

Mini contactors - TeSys SK, K			
Mini contactors TeSys SK	Up to 6 A	$\frac{\sqrt{1000}}{}$	B8/38
Mini contactors TeSys K	From 6 to 16 A		B8/40
Reversing pre-assembled mini contactors TeSys K	From 6 to 16 A		B8/44
Auxiliary contact blocks - accessories			B8/49

Contactors for use in modular enclosures / Din rail

Mini contactors TeSys SKGC	Up to 20 A	首.0.0	B8/52
Modular contactors TeSys GC	From 16 to 100 A		B8/54
Dual tariff contactors TeSys GY	16, 25,40 or 100 A		B8/55
Impulse relay TeSys GF	Up to 16 A	\because	B8/56
Auxiliary contact blocks - accessories TeSys GC, GY			B8/57

References - TeSys D

TeSys contactors

TeSys D contactors for motor control up to 75 kW at 400 V , in category AC-3
For connection by screw clamp terminals and lugs

LC1 D25••

LC1 D80A••

LC1 D95••

LC1 D115••

3-pole contactors											
$\begin{aligned} & \text { Stand } \\ & 50-60 \\ & (\theta \leqslant 6) \end{aligned}$	dard po Hz in $0^{\circ} \mathrm{C}$)	wer r category	atings ry AC	of 3-ph 3	ase m		Rated operational current in AC-3 440 V up to	Instantaneous auxiliary contacts		Basic reference, to be completed by adding the control voltage code ${ }^{(2)}$ Fixing ${ }^{(1)}$	Weight
$\begin{aligned} & 220 \mathrm{~V} \\ & 230 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 380 \mathrm{~V} \\ & 400 \mathrm{~V} \end{aligned}$		440	$500 \mathrm{~V}$	$\begin{aligned} & 660 \mathrm{~V} \\ & 690 \mathrm{~V} \end{aligned}$				4		
	kW	kW	kW	kW	kW	kW	A				kg
Connection by screw clamp terminals											
2.2	4	4	4	5.5	5.5	-	9	1	1	LC1D09••	0.320
3	5.5	5.5	5.5	7.5	7.5	-	12	1	1	LC1D12••	0.325
4	7.5	9	9	10	10	-	18	1	1	LC1D18•๑	0.330
5.5	11	11	11	15	15	-	25	1	1	LC1D25••	0.370
7.5	15	15	15	18.5	18.5	-	32	1	1	LC1D32••	0.375
9	18.5	18.5	18.5	18.5	18.5	-	38	1	1	LC1D38••	0.380
Power connections by EverLink ${ }^{\text {® }}$ BTR screw connectors ${ }^{(4)}$ and control by screw clamp terminal											
11	18.5	22	22	22	30	-	40	1	1	LC1D40A••	0.850
15	22	25	30	30	33	-	50	1	1	LC1D50A••	0.855
18.5	30	37	37	37	37	-	65	1	1	LC1D65A••	0.860
22	37	37	37	37	37	-	66	1	1	LC1D80A••	0.860
Connection by screw clamp terminals or connectors											
22	37	45	45	55	45	45	80	1	1	LC1D80••	1.590
25	45	45	45	55	45	45	95	1	1	LC1D95••	1.610
30	55	59	59	75	80	65	115	1	1	LC1D115••	2.500
40	75	80	80	90	100	75	150	1	1	LC1D150••	2.500

Connection by lugs or bars

In the references selected above, insert a figure 6 before the voltage code.
Example: LC1 D09•• becomes LC1 D096••.

Separate components

Auxiliary contact blocks and add-on modules: see pages B8/23 to B8/29.
(1) LC1 D09 to D80A: clip-on mounting on 35 mm - rail AM1 DP or screw fixing.

LC1 D80 to D95~: clip-on mounting on 35 mm Ч rail AM1 DP or 75 mm Ч rail AM1 DL or screw fixing.
LC1 D80 to D95 --:- clip-on mounting on 75 mm - rail AM1 DL or screw fixing.
LC1 D115 and D150: clip-on mounting on $2 \times 35 \mathrm{~mm}$ ப rails AM1 DP or screw fixing.
(2) Standard control circuit voltages (for other voltages, please consult your Regional Sales Office):

a.c. supply													
Volts	24	42	48	110	115	220	230	240	380	400	415	440	500
LC1 D09...D150 (D115 and D150 coils with built-in suppression as standard, by bi-directional peak limiting diode).													
$50 / 60 \mathrm{~Hz}$	B7	D7	E7	F7	FE7	M7	P7	U7	Q7	V7	N7	R7	S7
LC1 D09...D65 (not available with "connection for lugs or bars")													
50 Hz	B5	D5	E5				P5						
LC1 D80...D115													
50 Hz	B5	D5	E5	F5	FE5	M5	P5	U5	Q5	V5	N5	R5	S5
60 Hz	B6	-	E6	F6	-	M6	-	U6	Q6	-	-	R6	-
d.c. supply													
Volts	12	24	36	48	60	72	110	125	220	250	440		

LC1 D09...D38 (coils with integral suppression device fitted as standard, by bi-directional peak limiting diode)

LC1 D40A ...D65A (coils with integral suppression device fitted as standard, by bi-directional peak limiting diode)

LC1 D80...D95
0.85...1.1

$U 0.85 \ldots 1.1 \mathrm{Uc}$	JD	BD	CD	ED	ND	SD	FD	GD	MD	UD	RD
$U 0.75 \ldots 1.2$ Uc	JW	BW	CW	EW	-	SW	FW	-	MW	-	-

LC1 D115 and D150 (coil with built-in suppression device as standard)
U0.75...1.2 Uc - BD - \quad ED ND SD FD GD MD UD RD

Low consumption
$\begin{array}{lllllllll}\text { Volts }=- & 5 & 12 & 20 & 24 & 48 & 110 & 220 & 250\end{array}$
LC1 D09...D38 (coils with integral suppression device fitted as standard, by bi-directional peak limiting diode)
U0.8...1.25 Uc AL JL ZL BL EL FL ML UL
a.c. / d.c. supply - low consumption

See TeSys D Green, page B8/13
For other voltages between 5 and 690 V , see pages $B 8 / 32$ to $B 8 / 35$.
(3) The weights indicated are for contactors with a.c. control circuit. For d.c. or low consumption control circuit, add 0.160 kg from LC1 D09 to D38, 0.075 kg from LC1 D40A to D80A and 1 kg for LC1 D80 and D95.
(4) BTR screws: hexagon socket head. In accordance with local electrical wiring regulations, a size 4 insulated Allen key must be used (reference LAD ALLEN4, see page B8/29).

References - TeSys D
TeSys contactors
TeSys D contactors for motor control up to 30 kW at 400 V , in category AC-3
For connection by spring terminals

LC1 D123e•

LCD 80A3••

These contactors are fitted with Faston connectors: $2 \times 6.35 \mathrm{~mm}$ on the power poles and $1 \times 6.35 \mathrm{~mm}$ on the coil and auxiliary terminals.
For contactors LC1 D09 and LC1 D12 only, replace the figure $\mathbf{3}$ with a 9 in the references selected above.
Example: LC1 D093•• becomes LC1 D099••.

Separate components

Auxiliary contact blocks and add-on modules: see pages B8/23 to B8/29.
(1) LC1 D09 to D32: clip-on mounting on 35 mm ப rail AM1 DP or screw fixing.
(2) Standard control circuit voltages (for other voltages, please consult your Regional Sales Office):

LC1 D09...D32 (coils with integral suppression device fitted as standard, by bi-directional peak limiting diode)

$U 0.7 \ldots 1.25$	$U C$	$J D$	$B D$	$C D$	$E D$	$N D$	$S D$	$F D$	$G D$	$M D$	$U D$

LC1 D40A...D65A (coils with integral suppression device fitted as standard, by bi-directional peak limiting diode)

U 0.75...1.25 Uc	JD	BD	CD	ED	ND	SD	FD	GD	MD	UD	RD
Low consumption											
Volts --	5	12	20	24	48	110	220	250			

LC1 D09...D32 (coils with integral suppression device fitted as standard, by bi-directional peak limiting diode)
U0.8...1.25 Uc AL JL \quad ZL \quad BL \quad EL \quad FL \quad ML \quad UL
For other voltages between 5 and 690 V , see pages B8/32 to B8/35.
(3) The weights indicated are for contactors with a.c. control circuit.

