voltage (Ui)			V	300 (degree of pollution 2 conforming to IEC/EN 60947-5-1, DIN VDE 0110 parts 1 \& 2)	
Rated impulse withstand voltage (Uimp)			kV	4 (overvoltage category III, conforming to IEC/EN 60947-5-1, DIN VDE 0110 parts 1 \& 2)	
LED display				3	
Operating temperature			${ }^{\circ} \mathrm{C}$	-10... 55	
Storage temperature			${ }^{\circ} \mathrm{C}$	-25... +85	
Degree of protection conforming to IEC/EN 60529		Terminals		IP 20	
		Enclosure		IP 40	
Connections	Type	Terminals		Captive screw clamp terminals	Captive screw clamp terminals
		Terminal block		Integrated in module	Removable from module
	1-wire connection	Without cable end		Solid or flexible cable: $0.14 . .2 .5 \mathrm{~mm}^{2}$	Solid or flexible cable: $0.2 \ldots 2.5 \mathrm{~mm}^{2}$
		With cable end		Without bezel, flexible cable: $0.25 \ldots 2.5 \mathrm{~mm}^{2}$	
		With cable end		With bezel, flexible cable: $0.25 \ldots 1.5 \mathrm{~mm}^{2}$	With bezel, flexible cable: $0.25 \ldots 2.5 \mathrm{~mm}^{2}$
	2-wire connection	Without cable end		Solid or flexible cable: $0.14 \ldots 0.75 \mathrm{~mm}^{2}$	Solid cable: $0.2 \ldots 1 \mathrm{~mm}^{2}$, flexible cable: $0.2 \ldots 1.5 \mathrm{~mm}^{2}$
		With cable end		Without bezel, flexible cable: $0.25 . .1 \mathrm{~mm}^{2}$	
		With cable end		Double, with bezel, flexible cable: $0.5 \ldots 1.5 \mathrm{~mm}^{2}$	Double, with bezel, flexible cable: $0.5 \ldots 1.5 \mathrm{~mm}^{2}$

Operating principle, characteristics

Safety automation solutions

Preventa safety modules type XPSAK
 For Emergency stop, switch, sensing mat/edges or safety light curtain monitoring

Operating principle

Safety modules XPSAK meet the requirements of Performance Level PLe/Category 4 conforming to standard EN/ISO 13849-1.
They are used for:
■ Monitoring Emergency stop circuits conforming to standards EN/ISO 13850 and
EN 60204-1
■ Electrical monitoring of switches activated by protection devices, with optional selection of synchronisation time between signals.
■ Monitoring 4 -wire sensing mats or edges.
■ Monitoring type 4 light curtains conforming to EN/IEC 61496-1 which have solid-state safety outputs with test function (light curtains XUSL).
Housed in a compact enclosure, the modules have 3 safety outputs, a relay signalling output and 4 solid-state signalling outputs for signalling to the process PLC.

Preventa safety modules XPSAK・ゃゃ॰P incorporate removable terminal blocks, thus optimising machine maintenance.
To aid diagnostics, the modules have 4 LEDs on the front face which provide information on the monitoring circuit status.
The Start button monitoring function is configurable depending on the wiring.