For d.c. or low consumption control circuit, add 0.160 kg from LC1 D09 to D32 and 0.075 kg from LC1 D40A to D80A.
(4) Must be wired with $2 \times 4 \mathrm{~mm}^{2}$ cables in parallel on the upstream side. On the downstream side, outgoing terminal block LAD 331 may be used (Quickfit technology, see page B1/18). When wired with a single cable, the product is limited to 25A ($11 \mathrm{~kW} / 400 \mathrm{~V}$ motors).
(5) BTR screws: hexagon socket head. In accordance with local electrical wiring regulations, a size 4 insulated Allen key must be used (reference LAD ALLEN4, see page B8/29).

Selection: pages A6/25 to A6/49	Characteristics: pages $B 8 / 61$ to $B 8 / 73$	Dimensions: pages B8/74 to B8/77	Schemes: pages $\mathrm{B} 8 / 81$ to $\mathrm{B} 8 / 82$			
				Life Is On		

References－TeSys D

TeSys contactors

TeSys D，3－pole contactors
For control in category AC－1，from 25 to 200 A

LC1 D80A••

3－pole contactors						
Non inductive loads maximum current （ $\theta \leqslant 60^{\circ} \mathrm{C}$ ） utilisation category AC－1	Number of poles				Basic reference， to be completed by adding the control voltage code Fixing	Weight ${ }_{\text {（3）}}$
A						kg
Connection by screw clamp terminals						
25	3	1	1		LC1D09••	0.320
					LC1D12••	0.325
32	3	1	1		LC1D18••	0.330
40	3	1	1		LC1D25••	0.370
50	3	1	1		LC1D32••	0.375
					LC1D38＊＊	0.380
Connection by EverLink ${ }^{\oplus}$ ，BTR screw connectors ${ }^{(4)}$						
60	3	1	1		LC1D40A••	0.850
80	3	1	1		LC1D50A••	0.855
				or	LC1D65A•＊${ }^{(5)}$	0.860
				or	LC1D80A•• ${ }^{(5)}$	0.860
Connection by screw clamp terminals or connectors						
125	3	1	1		LC1D80•๑	1.590
				or	LC1D95•0 ${ }^{(5)}$	1.610
200	3	1	1		LC1D115••	2.500
				or	LC1D150•• ${ }^{(6)}$	2.500

3－pole contactors for connection by lugs
In the references selected above，insert a figure 6 before the voltage code．
Example：LC1 D09•e becomes LC1 D096••．
（1）Standard control circuit voltages（for other voltages，please consult your Regional Sales Office）

$$
\begin{array}{llllllllllllll}
\text { a.c. supply } & 24 & 42 & 48 & 110 & 115 & 220 & 230 & 240 & 380 & 400 & 415 & 440 & 500
\end{array}
$$

LC1 D09．．．D150（ LC1D115 and D150 coils with built－in suppression device as standard）

$50 / 60 \mathrm{~Hz}$	B7	D7	E7	F7	FE7	M7	P7	U7	Q7	V7	N7	R7	S7

LC1 D09．．．D65（not available with＂connection for lugs or bars＂）
50 Hz B5 D5 E5 P5

LC1 D80．．．D150													
50 Hz	B5	D5	E5	F5	FE5	M5	P5	U5	Q5	V5	N5	R5	S5
60 Hz	B6	-	E6	F6	-	M6	-	U6	Q6	-	-	R6	-
d．c．supply													

Volts	12	24	36	48	60	72	110	125	220	250	440

LC1 D09．．．D38（coils with integral suppression device fitted as standard，by bi－directional peak limiting diode）

LC1 D09．．．D38（coils with integral suppression device fitted as standard，by bi－directional peak limiting diode）
U0．8．．1．25 Uc AL JL ZL BL EL FL ML UL
For other voltages between 5 and 690 V ，see pages $B 8 / 32$ to B8／35．
（2）LC1 D09 to D80A：clip－on mounting on 35 mm 乙 rail AM1 DP or screw fixing
LC1 D80 and D95～：clip－on mounting on 35 mm ぃ rail AM1 DP or 75 mm ■ rail AM1 DL or screw fixing
LC1 or LP1 D80 to D95－－：clip－on mounting on 75 mm ъ rail AM1 DL or screw fixing．
LC1 D115 and D150：clip－on mounting on $2 \times 35 \mathrm{~mm}$ ぃ rails AM1 DP or screw fixing．
（3）The weights indicated are for contactors with a．c．control circuit．For d．c．or low consumption control circuit，add 0.160 kg from LC1 D09 to D38， 0.075 kg from LC1 D40A to D80A and 1 kg for LC1 D80 and D95．
（4）BTR screws：hexagon socket head．In accordance with local electrical wiring regulations a size 4 insulated Allen key must be used（reference LAD ALLEN4，see page B8／29）
（5）Selection according to the number of operating cycles，see AC－1 curve，page A6／30．
（6） $32 A$ with $2 \times 4 \mathrm{~mm}^{2}$ cables connected in parallel．

Selection：	Characteristics：	Dimensions：	pages B8／61 to B8／73

LC1 D123••

LC1 D80A3••

3-pole contactors for connection by Faston connectors
These contactors are fitted with Faston connectors: $2 \times 6.35 \mathrm{~mm}$ on the power poles and $1 \times 6.35 \mathrm{~mm}$ on the coil terminals. For contactors LC1 D09 and LC1 D12 only, in the references selected from the previous page, insert a figure 9 before the voltage code. Example: LC1 D09•๑ becomes LC1 D099•๑.

3-pole contactors				
Non inductive loads maximum current ($\theta \leqslant 60^{\circ} \mathrm{C}$) utilisation category AC-1	Number In of poles		Basic reference, to be completed by adding the control voltage code Fixing ${ }^{(2)}$	Weight
A				kg
Connection by spring terminals				
16	3	1	LC1D093•• ${ }^{(4)}$	0.320
		or	LC1D123•• ${ }^{(4)}$	0.325
25	3	1	LC1D183** ${ }^{(5)}$	0.335
		or	LC1D253•• ${ }^{(6)}$	0.325
		or	LC1D323•• ${ }^{(6)}$	0.325

Power connections by EverLink ${ }^{\circledR}$ BTR screw connectors ${ }^{(7)}$ and control by spring terminals

Separate components

Auxiliary contact blocks and add-on modules: see pages B8/23 to B8/29.
(1) Standard control circuit voltages (for other voltages, please consult your Regional Sales Office):

a.c. supply Volts	24	$\mathbf{4 2}$	$\mathbf{4 8}$	$\mathbf{1 1 0}$	$\mathbf{1 1 5}$	$\mathbf{2 2 0}$	$\mathbf{2 3 0}$	$\mathbf{2 4 0}$	$\mathbf{3 8 0}$	$\mathbf{4 0 0}$	$\mathbf{4 1 5}$	$\mathbf{4 4 0}$	$\mathbf{5 0 0}$
LC1 D09..D80A													
$50 / 60$ Hz	B7	D7	E7	F7	FE7	M7	P7	U7	Q7	V7	N7	R7	S7
d.c. supply													
Volts	12	24	36	48	60	72	110	125	220	250	440		

LC1 D09...D32 (coils with integral suppression device fitted as standard, by bi-directional peak limiting diode)
U0.7...1.25 Uc JD \quad BD $C D$ ED ND SD FD GD MD UD RD
LC1 D40A...D65A (coils with integral suppression device fitted as standard, by bi-directional peak limiting diode)

| U0.75...1.25 Uc | JD | BD | CD | ED | ND | SD | FD | GD | MD | UD |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | RD

LC1 D09...D32 (coils with integral suppression device fitted as standard, by bi-directional peak limiting diode)

$$
\begin{array}{lllllllll}
\hline \text { U0.8...1.25 Uc } & \text { AL } & \text { JL } & \text { ZL } & \text { BL } & \text { EL } & \text { FL } & \text { ML } & \text { UL }
\end{array}
$$

For other voltages between 5 and 690 V, see pages B8/32 to B8/35.
(2) LC1 D09 to D80A: clip-on mounting on 35 mm Ч rail AM1 DP or screw fixing.
(3) The weights indicated are for contactors with a.c. control circuit. For d.c. or low consumption control circuit, add 0.160 kg from LC1 D09 to D38 and 0.075 kg from LC1 D40A to D80A.
(4) $20 A$ with $2 \times 2.5 \mathrm{~mm}^{2}$ cables connected in parallel.
(5) 32 A with $2 \times 4 \mathrm{~mm}^{2}$ cables connected in parallel.
(6) $40 A$ with $2 \times 4 \mathrm{~mm}^{2}$ cables connected in parallel.
(7) BTR screws: hexagon socket head. In accordance with local electrical wiring regulations, a size 4 insulated Allen key must be used (reference LAD ALLEN4, see page B8/29).
(8) Selection according to the number of operating cycles, see AC-1 curve, page A6/30.