Characteristics					
Module type				XPSAK3•1144	\| XPSAK3•1144P
Maximum achievable safety level				PL e/Category 4 conforming to EN/ISO 13849-1, SILCL 3 conforming to EN/IEC 62061	
Reliability data	Mean Time To dangerous Failure ($\mathrm{MTTF}_{\text {d }}$)		Years	154.5	
	Diagnostic Coverage (DC)		\%	> 99	
	Probability of dangerous Failure per Hour ($\mathrm{PFH}_{\mathrm{d}}$)		1/h	7.39×10^{-9}	
Conformity to standards				EN/IEC 60204-1, EN 1088/ISO 14119, EN/ISO 13850, EN/IEC 60947-1, EN/IEC 60947-5-1	
Product certifications				UL, CSA, TÜV	
Supply	Voltage		V	\sim and $24-$, $48 \sim$, $110 \sim$ and $24-$--, $120 \sim$ and $24-$ - $230 \sim$ and $24-$--	
	Voltage limits			-15... 10 \%	
	Frequency		Hz	50/60	
Consumption	24 V version		VA	$\leqslant 5$	
	110/120/230 V versions			$\leqslant 6$	
Module inputs fuse protection				Internal, electronic	
Start button monitoring				Yes/No (configurable by terminal connections)	
Control unit voltage and current between terminals S21-S22, S31-S32				$24 \mathrm{~V}=-/ 30 \mathrm{~mA}$ approx. (at nominal supply voltage)	
Maximum wiring resistance RL between terminals S21-S22, S31-S32			Ω	28	
Synchronisation time between inputs A and B (terminals S21-S22, S31-S32)			s	Automatic start: 2 or 4 depending on wiring Manual start (start button between S33 and S34): unlimited	
Outputs	Voltage reference			Volt-free	
	Number and type of safety circuits			3 NO (13-14, 23-24, 33-34)	
	Number and type of additional circuits			1 NC (41-42) + 4 solid-state	
	Breaking capacity in AC-15		VA	C300: inrush 1800, maintained 180	
	Breaking capacity in DC-13			$24 \mathrm{~V} / 1.5 \mathrm{~A}-\mathrm{L} / \mathrm{R}=50 \mathrm{~ms}$	
	Breaking capacity of solid-state outputs			$24 \mathrm{~V} / 20 \mathrm{~mA}, 48 \mathrm{~V} / 10 \mathrm{~mA}$	
	Max. thermal current (Ithe)		A	6	
	Max. total thermal current		A	18	
	Output fuse protection		A	4 gG or 6 fast acting, conforming to IEC/EN 60947-5-1, DIN VDE 0660 part 200	
	Minimum current		mA	10	
	Minimum voltage		V	17	
Electrical durability				Please refer to our catalogue "Safety functions and solutions using Preventa".	
Response time on input opening			ms	≤ 40	
Rated insulation voltage (Ui)			V	300 (degree of pollution 2 conforming to IEC/EN 60947-5-1, DIN VDE 0110 parts 1 \& 2)	
Rated impulse withstand voltage (Uimp)			kV	4 (overvoltage category III, conforming to IEC/EN 60947-5-1, DIN VDE 0110 parts 1 \& 2)	
LED display				4	
Operating temperature			${ }^{\circ} \mathrm{C}$	$-10 \ldots+55$	
Storage temperature			${ }^{\circ} \mathrm{C}$	-25... +85	
Degree of protection	Conforming to IEC 60529	Terminals		IP 20	
		Enclosure		IP 40	

Characteristics, references

Safety automation solutions

Preventa safety modules type XPSAK

For Emergency stop, switch, sensing mat/edges
or safety light curtain monitoring

Operating principle, characteristics

Safety automation solutions Preventa safety modules type XPSAR For Emergency stop, switch or safety light curtain monitoring

Safety modules XPSAR meet the requirements of Performance Level PL e/ Category 4 conforming to standard EN/ISO 13849-1 and are designed for the following safety applications:
■ Monitoring Emergency stop circuits conforming to EN/ISO 13850 and
EN/IEC 60204-1.

- Electrical monitoring of switches activated by protection devices conforming
to standard EN 1088/ISO 14119.
■ Monitoring type 4 light curtains conforming to EN/IEC 61496-1 that have solid-state safety outputs with test function (light curtains XUSL). In addition to 7 safety outputs, modules XPSAR incorporate 2 relay signalling outputs and 4 solid-state signalling outputs for signalling to the process PLC.

Safety modules XPSAR $\bullet \bullet \bullet \bullet \bullet P$ incorporate removable terminal blocks, thus optimising machine maintenance.
To aid diagnostics, the modules have 4 LEDs on the front face which provide information on the monitoring circuit status.
The Start button monitoring function is configurable depending on the wiring.

Characteristics, references

Safety automation solutions
Preventa safety modules type XPSAR
For Emergency stop, switch or safety light curtain monitoring

Characteristics (continued)								
Module type			XPSAR3-1144			XPSAR3•1144P		
Connection	Type	Terminals	Captive screw clamp terminals			Captive screw clamp terminals		
		Terminal block	Integrated in module			Removable from module		
	1-wire connection	Without cable end	Solid or flexible cable: $0.14 . .2 .5 \mathrm{~mm}^{2}$			Solid or flexible cable: $0.2 \ldots 2.5 \mathrm{~mm}^{2}$		
		With cable end	Without bezel, flexible cable: $0.25 \ldots 2.5 \mathrm{~mm}^{2}$					
		With cable end	With bezel, flexible cable: $0.25 . .1 .5 \mathrm{~mm}^{2}$			With bezel, flexible cable: $0.25 \ldots 2.5 \mathrm{~mm}^{2}$		
	2-wire connection	Without cable end	Solid or flexible cable: $0.14 \ldots 0.75 \mathrm{~mm}^{2}$			Solid cable: $0.2 \ldots 1 \mathrm{~mm}^{2}$, flexible cable: $0.2 \ldots 1.5 \mathrm{~mm}^{2}$		
		With cable end	Without bezel, flexible cable: $0.25 . .1 \mathrm{~mm}^{2}$					
		With cable end	Double, with bezel, flexible cable: $0.5 \ldots 1.5 \mathrm{~mm}^{2}$					
References								
		Description	Type of terminal block connection	Number of safety circuits	Additional outputs/ solid-state outputs to PLC	Supply	Reference	Weight
						V		kg
		Safety modules for Emergency stop, switch or safety light curtain monitoring	Integrated in module	7	$2 / 4$	$\begin{aligned} & 24 \sim \\ & 24 \sim \end{aligned}$	XPSAR311144	0.300

XPSAR3•1144
$\overline{115 \sim} \quad$ XPSAR351144 0.400

$230 \sim$	XPSAR371144	0.400
$24=-$		

Removable	7	$2 / 4$	$24 \sim$	XPSAR311144P	0.300	
from module			$24-{ }^{--}$			

115~ XPSAR351144P 0.400
230 ~ XPSAR371144P 0.400

Operating principle, characteristics

Safety automation solutions Preventa safety modules type XPSVNE For zero speed detection

Operating principle

Preventa safety modules XPSVNE for zero speed detection are used to detect the stop condition of electric motors. Their most common applications include: providing the unlock signal for electrically interlocked sliding or removable machine guards, controlling rotation direction signals for reversing motors and engaging locking brakes after a motor has come to a standstill.

As electric motors run down, a remanent voltage is produced in the windings of the motor due to residual magnetism. This voltage is proportional to the speed of the motor and, therefore, decreases as the motor comes to a standstill.
This remanent voltage is measured in a redundant manner so as to detect the stop condition of the motor. The cabling between the motor windings and the inputs of the XPSVNE module is also monitored to prevent a cabling breakage or fault being seen as a stopped motor.
A transformer should not be used to connect the motor to terminals $\mathrm{Z} 1, \mathrm{Z} 2$ and Z 3 since there is no monitoring of the connection with the motor winding via the resistance monitoring.

Modules XPSVNE are suitable for detecting the stop condition of all types of AC or DC motor driven machines which, when the motor runs down, produce a remanent voltage in the windings due to residual magnetism. These machines can be controlled by electronic devices, such as variable speed drives or DC injection brakes.
The input filters for standard XPSVNE modules are designed for a frequency of up to 60 Hz .
For motors operating at a frequency higher than 60 Hz , which therefore produce a high frequency remanent voltage, special modules XPSVNE $\bullet \bullet \bullet H S$ should be used.

Modules XPSVNE have 2 potentiometers mounted on the front face of the module which allow independent adjustment of the switching threshold for each input circuit. This allows adjustment for different types of motors and application requirements.

To aid diagnostics, modules XPSVNE have 4 LEDs and 2 solid-state outputs to provide information on the status of the zero speed detection circuit.