Selection: pages A6/25 to A6/49	Characteristics: pages B8/61 to B8/73	Dimensions: pages B8/74 to B8/77	Schemes: pages $B 8 / 81$ to $B 8 / 82$		=Click HERE for access , to online contactor selector	
				Life Is Un	Schneider	B8/5

References - TeSys D

TeSys contactors

TeSys D, 4-pole contactors

For control in category AC-1, 20 to 200 A

LC1 DT20••

LC1 DT80A••

LC1 D65008••

4 -pole contactors for connection by lugs or bars

In the references selected above, insert a figure 6 before the voltage code.
Example: LC1 DT20•• becomes LC1 DT206•e.
(1) Standard control circuit voltages (for other voltages, please consult your Regional Sales Office):

| a.c. supply | | | | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Volts | 24 | 42 | 48 | 110 | 115 | 220 | 230 | 240 | 380 | 400 | 415 | 440 | 500 |

LC1 D09...D150 and LC1 DT20...DT80A (LC1 D115 and D150 coils with built-in suppression device as standard)

$50 / 60 \mathrm{~Hz}$	B7	D7	E7	F7	FE7	M7	P7	U7	Q7	V7	N7	R7	-
LC1 D80...D115													
50 Hz	B5	D5	E5	F5	FE5	M5	P5	U5	Q5	V5	N5	R5	S5
60 Hz	B6	-	E6	F6	-	M6	-	U6	Q6	-	-	R6	-
d.c. supply													
Volts	12	24	36	48	60	72	110	125	220	250	440		

LC1 D09...D25 and LC1 DT20...DT40 (coils with integral suppression device fitted as standard, by bi-directional peak limiting diode)

LC1 DT60A ...DT80A (coils with integral suppression device fitted as standard, by bi-directional peak limiting diode)

LP1D40...D80

U 0.85...1.1 Uc	JD	BD	CD	ED	ND	SD	FD	GD	MD	UD	RD
U 0.75...1.2 Uc	JW	BW	CW	EW	-	SW	FW	-	MW	-	-
LC1 D115 (coil with built-in suppression device as standard)											
U 0.75...1.2 Uc	-	BD	-	ED	ND	SD	FD	GD	MD	UD	RD
Low consumption											
Volts --.	5	12	20	24	48	110	220	250			

LC1 D09...D25 and LC1 DT20...DT40 (coils with integral suppression device fitted as standard, by bi-directional peak limiting diode) U 0.8...1.25 Uc AL JL $\mathrm{ZL} \quad \mathrm{BL} \quad \mathrm{EL} \quad \mathrm{FL} \quad \mathrm{ML} \quad \mathrm{UL}$
For other voltages between 5 and 690 V , see pages B8/32 to B8/35.
(2) LC1 D09 to D38 and LC1 DT20 to DT80A: clip-on mounting on 35 mm ப rail AM1 DP or screw fixing.

LC1 D80~: clip-on mounting on 35 mm ப rail AM1 DP or 75 mm 乙 rail AM1 DL or screw fixing.
LC1 or LP1 D80 ---: clip-on mounting on 75 mm 乙 rail AM1 DL or screw fixing.
LC1 D115 and D150: clip-on mounting on $2 \times 35 \mathrm{~mm}$ Ч rails AM1 DP or screw fixing
(3) The weights indicated are for contactors with a.c. control circuit. For d.c. or low consumption control circuit, add 0.160 kg from LC1 D09 to D38, 0.075 kg from LC1 DT60A and D80A and 1 kg for LC1 D80 pages B8/74 to B8/77 Schemes:

Click HERE for access pages B8/61 to B8/73 pages B8/81 to B8/82 to online contactor selector

References－TeSys D
TeSys contactors
TeSys D，4－pole contactors
For control in category AC－1， 20 to 80 A

Auxiliary contact blocks and add－on modules：see pages B8／23 to B8／29．
（1）Standard control circuit voltages（for other voltages，please consult your Regional Sales Office）：

a．c．supply

$\begin{array}{llllllllllllll}\text { Volts } & 24 & 42 & 48 & 110 & 115 & 220 & 230 & 240 & 380 & 400 & 415 & 440 & 500\end{array}$
LC1 D09．．．D25 and LC1 DT20．．．DT80A（coils with integral suppression device fitted as standard，by bi－directional peak limiting diode）

$50 / 60 \mathrm{~Hz}$	B7	D7	E7	F7	FE7 M7	P7	U7	Q7	V7	N7	R7	－	
d．c．supply													
Volts	$\mathbf{1 2}$	24	$\mathbf{3 6}$	$\mathbf{4 8}$	$\mathbf{6 0}$	$\mathbf{7 2}$	$\mathbf{1 1 0}$	$\mathbf{1 2 5}$	$\mathbf{2 2 0}$	$\mathbf{2 5 0}$	$\mathbf{4 4 0}$		

LC1 D09．．．D25 and LC1 DT20．．．DT40（coils with integral suppression device fitted as standard，by bi－directional peak limiting diode）
U0．7．．．1．25 Uc $\quad J D \quad B D \quad C D \quad E D \quad N D \quad S D \quad F D \quad G D \quad M D \quad U D \quad R D$

LC1 DT60A．．．80A（coils with integral suppression device fitted as standard，by bi－directional peak limiting diode）

U $0.75 \ldots 1.25$ Uc	JD	BD	CD	ED	ND	SD	FD	GD	MD	UD	$R D$
Low consumption											
Volts --	5	12	20	$\mathbf{2 4}$	$\mathbf{4 8}$	$\mathbf{1 1 0}$	$\mathbf{2 2 0}$	$\mathbf{2 5 0}$			

LC1 D09．．．D25 and LC1 DT20．．．DT40（coils with integral suppression device fitted as standard， by bi－directional peak limiting diode）
U0．8．．．1．25Uc AL JL ZL \quad BL \quad EL \quad FL \quad ML UL

For other voltages between 5 and 690 V，see pages B8／32 to B8／35．
（2）LC1 D09 to D38 and LC1 DT20 to DT80A：clip－on mounting on 35 mm ப rail AM1DP or screw fixing．
（3）The weights indicated are for contactors with a．c．control circuit．For d．c．or low consumption control circuit，add 0.160 kg from LC1 D09 to D38， 0.075 kg for LC1 DT60A and DT80A．

TeSys contactors

For the North American market，Conforming to UL and CSA standards 25 to 160 A

LC1 D09••

LC1 D25••

LC1 D80A••

LC1 D95••

Contactors								
Standard power ratings of motors $50 / 60 \mathrm{~Hz}$						Associated cable type $75^{\circ} \mathrm{C}-\mathrm{Cu}$	UL continuous current	Type of contactor required Basic reference， to be completed
$\begin{aligned} & \text { Single } \\ & 1 \varnothing \end{aligned}$	－phase	$\begin{aligned} & \text { 3-phase } \\ & 3 \varnothing \\ & \hline \end{aligned}$						
120 V	240 V	208 V	240 V	480 V	600 V			Fixing，connection ${ }^{(2)}$
HP	HP	HP	HP	HP	HP		A	
Connection by screw clamp terminals								
1／3	1	2	2	5	7.5	AWG 18－10	25	LC1D09•๑
0.5	2	3	3	7.5	10	AWG 18－10	25	LC1D12••
1	3	5	5	10	15	AWG 18－8	32	LC1D18••
2	3	7.5	7.5	15	20	AWG 14－6	40	LC1D25••
2	5	10	10	20	25	AWG 14－6	50	LC1D32••
2	5	10	10	20	25	AWG 14－6	50	LC1D38••
Power connections by EverLink ${ }^{\circledR}$ BTR screw connectors and control by spring terminals								
3	5	10	10	30	30	AWG 16－2	60	LC1D40A＊•
3	7.5	15	15	40	40	AWG 16－2	70	LC1D50A••
5	10	20	20	40	50	AWG 16－2	80	LC1D65A••
5	10	20	20	40	50	AWG 16－2	80	LC1D80A••
Connection by screw clamp terminals or connectors								
7.5	15	25	30	60	60	AWG 10－2	110	LC1D80••
7.5	15	25	30	60	60	AWG 10－2	110	LC1D95••
－	－	30	40	75	100	AWG 8－1／0	160	LC1D115••
－	－	40	50	100	125	AWG 8－1／0	160	LC1D150••
Applications with High－Fault Short－Circuit ratings								