Characteristics

Module type			XPSVNE
Maximum achievable safety level			PL d/Category 3 conforming to EN/ISO 13849-1, SILCL 2 conforming to EN/IEC 62061
Reliability data	Mean Time To dangerous Failure ($\mathrm{MTTF}_{\mathrm{d}}$)	Years	124.1
	Diagnostic Coverage (DC)	\%	> 99
	Probability of dangerous Failure per Hour ($\mathrm{PFH}_{\mathrm{d}}$)	1/h	9.26×10^{-9}
Conformity to standards			EN/IEC 60204-1, EN/IEC 60947-1, EN/IEC 60947-5-1
Product certifications			UL, CSA, TÜV
Supply	Voltage	V	$\begin{aligned} & 24= \\ & 115 \sim \\ & 230 \sim \end{aligned}$
	Voltage limits		$\begin{aligned} & -15 \ldots+10 \%(24 \vee \sim-)^{2} \\ & -15 \ldots+15 \%(115 \vee \sim) \\ & -15 \ldots+10 \%(230 \vee \sim) \end{aligned}$
	Frequency	Hz	$50 / 60$ (115 V, 230 V)
Consumption		W	$\leqslant 3.5$ (24 V ---)
		VA	$\leqslant 7.5$ (115 V ~), $\leqslant 7$ ($230 \mathrm{~V} \sim$)
Frequency of motor power supply		Hz	$\leqslant 60 \mathrm{~Hz}$ (XPSVN••42), > 60 Hz (XPSVN••42HS)
Inputs	Maximum voltage between terminals $\mathrm{Z1}-\mathrm{Z2}-\mathrm{Z3}$	V	500 rms
	Detection threshold	V	0.01-0.1 (adjustable)

Safety automation solutions Preventa safety modules type XPSVNE For zero speed detection

Characteristics (continued)				
Module type				XPSVNE
Outputs	Voltage reference			Volt-free
	Number and type of safety circuits			1 NO (13-14), 1 NC (21-22)
	Number and type of additional circuits			2 solid-state
	Breaking capacity in AC-15			C300 (inrush: $1800 \mathrm{VA} /$ maintained: 180 VA)
	Breaking capacity in DC-13			$\begin{aligned} & 24 \mathrm{~V} / 1.5 \mathrm{~A}-\mathrm{L} / \mathrm{R}=50 \mathrm{~ms} \text { (contact 13-14) } \\ & 24 \mathrm{~V} / 1.2 \mathrm{~A}-\mathrm{L} / \mathrm{R}=50 \mathrm{~ms} \text { (contact } 21-22 \text {) } \end{aligned}$
	Breaking capacity of solid-state outputs			$24 \mathrm{~V} / 20 \mathrm{~mA}, 48 \mathrm{~V} / 10 \mathrm{~mA}$
	Max. thermal current (lthe)		A	2.5
	Output fuse protection		A	4 gG , conforming to IEC/EN 60947-5-1, DIN VDE 0660 part 200
	Minimum current (volt-free contact)		mA	10 (1)
	Minimum voltage (volt-free contact)		V	17 (1)
Electrical durability				Please refer to our catalogue "Safety functions and solutions using Preventa".
Rated insulation voltage (Ui)			V	300 (degree of pollution 2 conforming to IEC/EN 60947-5-1, DIN VDE 0110 parts 1 \& 2)
Rated impulse withstand voltage (Uimp)			kV	4 (overvoltage category III, conforming to IEC/EN 60947-5-1, DIN VDE 0110 parts 1 \& 2)
LED display				4
Operating temperature			${ }^{\circ} \mathrm{C}$	$-10 \ldots+55$
Storage temperature			${ }^{\circ} \mathrm{C}$	-25...+85
Degree of protection Conforming to EN/IEC 60529		Terminals		IP 20
		Enclosure		IP 40
Connection	Type	Terminals		Captive screw clamp
		Terminal block		Removable from module
	1-wire connection	Without cable end		Solid or flexible cable: $0.2 \ldots 2.5 \mathrm{~mm}^{2}$
		With cable end		Without bezel, solid or flexible cable: $0.25 . .2 .5 \mathrm{~mm}^{2}$
				With bezel, solid or flexible cable: $0.25 . .2 .5 \mathrm{~mm}^{2}$
	2-wire connection	Without cable end		Solid cable: $0.2 \ldots 1 \mathrm{~mm}^{2}$, flexible cable: $0.2 \ldots 1.5 \mathrm{~mm}^{2}$
		With cable end		Without bezel, flexible cable: $0.25 . .1 \mathrm{~mm}^{2}$
				With bezel, flexible cable: $0.5 \ldots 1.5 \mathrm{~mm}^{2}$

(1) The module is also capable of switching low power loads ($17 \mathrm{~V} / 10 \mathrm{~mA}$) provided that the contact has not been used for switching high power loads (possible contamination or wear of the gold layer on the contact tips).

References							
	Description	Number of safety circuits	Solid-state outputs for PLC	Supply	Frequency of motor power supply	Reference	Weight kg
	Safety modules for zero speed detection	2	2	$24 \mathrm{~V}=-$	$\leqslant 60 \mathrm{~Hz}$	XPSVNE1142P	0.500
					> 60 Hz	XPSVNE1142HSP	0.500
				115 V	$\leqslant 60 \mathrm{~Hz}$	XPSVNE3442P	0.600
					$>60 \mathrm{~Hz}$	XPSVNE3442HSP	0.600
				$230 \mathrm{~V} \sim$	$\leqslant 60 \mathrm{~Hz}$	XPSVNE3742P	0.600
					> 60 Hz	XPSVNE3742HSP	0.600

Operating principle, characteristics

Safety automation solutions

Preventa safety modules types XPSDMB, XPSDME

For coded magnetic switch monitoring

Operating principle
Safety modules XPSDMB and XPSDME are specifically designed for monitoring coded magnetic safety switches. They incorporate two safety outputs and two solid-state outputs for signalling to the process PLC. Conforming to Performance Level PL e/Category 4 conforming to EN/ISO 13849-1, modules XPSDMB can monitor two independent sensors and modules XPSDME can monitor up to six independent sensors.

To monitor a higher number of magnetic switches using these safety modules, the magnetic switches can be connected in series parallel, while meeting the requirements of Performance Level PL d/Category 3 conforming to standard EN/ISO 13849-1.

Safety modules XPSDM $\bullet \bullet \bullet \bullet P$ incorporate removable terminal blocks, thus optimising machine maintenance.
To aid diagnostics, the modules have LEDs on the front face which provide information on the monitoring circuit status.