High－fault short－circuit current ratings are： $100 \mathrm{kA}(\mathrm{D} 09-80, \mathrm{D} 115-150)$ at 600 V with Class J fuses and 85 kA
（D09－38）， 100 kA （D40A－80，D115－150）at 480 V and 50 kA （D09－80，D115－150）at 600 V with circuit breakers．

Application example

For a 15 HP－230 V motor

Select a contactor type LC1 D50A．
Information：the contactor rating selected corresponds to＂size 2 ＂，the associated cable is type AWG3 $75^{\circ} \mathrm{C}-\mathrm{Cu}$ ． （1）Standard control circuit voltages（for other voltages，please consult your Regional Sales Office）：

a．c．supply																
Volts	24	42	48	110	115	120	208	220	230	240	380	400	415	440	480	500
LC1 D09．．．D150（D115 and D150 coils with built－in suppression device as standard）																
50／60 Hz	B7	D7	E7	F7	FE7	G7	LE7	M7	P7	U7	Q7	V7	N7	R7	T7	S7
LC1 D09．．．D65（not available with＂connection for lugs or bars＂）																
50 Hz	B5	D5	E5						P5							
LC1 D80．．．D115																
50 Hz	B5	D5	E5	F5	FE5	G5	－	M5	P5	U5	Q5	V5	N5	R5	－	S5
60 Hz	B6	－	E6	F6	－	G6	L6	M6	－	U6	Q6	－	－	R6	T6	－

LC1 D09．．．D32（coils with integral suppression device fitted as standard，by bi－directional peak limiting diode）
U 0．7．．．1．25 Uc JD BD CD ED ND SD FD GD MD UD RD
LC1 D40A．．．D65A（coils with integral suppression device fitted as standard，by bi－directional peak limiting diode）

LC1 D80 and D95
U 0．85．．．1．1 Uc JD \quad BD \quad CD \quad ED \quad ND \quad SD \quad FD \quad GD \quad MD \quad UD $\quad R D$
U0．75．．．1．2 Uc JW BW CW EW－SW FW \quad－MW \quad－\quad－

LC1 D115 and D150（coils with built－in suppression device as standard）
U 0．75．．．1．2 Uc－$\quad \mathrm{BD}$
Low consumption

Low consumption

Volts --	5	12	20	24	48	72	110	220	250

LC1 D09．．．D38（coils with integral suppression device fitted as standard，by bi－directional peak limiting diode）
U0．8．．．1．25 Uc AL JL ZL BL EL SL FL ML UL
（2）LC1 D09 to D65A：clip－on mounting on 35 mm 乙 rail AM1 DP or screw fixing．
LC1 D80 and LC1 D95：clip－on mounting on 35 mm 乙 rail AM1 DP or 75 mm ป rail $\boldsymbol{A M 1}$ DL or screw fixing．
LC1 D115 and D150：clip－on mounting on $2 \times 35 \mathrm{~mm}$ 乙 rails AM1 DP or screw fixing．

TeSys D Green

The dark grey body identifies the new generation of contactors. TeSys D Green belongs to it, bringing valuable advantages: - 80 \% less consumption than TeSys D with standard coil, reducted heating - suitable for direct control by PLC output up to 37 kW (80 A)

- coil embedded electronic control accepting both AC and DC supply in a wide voltage band (except BBE-24 V DC).
TeSys D Green dimensions similar to TeSys D AC coil, making it fully compatible with all TeSys D auxiliaries and accessories.
TeSys D Green is specifically designed for activation by its dedicated wide band coils.

TeSys D Green, enriching TeSys D family

TeSys D conventional contactors 9 to 150 A, for motor control and other applications.

TeSys D Green delivers a consistent low
consumption range of contactors from
9 A to 80 A , covering control voltage from
24 to 250 V , with same coils for $A C$ and DC.

TeSys Solink + PLC
SoLink ensures the compatibility of circuit breaker and contactor assemblies with screw clamp terminals to the RJ45 connection system. It also can be used with the TeSys D Green BBE offer.
With SoLink, we provide prewired motor starters ready to be connected to PLC I/O, which saves you time and labor.

TeSys LR9D
By combining a TeSys D Green contactor with our new TeSys LR9D electronic overload relay, you will have less heat generation, and further reduce energy consumption.

Coil currents comparison
TeSys D Green (AC/DC coil) vs Tesys D (AC, DC coils)

TeSys D Green ("BBE" coil) vs TeSys D (low consumption "BL" coil)

TeSys contactors
TeSys D Green

Coordination with PLC DC and relay output modules

Laboratory tests have been carried out in order to validate trouble free contactor closings and openings with different PLC output modules．
The coil must be defined according to the contactor rating range and output module．
See selection table below．

The PLC your are using				$\geq \gg$	Compatible contactors ${ }^{(1)}$	Coil code
PLC type	Output type	Output I（A）	Output module commercial reference			
$\begin{aligned} & \text { M221/ } \\ & \text { M241/ } \\ & \text { M251 } \end{aligned}$	Static output： 24 V DC	0.5	TM3DQ8••• and Q16••• （T，TG，U，UG）		LC1D09• to LC1D38•๑，	BL，BNE
				＞＞＞	LC1D40A ••• to LC1D80A， LC1DT60A••• to LC1DT80A $\bullet \bullet$	BBE
		0.3 （sealed） 0.8 （inrush） 0.1	TM3XTYS4	＞＞＞	LC1D40A ••• to LC1D80A， LC1DT60A••• to LC1DT80A •••	BBE，BD，BNE
		0.1	TM3DQ16・ャ and Q32••（TK，UK）	＞＞＞	LC1D09・ャ to LC1D38••	BL
	Relay output： 24 V DC／ 230 V AC	2	TM3DQ8 and DQ16（R，RG）， TM3DM8 and DM24（R，RG）	＞＞＞	LC1D09•• to LC1D38・ャ， LC1D40A $\bullet \bullet$ to LC1D80A， LC1DT60A $\bullet \bullet$ to LC1DT80A $\bullet \bullet$	Code of any DC coil up to 24 V or any AC coil up to 230 V
M340／ M580	Static output： 24 V DC	0.5	BMXDDO1602 and DM16022	\ggg	LC1D09・ャ to LC1D38•๑	BL，BNE
					LC1D40A $\bullet \bullet$ to LC1D80A， LC1DT60A $\bullet \bullet$ to LC1DT80A $\bullet \bullet$	BBE
		0.1	BMXDDO3202， BMXDDM3202K， BMXDDO6402K	＞＞＞	LC1D09・ャ to LC1D38•๑	BL
	Relay output： 24 V DC／ 230 V AC	2	BMXDRA0805 and DM16025	＞＞＞	LC1D09•• to LC1D38••， LC1D40A ••• to LC1D80A， LC1DT60A $\bullet \bullet$ to LC1DT80A $\bullet \bullet$	Code of any DC coil up to 24 V or any AC coil up to 230 V
	Triac output： 230 V AC	0.6	BMXDAO1605	＞＞＞	LC1D09•• to LC1D38••， LC1D40••• to LC1D80A $\bullet \bullet \bullet$ ， LC1DT60A $\bullet \bullet$ to LC1DT80A $\bullet \bullet$	Code of any AC coil up to 230 V （P7 code＝ 230 V ）
ADVANTYS	Static output： 24 V DC	0.5	STBDDO3200	＞＞＞	LC1D09・ャ to LC1D38・ャ	BL，BNE
					LC1D40A $\bullet \bullet$ to LC1D80A， LC1DT60A $\bullet \bullet$ to LC1DT80A $\bullet \bullet$	BBE
	Triac output： 230 V AC	2	STBDAO8210	＞＞＞	LC1D09•• to LC1D38・ャ， LC1D40A ••• to LC1D80A， LC1DT60A••• to LC1DT80A $\bullet \bullet$	Code of any AC coil up to 230 V （P7 code $=230 \mathrm{~V}$ AC）

Coils consumption characteristics

| Coil type | Uc DC - min－max | Average consumption at UC $\mathrm{DC} / \mathbf{2 0}^{\circ} \mathrm{C}$ | |
| :--- | :--- | :--- | :--- | :--- |
| Inrush | Sealed | | |

（1）Replace dot by coil code．Ex LC1D09•• becomes LC1D09BL．

TeSys D Green contactors

For motor control up to 37 kW / 400 V Category AC-3

LC1 D09•••

LC1 D40A•••

TeSys D Green contactors
For load control from 25 to 80 A Category AC-1

LC1 D09•e•

LC1 DT60A•••

| 3-pole contactors
 Non inductive loads
 maximum current
 $\left(\theta \leqslant 60^{\circ} \mathbf{C}\right)$
 utilisation category
 AC-1
 of poles | Instan-
 taneous
 auxiliary
 contacts | Partial reference,
 to be completed by adding
 the control voltage code | Weight |
| :--- | :--- | :--- | :--- | :--- | :--- |