Characteristics							
Module type				XPSDMB1132	XPSDMB1132P	XPSDME1132	XPSDME1132P
Maximum achievable safety level			Years	PL e/Category 4 conforming to EN/ISO 13849-1, SILCL 3 conforming to EN/IEC 62061			
Reliability data	Mean Time To dangerous Failure (MTTF $_{\text {d }}$)			83.1		82.4	
	Diagnostic Coverage (DC)		\%	>99		> 99	
	Probability of dangerous Failure per Hour ($\mathrm{PFH}_{\mathrm{d}}$)		1/h	3.92×10^{-9}		3.97×10^{-9}	
Conformity to standards				EN/IEC 60204-1, EN 1088/ISO 14119, EN/IEC 60947-1, EN/IEC 60947-5-1, EN/IEC 60947-5-3			
Product certifications				UL, CSA, TÜV			
Supply (Ue) conforming to IEC 60038	Voltage		v	24 ---			
	Voltage limits	$24 \mathrm{~V}=-$		-20... +20 \%			
Consumption			W	<2.5		<3.5	
Module inputs fuse protection				Internal, electronic			
Maximum wiring resistance RL between the module and the coded magnetic switches			Ω	100			
Control unit voltage and current				$28 \mathrm{~V} / 8 \mathrm{~mA}$			
Synchronisation time between magnetic switch inputs			s	< 0.5			
Safety outputs	Voltage reference			Volt-free			
	Number and type of safety circuits			2 NO			
	Number and type of solid-state outputs			2			
	Breaking capacity in AC-15		VA	C300: inrush 1800, maintained: 180			
	Breaking capacity in DC-13			$24 \mathrm{~V} / 1.5 \mathrm{~A}, \mathrm{~L} / \mathrm{R}=50 \mathrm{~ms}$			
	Max. thermal current (lthe)		A	6			
	Max. total thermal current		A	12			
	Output fuse protection		A	4 gG or 6 fast acting			
	Minimum current		mA	10			
	Minimum voltage		V	17			
Electrical durability				Please refer to our catalogue "Safety functions and solutions using Preventa".			
Response time on input opening			ms	<20			
Rated insulation voltage (Ui)			V	300 (degree of pollution 2 conforming to IEC/EN 60947-5-1, DIN VDE 0110 parts 1 \& 2)			
Rated impulse withstand voltage (Uimp)			kV	4 (overvoltage category III, conforming to IEC/EN 60947-5-1, DIN VDE 0110 parts 1 \& 2)			
LED display				3		15	
Ambient air temperature	For operation		${ }^{\circ} \mathrm{C}$	-10... +55			
	For storage		${ }^{\circ} \mathrm{C}$	-25... +85			
Degree of protection conforming to EN/IEC 60529				Terminals: IP 20, enclosure: IP 40			
Connection	Type	Terminals		Captive screw clamp terminals			
		Terminal block		Integrated in module	Removable from module	Integrated in module	Removable from module
	1-wire connection	Without cable end		Solid or flexible cable: $0.14 . . .2 .5 \mathrm{~mm}^{2}$	Solid or flexible cable: $0.2 \ldots . .2 .5 \mathrm{~mm}^{2}$	Solid or flexible cable: $0.14 . . .2 .5 \mathrm{~mm}^{2}$	Solid or flexible cable: $0.14 \ldots . .2 .5 \mathrm{~mm}^{2}$
		With cable end		Without bezel, flexible cable: $0.25 \ldots 2.5 \mathrm{~mm}^{2}$			
		With cable end		With bezel, flexible cable: $0.25 \ldots 1.5 \mathrm{~mm}^{2}$	With bezel, flexible cable: $0.25 \ldots 2.5 \mathrm{~mm}^{2}$	With bezel, flexible cable: $0.25 \ldots 1.5 \mathrm{~mm}^{2}$	With bezel, flexible cable: $0.25 \ldots . .2 .5 \mathrm{~mm}^{2}$
	2-wire connection	Without cable end		Solid or flexible cable: $0.14 \ldots 0.75 \mathrm{~mm}^{2}$	Solid cable: $0.2 \ldots .1 \mathrm{~mm}^{2}$, flexible cable: 0.2 ... $1.5 \mathrm{~mm}^{2}$	Solid or flexible cable: $0.14 \ldots 0.75 \mathrm{~mm}^{2}$	Solid cable: 0.2... $1 \mathrm{~mm}^{2}$, flexible cable: $0.2 \ldots 1.5 \mathrm{~mm}^{2}$
		With cable end		Without bezel, flexible cable: $0.25 . .1 \mathrm{~mm}^{2}$			
		With cable end		With bezel, flexible cable: $0.5 \ldots 1.5 \mathrm{~mm}^{2}$			

Safety automation solutions

Preventa safety modules types XPSDMB, XPSDME
For coded magnetic switch monitoring

XPSDMB1132

References						
Description	Type of terminal block connection	Number of safety circuits	Solid-state outputs for PLC	Supply	Reference	Weight
				V		kg
Safety module for monitoring 2 coded	Integrated in module	2 NO	2	24 --	XPSDMB1132	0.250

magnetic switches
in module

Safety module for monitoring 6 coded magnetic switches	Integrated in module	2 NO	2	$24-$	XPSDME1132	0.300

Safety module for	Removable from module	2 NO	2	$24-\cdots$	XPSDMB1132P	0.250
monitoring 2 coded						

monitoring 2 coded from module
magnetic switches

Safety module for monitoring 6 coded magnetic switches	Removable from module	2 NO	2	$24--\quad 0.300$	XPSDME1132P