Connection for lugs or bars
For LC1D40A to LC1D80A, insert a figure 6 before the voltage code.
Example: LC1D40A••• becomes LC1D40A6•••

4-pole contactors

Connection by EverLink ${ }^{\circledR}$, BTR ${ }^{(2)}$ screw connectors

60	4	1	1	LC1DT60A $\bullet \bullet \bullet$	1.230
80	4	1	1	LC1DT80A $\bullet \bullet$	1.290

Connection for lugs or bars
For LC1DT60A to LC1DT80A, insert a figure 6 before the voltage code.
Example: LC1DT60A ••• becomes LC1DT80A •••

4-pole changeover contactors

Connection by EverLink ${ }^{\ominus}$, BTR ${ }^{(2)}$ screw connectors

60	4	1	1	LC2DT60A		2.460
80	4	1	1	LC2DT80A		2.580
Control voltage codes						
AC/DC 24 V DC supply						
Volts	24 (DC only)	24-60		48-130	100-250	
LC1 D09	nd LCeDT60A	T8				

| LC1 D09...D80A and LCeDT60A...DT80A | | |
| :--- | ---: | :--- | :--- |
| U $0.85 \ldots .1 .1 \mathrm{Uc}$ | BNE | |

LC1D09 D38
U 0.8 1.2 Uc BNE
LC1D40 to LC1D80A, LC॰DT60A to LC•DT80A
U 0.8...1.2 Uc BBE
(1) LC1 D09 to D80A, LC॰DT60A and LC॰DT80A: clip-on mounting on 35 mm ぃ rail AM1 DP or screw fixing.
(2) BTR screws: hexagon socket head. In accordance with local electrical wiring regulations, a size 4 insulated Allen key must be used (reference LAD ALLEN4, see page B8/29).
(3) Selection according to the number of operation cycles, consult online datasheets for values.

References

TeSys D Green contactors

For North American market，conforming to UL and CSA standards 25 to 80 A

LC1 D09•••

LC1 D40A•eゃ

Contactors								
Standard power ratings of motors $50 / 60 \mathrm{~Hz}$						Associated cable type $75^{\circ} \mathrm{C}-\mathrm{Cu}$	Continuous current	Type of contactor required Partial reference，to be completed by adding the control voltage code
$\begin{aligned} & \text { Single } \\ & 1 \varnothing \end{aligned}$	phase	$\begin{aligned} & \text { 3-phase } \\ & 3 \varnothing \end{aligned}$						
115 V	$\begin{aligned} & 230 \mathrm{~V} \\ & 240 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 200 \mathrm{~V} \\ & 208 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 230 \mathrm{~V} \\ & 240 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 460 \mathrm{~V} \\ & 480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 575 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$			Fixing，connection ${ }^{11}$
HP	HP	HP	HP	HP	HP		A	
Connection by screw clamp terminals								
1／3	1	2	2	5	7.5	AWG 18－10	25	LC1D09••๑
0.5	2	3	3	7.5	10	AWG 18－10	25	LC1D12•••
1	3	5	5	10	15	AWG 18－8	32	LC1D18••๑
2	3	7.5	7.5	15	20	AWG 14－6	40	LC1D25••॰
2	5	10	10	20	25	AWG 14－6	50	LC1D32•••
Power connections by EverLink ${ }^{\circledR}$ BTR ${ }^{(2)}$ screw connectors and control by spring terminals								
3	5	10	10	30	30	AWG 16－2	60	LC1D40A••๑
3	7.5	15	15	40	40	AWG 16－2	70	LC1D50A••๑
5	10	20	20	40	50	AWG 16－2	80	LC1D65A••๑
5	10	20	20	40	50	AWG 16－2	80	LC1D80A••๑
Connection for lugs or bars								

For LC1D40A to LC1D80A，insert a figure 6 before the voltage code．
Example：LC1D40Aゃゃゃ becomes LC1D40A6•••

Applications with High－Fault Short－Circuit Current ratings

High－fault short－circuit current ratings are： 100 kA at 600 V with Class J fuses and $85 \mathrm{kA}(\mathrm{D} 09-38), 100 \mathrm{kA}$ （D40A－65A）at 480 V and 50 kA at 600 V with circuit breakers．
Control voltage codes
AC／DC 24 V DC supply

Volts	$\mathbf{2 4}$（DC only）	$\mathbf{2 4 - 6 0}$	$\mathbf{4 8 - 1 3 0}$	$\mathbf{1 0 0 - 2 5 0}$
LC1D09 ．．．D32，LC1D40A ．．．D80A		EHE	KUE	
U $0.85 \ldots .1 .1$ Uc		BNE		
LC1D09 ．．．D38				
U $0.8 \ldots .1 .2$ Uc	BNE			
LC1D40A ．．．D80A				
U $0.8 \ldots 1.2$ Uc	BBE			

（1）LC1 D09 to D80：clip－on mounting on 35 mm ๖ rail AM1 DP or screw fixing．
（2）BTR screws：hexagon socket head．In accordance with local electrical wiring regulations，a size 4 insulated Allen key must be used（reference LAD ALLEN4，see page B8／29）．

TeSys contactors

TeSys D, 3-pole reversing contactors for motor control up to 75 kW at 400 V , in category AC-3 Horizontally mounted, pre-assembled

LC2 D12••

LC2 D65A••

LC2 D115••

3-pole reversing contactors for connection by screw clamp terminals
Pre-wired power connections.

With mechanical interlock and electrical interlocking, for connection by screw clamp terminals or connectors

30	55	59	59	75	80	65	115	1	1	LC2D115••	6.350
40	75	80	80	90	100	75	150	1	1	LC2D150••	

Connection by lugs or bars

For reversing contactors LC2 D09 to LC2 D38, LC2 D115 and LC2 D150, in the references selected above, insert a figure 6 before the voltage code. Example: LC2 D09•๑ becomes LC2 D096•e.
To build a 40 to 65 A reversing contactor, for connection by lugs, order 2 contactors LC1 D•๑A6 and mechanical interlock LAD 4CM (see page B8/30).

Component parts

Auxiliary contact blocks and add-on modules: see pages B8/23 to B8/29
(1) LC2 D09 to D65A: clip-on mounting on 35 mm Ч rail AM1 DP or screw fixing.

LC2 D80 and D95: clip-on mounting on 35 mm - rail AM1 DP or 75 mm -r rail AM1 DL or screw fixing.
LC2 D115 and D150: clip-on mounting on 35 mm Ч rail AM1 DP or screw fixing.
(2) Standard control circuit voltages (for other voltages between 16 and 690 V, please consult your Regional Sales Office):

LC2 D09...D38 (coils with integral suppression device fitted as standard, by bi-directional peak limiting diode)

LC2 D40A...D65A (coils with integral suppression device fitted as standard, by bi-directional peak limiting diode)

U $0.75 \ldots 1.25$ Uc	JD	BD	CD	ED	ND	SD	FD	GD	MD	UD	RD
Low consumption											
Volts $=-$	5	12	20	24	48	110	220	250			

LC2 D09...D38 (coils with integral suppression device fitted as standard, by bi-directional peak limiting diode)
U 0.8...1.25 Uc AL JL ZL BL EL \quad FL \quad ML \quad UL
For other voltages between 5 and 690 V, see pages B8/32 to B8/35.
(3) The weights indicated are for contactors with a.c. control circuit. For d.c. or low consumption control circuit, add 0.330 kg for LC2 D09 to D38, 0.150 kg for LC1 D40A to D65A.
(4) For reversing contactors with electrical interlocking pre-wired at the factory, add suffix \boldsymbol{V} to the references selected above. Example: LC2 D09P7 becomes LC2 D09P7V.

Note: when assembling a reversing contactor, it is good practice to incorporate a 50 ms time delay.

References - TeSys D
TeSys contactors
TeSys D, 3-pole reversing contactors for motor control up to 15 kW at 400 V , in category AC-3 Horizontally mounted, pre-assembled

LC2 D123••

3-pole reversing contactors, for connection by spring terminals

Pre-wired power connections.
Mechanical interlock without electrical interlocking.

Standard power ratings of 3-phase motors $50-60 \mathrm{~Hz}$ in category AC-3$\left(\theta \leqslant 60^{\circ} \mathrm{C}\right)$						Rated operational current in AC-3 440 V up to	Instan- taneous auxiliary contacts per contactor		Contactors supplied with coil Basic reference, to be completed by adding the voltage code ${ }^{(2)}$ Fixing	eight
	$\begin{aligned} & 380 \\ & 400 \end{aligned}$	415		$500 \mathrm{~V}$	$\begin{aligned} & 660 \mathrm{~V} \\ & 690 \mathrm{~V} \end{aligned}$					
kW	kW	kW	kW	kW	kW	A				
For connection by spring terminals										
2.2	4	4	4	5.5	5.5	9	1	1	LC2D093*•	0.687
3	5.5	5.5	5.5	7.5	7.5	12	1	1	LC2D123•๑	0.697
4	7.5	9	9	10	10	18	1	1	LC2D183*	0.707
5.5	11	11	11	15	15	25	1	1	LC2D253••	0.787
7.5	15	15	15	18.5	18.5	$32{ }^{(4)}$	1	1	LC2D323••	0.797
Power connection by EverLink ${ }^{\text {® }}$, BTR screw connectors ${ }^{(5)}$ and control by spring terminals										
11	18.5	22	22	22	30	40	1	1	LC2D40A3-๑	1.870
15	22	25	30	30	33	50	1	1	LC2D50A3*॰	1.880
18.5	30	37	37	37	37	65	1	1	LC2D65A3•๑	1.890

For connection by Faston connectors

All power connections are to be made by the customer.
These contactors are fitted with Faston connectors: $2 \times 6.35 \mathrm{~mm}$ on the power poles and $1 \times 6.35 \mathrm{~mm}$ on the coil terminals.
For reversing contactors LC2 D09 and LC2 D12 only, in the references selected above, replace the figure 3 before the voltage code with a figure 9.
Example: LC2 D093•• becomes LC2 D099••.

Component parts

Auxiliary contact blocks and add-on modules: see pages $\mathrm{B} 8 / 23$ to $\mathrm{B} 8 / 29$.
(1) LC2 D09 to D32: clip-on mounting on 35 mm - rail AM1 DP or screw fixing.
(2) Standard control circuit voltages (for other voltages, please consult your Regional Sales Office):

LC2 D09...D32 (coils with integral suppression device fitted as standard, by bi-directional peak limiting diode)

| $U 0.7 \ldots 1.25$ | $U C$ | $J D$ | $B D$ | $C D$ | $E D$ | $N D$ | $S D$ | $F D$ | $G D$ | $M D$ | UD |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | RD

LC2 D40A ...D65A (coils with integral suppression device fitted as standard, by bi-directional peak limiting diode)

U $0.75 \ldots 1.25$ Uc	JD	BD	CD	ED	ND	SD	FD	GD	MD	UD	RD
Low consumption											
Volts.-	5	12	20	24	48	110	220	250			

LC2 D09...D32 (coils with integral suppression device fitted as standard, by bi-directional peak limiting diode)
U 0.8...1.25 Uc AL JL ZL BL EL FL ML UL
For other voltages between 5 and 690 V, see pages $B 8 / 32$ to $B 8 / 35$.
(3) The weights indicated are for reversing contactors with a.c. control circuit. For d.c. or low consumption control circuit, add 0.330 kg for LC2 D09 to D38, 0.150 kg for LC1 D40A to D65A.
(4) Must be wired with $2 \times 4 \mathrm{~mm}^{2}$ cables in parallel on the upstream side. On the downstream side, outgoing terminal block LAD 331 may be used (Quickfit technology, see page B1/18). When wired with a single cable, the product is limited to 25 A (11 kW/400 V motors).
(5) BTR screws: hexagon socket head. In accordance with local electrical wiring regulations, a size 4 insulated Allen key must be used (reference LAD ALLEN4, see page B8/29).

- Click HERE for access to online contactor selector

TeSys D Green reversing contactors

For motor control up to 37 kW / 400 V Category AC-3

3-pole reversing contactors										
Pre-wired power connections										
Standard power ratings of 3-phase motors $50-60 \mathrm{~Hz}$ in category AC-3 ($\theta \leqslant 60^{\circ} \mathrm{C}$)						Rated operational current in AC-3 440 V up to	Instantaneous auxiliary contacts per contactor		Contactors supplied with coil Partial reference, to be completed by adding the control voltage code Fixing ${ }^{(1)}$	Weight
$\begin{aligned} & 220 \\ & 230 \end{aligned}$	$\begin{aligned} & 380 \mathrm{~V} \\ & 400 \mathrm{~V} \end{aligned}$	415	440	5001	$\begin{aligned} & 660 \mathrm{~V} \\ & 690 \mathrm{~V} \end{aligned}$					
kW	kW	kW	kW	kW	kW	A				kg
With mechanical interlock, without electrical interlocking, for connection by screw clamp terminals or Everlink BTR screw connectors ${ }^{(2)}{ }^{(3)}$										
2.2	4	4	4	5.5	5.5	9	1	1	LC2D09•e७	0.783
3	5.5	5.5	5.5	7.5	7.5	12	1	1	LC2D12•・セ	0.793
4	7.5	9	9	10	10	18	1	1	LC2D18•**	0.803
5.5	11	11	11	15	15	25	1	1	LC2D25•e७	0.913
7.5	15	15	15	18.5	18.5	32	1	1	LC2D32•**	0.923
9	18.5	18.5	18.5	18.5	18.5	38	1	1	LC2D38*e๑	0.933
11	18.5	22	22	22	30	40	1	1	LC2D40A •* $^{(2)}$	2.154
15	22	25	30	30	33	50	1	1	LC2D50A $\bullet^{(2)}$	2.164
18.5	30	37	37	37	37	65	1	1	LC2D65A $\bullet^{(2)}$	2.174
22	37	37	37	37	37	66	1	1	LC2D80A $\bullet^{(2)}$	2.174

Auxiliary contact blocks and add-on modules

See pages B8/23 to B8/29.

LC2 DT20••

Pre－assembled．Pre－wired power connections

For connection by screw clamp terminals or connectors
LC2 DT20 to LC2 DT40：mechanical interlock without electrical interlocking． LC2 D80004：order separately 2 auxiliary contact blocks LAD Ne1 to obtain electrical interlocking between the 2 contactors（see page B8／23）．
For electrical interlocking incorporated in the mechanical interlock，please consult your Regional Sales Office．
LC2 D115004：mechanical interlock with integral，pre－wired electrical interlocking．

| Utilisation category AC－1
 Non－inductive loads
 Maximum rated
 operational current
 $\left(\theta \leqslant 60{ }^{\circ} \mathrm{C}\right)$ | Instantaneous auxiliary
 contacts per contactor | Contactors supplied
 with coil | Weight |
| :--- | :--- | :--- | :--- | :--- |
| Basic reference，to
 be completed
 by adding the
 voltage code ${ }^{(1)}$ | | | |
| Fixing ${ }^{(2)}$ | | | |

For customer assembly
For connection by screw clamp terminals or connectors

60	1	1	LC1DT60A $\bullet \bullet^{(3)}$	-
80	1	1	LC1DT80A $\bullet \bullet^{(3)}$	-
For connection by lugs or bars				
60	1	1	LC1DT60A6 $\bullet^{(3)}$	-
80	1	1	LC1DT80A6 $\bullet^{(3)}$	-

Auxiliary contact blocks and add－on modules：see pages B8／23 to B8／29．
Note：when assembling changeover contactor pairs，it is good practice to incorporate a 50 ms time delay．
（1）See note（1）on next page．
（2）LC2 DT20 to LC2 DT80：clip－on mounting on 35 mm ఒ rail AM1 DP or screw fixing． LC2 D80：clip－on mounting on 35 mm 凹 rail AM1 DP or 75 mm 凹 rail AM1 DL or screw fixing．
LC2 D115：clip－on mounting on $2 \times 35 \mathrm{~mm}$ ぃ rails AM1 DP or screw fixing．
（3）For these operational currents，order 2 identical contactors and a mechanical interlock LAD 4CM（see page B8／30）．

Selection： pages A6／25 to A6／49	Characteristics： pages B8／61 to B8／73	Dimensions： pages B8／83 and B8／84	Schemes： pages B8／85 and B8／86	＝Click HERE for access	
			Life Is On	Schneider	B8／19

TeSys contactors

TeSys D, 4-pole changeover contactor pairs for control in category AC-1, 20 to 80 A

Auxiliary contact blocks and add-on modules: see pages B8/23 to B8/29.
(1) Standard control circuit voltages (for other voltages, please consult your Regional Sales Office):

LC2 DT20...DT40, LC1 DT60...DT80 (coils with integral suppression device fitted as standard, by bi-directional peak limiting diode)

For other voltages between 5 and 690 V , see pages $B 8 / 32$ to $B 8 / 35$.
(2) Clip-on mounting on 35 mm -r rail AM1 DP or screw fixing.
(3) BTR screws: hexagon socket head. In accordance with local electrical wiring regulations,
a size 4 insulated Allen key must be used (reference LAD ALLEN4, see page B8/29).
(4) For these operational currents, order 2 identical contactors and a mechanical interlock LAD 4CM (see page B8/30).