X		XCSDMP500L01M12	71
XCSA502	48	XCSDMP501L01M12	71
XCSA512	48	XCSDMP590L01M12	71
XCSA522	48	XCSDMP591L01M12	71
XCSA702	48	XCSDMP700L01M12	71
XCSA712	48	XCSDMP701L01M12	71
XCSA722	48	XCSDMP790L01M12	71
XCSA802	48	XCSDMP791L01M12	71
XCSB502	48	XCSDMP5002	70
XCSB512	48	XCSDMP5012	70
XCSB522	48	XCSDMP5902	70
XCSB702	48	XCSDMP5912	70
XCSB712	48	XCSDMP7002	70
XCSB722	48	XCSDMP7012	70
XCSB802	48	XCSDMP7902	70
XCSC502	48	XCSDMR590L01M12	71
XCSC512	48	XCSDMR591L01M12	71
XCSC522	48	XCSDMR790L01M12	71
XCSC702	48	XCSDMR791L01M12	71
XCSC712	48	XCSDMR5902	70
XCSC722	48	XCSDMR5912	70
XCSC802	48	XCSDMR7902	70
XCSD3702G13	31	XCSDMR7912	70
XCSD3702N12	31	XCSDMT	84
XCSD3702P20	31	XCSLE252531M2	59
XCSD3710G13	31	XCSLE272731M2	59
XCSD3710N12	31	XCSLE2525312	58
XCSD3710P20	31	XCSLE2727312	58
XCSD3718G13	31	XCSLF252531M2	55
XCSD3718N12	31	XCSLF272531M2	55
XCSD3718P20	31	XCSLF272731M2	55
XCSD3719G13	31	XCSLF2525312	54
XCSD3719N12	31	XCSLF2725312	54
XCSD3719P20	31	XCSLF2727312	54
XCSD3902G13	30	XCSM3702L1	26
XCSD3902N12	30	XCSM3710L1	26
XCSD3902P20	30	XCSM3715L1	26
XCSD3910G13	30	XCSM3716L1	26
XCSD3910N12	30	XCSM3902L1	26
XCSD3910P20	30	XCSM3910L1	26
XCSD3918G13	30	XCSM3915L1	26
XCSD3918N12	30	XCSM3916L1	26
XCSD3918P20	30	XCSM4102L1	26
XCSD3919G13	30	XCSM4110L1	26
XCSD3919N12	30	XCSM4115L1	26
XCSD3919P20	30	XCSM4116L1	26
XCSDM3791M12	83	XCSMP59L•	40
XCSDM3791M12	80	XCSMP70L•	40
XCSDM4801M12	80	XCSMP79L•	40
	83	XCSMP80L•	40
XCSDM379102	82	XCSP3702G13	33
XCSDM379105	82	XCSP3702N12	33
XCSDM379110	82	XCSP3702P20	33
XCSDM480102	82	XCSP3710G13	33
XCSDM480105	82	XCSP3710N12	33
XCSDM480110	82	XCSP3710P20	33
XCSDMC590L01M8	71	XCSP3718G13	33
XCSDMC591L01M8	71	XCSP3718N12	33
XCSDMC790L01M8	71	XCSP3718P20	33
XCSDMC791L01M8	71	XCSP3719G13	33
XCSDMC5902	70	XCSP3719N12	33
XCSDMC5912	70	XCSP3719P20	33
XCSDMC7902	70	XCSP3902G13	32
XCSDMC7912	70	XCSP3902N12	32