Selection: pages A6/25 to A6/49	Characteristics: pages B8/61 to B8/73	Dimensions: pages B8/83 and B8/84	Schemes: pages B8/85 and B8/86	年

For switching 3-phase capacitor banks, used for power factor correction

LC1 DFK••

LC1 DGK••, LC1 DLK••, LC1 DMK••

LC1 DWK12••

Special contactors

Special contactors LC1 D॰K are designed for switching 3-phase, single or multiple-step capacitor banks (up to 6 steps). Over 6 steps, it is recommanded to use chokes in order to limit the inrush current and thus improve the lifetime of the installation. The contactors are conform to standards IEC 60070 and 60831, UL and CSA.

Contactor applications

Specification

Contactors fitted with a block of early make poles and damping resistors, limiting the value of the current on closing to 60 In max.
This current limitation increases the life of all the components of the installation, in particular that of the fuses and capacitors.

Operating conditions

Short-circuit protection must be provided by gl type fuses rated at $1.7 \ldots 2 \mathrm{In}$. It will ensure the service continuity of the whole installation in case of a capacitor contactor end of life

Maximum operational power

The power values given in the selection table below are for the following operating conditions:

Prospective peak current at switch-on				LC1 D•K			200 In				
Maximum operating rate				LC1 DFK, DGK, DLK, DMK			240 operating cycles/hour				
				LC1 DPK, DTK, DWK			100 operating cycles/hour				
Electrical durability at nominal load				All contactor ratings			$\frac{400 \mathrm{~V}}{690 \mathrm{~V}}$	300000 operating cycles			
Operational power at $50 / 60 \mathrm{~Hz}$ $\theta \leqslant 60^{\circ} \mathrm{C}$				Instantaneous auxiliary contacts		Tightening torque on cable end	Basic reference, to be completed by adding the voltage code		Weight		
$230 \mathrm{~V}$	$\begin{aligned} & 400 \mathrm{~V} \\ & 415 \mathrm{~V} \end{aligned}$	$440 \mathrm{~V}$	$690 \mathrm{~V}$	\rceil							
kVAR	kVAR	kVAR	kVAR	N/O	N/C	N.m			kg		
7	12.5	12.5	21	1	2	1.7	LC1DFK••		0.430		
9.5	16.7	16.7	28.5	1	2	2.5	LC1DGK••		0.450		
11	20	21	33	1	2	2.5	LC1DLK••		0.600		
14	25	27	42	1	2	2.5	LC1DMK••		0.630		
17	30	32	50	1	2	5	LC1DPK••		1.300		
22	40	43	67	1	2	5	LC1DTK••		1.300		
35	63	67	104	1	2	9	LC1DWK12••		1.650		

Switching of multiple-step capacitor banks (with equal or different power ratings)
The correct contactor for each step is selected from the above table, according to the power rating of the step to be switched.
Example: 50 kVAR 3-step capacitor bank. Temperature: $50^{\circ} \mathrm{C}$ and $\mathrm{U}=400 \mathrm{~V}$ or 440 V .
One 25 kVAR step: contactor LC1 DMK, one 15 kVAR step: contactor LC1 DGK,
and one 10 kVAR step: contactor LC1 DFK.
(1) Operational power of the contactor according to the scheme on the page opposite.
(2) The average temperature over a 24-hour period, in accordance with standards IEC 60070 and 60831 is $45^{\circ} \mathrm{C}$.
(3) Standard control circuit voltages (the delivery time is variable, please consult your Regional Sales Office):

Volts	$\mathbf{2 4}$	$\mathbf{4 8}$	$\mathbf{1 1 0}$	$\mathbf{1 2 0}$	$\mathbf{2 2 0}$	$\mathbf{2 3 0}$	$\mathbf{2 4 0}$	$\mathbf{3 8 0}$	$\mathbf{4 0 0}$	$\mathbf{4 1 5}$	$\mathbf{4 4 0}$
$50 / 60 \mathrm{~Hz}$	B7	E7	F7	G7	M7	P7	U7	Q7	V7	N7	R7

Instantaneous auxiliary contact blocks for connection by lugs
This type of connection is not possible for blocks with 1 contact or blocks with dust and damp protected contacts. For all other instantaneous auxiliary contact blocks, add the figure 6 to the end of the references selected above. Example: LAD N11 becomes LAD N116.
Instantaneous auxiliary contact blocks for connection by spring terminals
This type of connection is not possible for LAD 8, LAD N with 1 contact or blocks with dust and damp protected contacts. For all other contact blocks, add the figure 3 to the end of the references selected above.
Example: LAD N11 becomes LAD N113.

Instantaneous auxiliary contact blocks for connection by Faston connectors

This type of connection is not possible for LAD 8, LAD N with 1 contact or blocks with dust and damp protected contacts. For all other contact blocks, add the figure 9 to the end of the references selected above.
Example: LAD N11 becomes LAD N119.
Maximum number of auxiliary contacts that can be fitted:

Contactors			Instantaneous auxiliary contacts				Time delay Front mounted	
Type	Number of poles and size		Side mounted	Front mounted				
			1 contact	2 contacts	4 contacts			
AC	3P	LC1 D09...D38		1 on LH or 1 on RH side ${ }^{(1)}$ and	-	1	or 1	or 1
AC/DC		LC1 D40A...D80A	1 on LH or 1 on RH side and	-	1	or 1	or 1	
		LC1 D80 and D95 ($50 / 60 \mathrm{~Hz}$)	1 on each side or	2	and 1	or 1	or 1	
		LC1 D80 and D95 (50 or 60 Hz)	1 on each side and	2	and 1	or 1	or 1	
		LC1 D115 and D150	1 on LH side and	-	1	or 1	or 1	
	4 P	LC1 DT20...DT40	1 on LH side and	-	1	or 1	or 1	
		LC1 DT60A and DT80A	1 on LH or 1 on RH side and	-	1	or 1	or 1	
		LC1 D40008, D65008 and D80	1 on each side or	1	or 1	or 1	or 1	
		LC1 D115	1 on each side and	1	or 1	or 1	or 1	
DC	3P	LC1 D09...D38	-	-	1	or 1	or 1	
		LC1 D40A...D80A	-	-	1	or 1	or 1	
		LC1 D80 and D95	-	1	or 1	or 1	or 1	
		LC1 D115 and D150	1 on LH side and	-	1	or 1	or 1	
	4 P	LC1 DT20...DT40	-	-	1	or 1	or 1	
		LC1 DT60A and DT80A	-	-	1	or 1	or 1	
		LC1 D40008, D65008 and D80	-	2	and 1	or 1	or 1	
		LC1 D115	1 on each side	-	and 1	or 1	or 1	
$\mathrm{LC}^{(3)(5)}$	3 P	LC1 D09...D38	-	-	1	-	-	
		LC1 DT20...DT40	-	-	1	-	-	

[^0]References - TeSys D

TeSys contactors

TeSys D contactors and reversing contactors

Time delay auxiliary contact blocks Mechanical latch blocks

LAD T_{\bullet}

LAD T•3

LAD 6K10

Time delay auxiliary contact blocks for connection by screw clamp terminals

Maximum number of auxiliary contact blocks that can be fitted per contactor, see page B8/23.
Sealing cover to be ordered separately, see page B8/29.
LAD T0 and LAD R0: with extended scale from 0.1 to 0.6 s .
LAD S2: with switching time of $40 \mathrm{~ms} \pm 15 \mathrm{~ms}$ between opening of the N / C contact and closing of the N/O contact.