XCSP3902P20	32	XPSAC3421P	91
XCSP3910G13	32	XPSAC3721	91
XCSP3910N12	32	XPSAC3721P	91
XCSP3910P20	32	XPSAC5121	91
XCSP3918G13	32	XPSAC5121P	91
XCSP3918N12	32	XPSAF5130	93
XCSP3918P20	32	XPSAF5130P	93
XCSP3919G13	32	XPSAK311144	95
XCSP3919N12	32	XPSAK311144P	95
XCSP3919P20	32	XPSAK331144P	95
XCSPA192	44	XPSAK351144	95
XCSPA292	44	XPSAK351144P	95
XCSPA392	44	XPSAK361144	95
XCSPA492	44	XPSAK361144P	95
XCSPA592	44	XPSAK371144	95
XCSPA692	44	XPSAK371144P	95
XCSPA792	44	XPSAR311144	97
XCSPA892	44	XPSAR311144P	97
XCSPA992	44	XPSAR351144	97
XCSTA592	44	XPSAR351144P	97
XCSTA792	44	XPSAR371144	97
XCSTA892	44	XPSAR371144P	97
XCSZ01	48	XPSAXE5120C	91
	60	XPSAXE5120P	91
XCSZ02	48	XPSDMB1132	101
	60	XPSDMB1132P	101
XCSZ03	48	XPSDME1132	101
	60	XPSDME1132P	101
XCSZ05	$\begin{aligned} & 48 \\ & 60 \end{aligned}$	XPSVNE1142HSP	99
XCSZ11	45	XPSVNE1142P	99
XCSZ12	45	XPSVNE3442HSP	99
XCSZ13	45	XPSVNE3442P	99
XCSZ14	45	XPSVNE3742HSP	99
XCSZ15	45	XPSVNE3742P	99
XCSZ21	45	XSZB130	72
XCSZ25	49	XUSLZ500	84
	60	XZCP29P11L2	72
XCSZ27	49	XZCP29P11L5	72
XCSZ28	44	XZCP29P11L10	72
XCSZ29	40	XZCP29P12L2	84
XCSZ30	60	XZCP29P12L5	84
XCSZ31	49	XZCP29P12L10	84
XCSZ32	49	XZCP0941L2	72
XCSZ81	40	XZCP0941L5	72
XCSZ83	40	XZCP0941L10	72
XCSZ84	40	XZCP1041L2	72
XCSZ85	40	XZCP1041L5	72
XCSZ90	49	XZCP1041L10	72
	60	XZCP1141L2	72
XCSZ91	44	XZCP1141L5	72
XCSZ100	60	XZCP1141L10	72
	44	XZCP1241L2	72
XCSZ200	44	XZCP1241L5	72
XCSZ210	60	XZCP1241L10	72

The information provided in this documentation contains general descriptions and/or technical characteristics of the performance of the products contained herein. This documentation is not intended as a substitute for and is not to be used for determining suitability or reliability of these products for specific user applications. It is the duty of any such user or integrator to perform the appropriate and complete risk analysis, evaluation and testing of the products with respect to the relevant specific application or use thereof. Neither Schneider Electric nor any of its affiliates or subsidiaries shall be responsible or liable for misuse of the information contained herein.

Design: Schneider Electric
Photos: Schneider Electric

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Schneider manufacturer:
Other Similar products are found below :
101MPCX-356 101MPCX-415 103MX-2 107DIP-1 107DIP-3 107DIP-5 107DIP-7 107DIP-8 117DIP-176 117SIP-1 117SIP-18 117SIP-3
117SIP-6 $11 \mathrm{HPX}-75$ 131MPCX-2 13441 13443 13948 15-151-7 1551 B 19 G 3 1551G19 16-1120-8 16-1197 16-1278 16-1324 16-1325 16-
1328 16-1332 $\frac{16-1340}{16-1342} \frac{16-1344}{16-1350} \frac{16-1351}{16-700 \mathrm{DIN}} 16$ 16-700ST-1 $16-711 \mathrm{C} 1$ 16-711C4 16-725SC 16-725SC-1 16-
750/788CBJ-1 16-750/788FT-1 16-781C 16-781C1 16-781IDC 16-781SC 16-782C 16-782C1 16-782CBJ-1 16-782FT-1 16-782IDC

[^0]: (1) Head adjustable in 90° steps throughout 360°. Switches supplied with 2 additional self-locking screws for positive fixing of the head.
 (2) For switches with 80 mm spindle: replace the $2^{\text {nd }}$ number in the reference (5) by 6 . Example: XCSPR561. The weight increases by 0.032 kg . Other versions: please consult our Customer Care Centre.

[^1]: (1) 1 entry tapped for $n^{\circ} 11$ cable gland
 (2) 1 entry tapped for 1/2" NPT conduit
 \varnothing : 2 elongated holes $\varnothing 4.3 \times 8.3$ on 22 centres
 2 holes $\varnothing 4.3$ on 20 centres
 $\mathrm{L}=30(\mathrm{XCSPR} \bullet 5 \bullet)$ or 80 (XCSPR•6•)

[^2]: Locking of actuator and operation in positive mode associated with a safety module.

[^3]: Locking of actuator and operation in positive mode associated with a safety module.

[^4]: (1) Using an appropriate and correctly connected control system

[^5]: 1) With start button monitoring
 (2) Without start button monitoring.
[^6]: (1) With start button monitoring.

[^7]: (1) Using an appropriate and correctly connected control system.