Clip-on mounting	Number of contacts	Time delay		Reference
		Type	Setting range	
Front	$1 \mathrm{~N} / \mathrm{O}+1 \mathrm{~N} / \mathrm{C}$	On-delay	$0.1 \ldots 3 \mathrm{~s}$	LADT0
			$0.1 \ldots 30 \mathrm{~s}$	LADT2
			$10 . .180 \mathrm{~s}$	LADT4
			$1 . . .30 \mathrm{~s}$	LADS2
		Off-delay	$0.1 \ldots 3 \mathrm{~s}$	LADR0
			$0.1 \ldots 30 \mathrm{~s}$	LADR2
			10... 180 s	LADR4

Time delay auxiliary contact blocks for connection by lugs
Add the figure 6 to the end of the references selected above. Example: LAD TO becomes LAD T06.
Time delay auxiliary contact blocks for connection by spring terminals
Add the figure 3 to the end of the references selected above. Example: LAD TO becomes LAD T03.
Time delay auxiliary contact blocks for connection by Faston connectors

Add the figure 9 to the end of the references selected above. Example: LAD T0 becomes LAD T09.

Mechanical latch blocks ${ }^{(1)}$											
Clip-on mounting	Unlatching control		For use on contactor				Basic reference, to be completed by adding the control voltage code				
Front	Manual or electric		LC1 D09...D38 (~ or --.) ${ }^{(3)}$ LC1 DT20...DT40 (~ or $-=$)				LAD6K10•				
			LC1 D40A...D80A (3 P ~ or ---) LC1 DT60A and DT80A (4 P ~ or ---)				LAD6K10•				
			LC1 D80...D150 (3 P ~) LC1 D80 and D115 (3 P ---) LC1 D80 (4 P ~) LC1 D80 and D115 (4 P ~) LP1 D80 and LC1 D115 (4 P --.)				LA6DK20•				
(1) The mechanical latch block must not be powered up at the same time as the contactor. The duration of the control signal for the mechanical latch block and the contactor should be: $\geqslant 100 \mathrm{~ms}$ for a contactor operating on an a.c. supply, $\geqslant 250 \mathrm{~ms}$ for a contactor operating on a d.c. supply. Maximum impulse duration for the LAD 6K10• mechanical latch block: 10 seconds. (2) Standard control circuit voltages (for other voltages, please consult your Regional Sales Office):											
Volts $50 / 60 \mathrm{~Hz}$, --		32/36	42/48	60/72	100	110/127	220/240	256/277	380/415		
Code	B	C	E	EN	K	F	M	U	Q		

(3) The DC, Iow consumption contactors (coil code \bullet L) are not compatible with the mechanical latch blocks LAD6K10.

References - TeSys D
TeSys contactors

TeSys D contactors and reversing contactors

Suppressor modules

LAD 4RC3•, LAD 4V3•, LAD 4D3U, LAD 4T3•

$L A D 4 D D L$ or $L A D 4 T \bullet D L$

RC circuits (Resistor-Capacitor)
Effective protection for circuits highly sensitive to "high frequency" interference. For use only in cases where the voltage is virtually sinusoidal. i.e. less than 5% total harmonic distortion. Voltage limited to 3 Uc max. and oscillating frequency limited to 400 Hz max. Slight increase in drop-out time (1.2 to 2 times the normal time).

Mounting	For use with contactor ${ }^{(1)}$			Reference
	Rating	Type		
		V ~	V =--	
Clip-on side mounting ${ }^{(3)(5)}$	D09...D38 (3P)	24... 48	-	LAD4RCE
	DT20...DT40	50...127	-	LAD4RCG
		110... 250	-	LAD4RCU
Clip-on front mounting ${ }^{(3)(5)}$	D40A...D65A (3P)	24... 48	-	LAD4RC3E
	DT60A...DT80A (4P)	50...127	-	LAD4RC3G
		110... 240	-	LAD4RC3U
		380... 415	-	LAD4RC3N
Screw fixing ${ }^{(4)}$	D80...D150 (3P)	24... 48	-	LA4DA2E
	D40...D115 (4P)	50...127	-	LA4DA2G
		110... 240	-	LA4DA2U
		380... 415	-	LA4DA2N
Varistors (peak limiting)				

Protection provided by limiting the transient voltage to 2 Uc max. Maximum reduction of transient voltage peaks. Slight increase in drop-out time (1.1 to 1.5 times the normal time).

Clip-on side mounting ${ }^{(3)(5)}$	$\begin{aligned} & \text { D09...D38 (3P) } \\ & \text { DT20...DT40 } \end{aligned}$	24...48	-	LAD4VE
		50...127	-	LAD4VG
		110... 250	-	LAD4VU
Clip-on front mounting ${ }^{(3)(5)}$	D40A...D65A (3P) DT60A...DT80A (4P)	24... 48	24... 48	LAD4V3E
		50... 127	50... 127	LAD4V3G
		110... 250	110... 250	LAD4V3U
Screw fixing ${ }^{(4)}$	$\begin{aligned} & \hline \text { D80...D115 (3P) } \\ & \text { D80...D115 (4P) } \end{aligned}$	24... 48	-	LA4DE2E
		50...127	-	LA4DE2G
		110... 250	-	LA4DE2U
	$\begin{aligned} & \text { D80...D95 (3P) } \\ & \text { D80 (4P) } \end{aligned}$	-	24... 48	LA4DE3E
		-	50... 127	LA4DE3G
		-	110... 250	LA4DE3U
Flywheel diodes				

No overvoltage or oscillating frequency. Increase in drop-out time (6 to 10 times the normal time).
Polarised component.

Clip-on side mounting ${ }^{(5)}$	D09...D38 (3P), DT20...DT40	-	5... 600	LAD4DDL
Clip-on front mounting ${ }^{(5)}$	D40A...D65A (3P), DT60A...DT80A (4P)	-	24... 250	LAD4D3U
Screw fixing ${ }^{(4)}$	D80 and D95 (3P), D40...D80 (4P)	-	24... 250	LA4DC3U
Bidirectional peak limiting diodes				
Protection provided by limiting the transient voltage to 2 Uc max. Maximum reduction of transient voltage peaks.				
Clip-on side mounting ${ }^{(3)}$	$\begin{aligned} & \text { D09...D38 (3P) } \\ & \text { DT20...DT40 (4P) } \end{aligned}$	24	-	LAD4TB
		-	24	LAD4TBDL
		72	-	LAD4TS
		-	72	LAD4TSDL
		-	125	LAD4TGDL
		-	250	LAD4TUDL
		-	600	LAD4TXDL
Clip-on front mounting ${ }^{(3)}$	$\begin{aligned} & \text { D40A...D65A (3P) } \\ & \text { DT60A...DT80A (4P) } \end{aligned}$	12... 24	12... 24	LAD4T3B
		25...72	25... 72	LAD4T3S
		73...125	73... 125	LAD4T3G
		126... 250	126... 250	LAD4T3U
		251... 440	251... 440	LAD4T3R
Screw fixing ${ }^{(4)}$	D80...D95 (3P)	12... 24	-	LA4DB2B
	D40...D80 (4P)	25... 72	-	LA4DB2S
		-	24	LA4DB3B
		-	72	LA4DB3S

[^1]

See page opposite for mounting possibilities according to the contactor type.

Electronic serial timer modules ${ }^{(1)}$

■ 3-pole contactors LC1 D09 to D38: mounted using adapter LAD 4BB,
to be ordered separately, see below.
■ 3-pole contactors LC1 D40A to D65A: mounted using adapter LAD 4BB3,
to be ordered separately, see below.

- 3-pole contactors LC1 D80 to D150 and 4-pole contactors LC1 D40 to D115:
mounted directly across terminals A1 and A2 of the contactor.

On-delay type			
Operational voltage ~		Time delay	Reference
24... 250 V	100... 250 V		
LC1 D09...D80A (3P)	LC1 D80...D150 (3P)	0.1... 2 s	LA4DT0U
		$1.5 \ldots . .30 \mathrm{~s}$	LA4DT2U
		$25 . . .500 \mathrm{~s}$	LA4DT4U
Interface modules			
3-pole contactors LC1 D09 to D38: mounted using adapter LAD 4BB, to be ordered separately, see below. 3-pole contactors LC1 D40A to D80A: mounted using adapter LAD4 BB3 to be ordered separately, see below.			

Relay interface		
Operational voltage ~	Supply voltage E1-E2 (---)	Reference
24... 250 V		
LC1 D09...D150 (3P)	24 V	LA4DFB
Static relay interface		
Operational voltage ~	Supply voltage E1-E2 (--)	Reference
24... 250 V (100... 250 V		
LC1 D09...D80A (3P) LC1 D80...D115 (3P)	24 V	LA4DWB
Adapter kit for low control signal		
Composition		Reference
1 LAD4BB3 coil wiring adapter 1 LA4DFB relay interface module		LA4DBL
Wiring adapters for coil retrofit of 3 pole contactors		
For adapting existing wiring to a new product		
For use on contactors		Reference
LC1 D09...D38 \quad Without coil suppression		LAD4BB ${ }^{(3)}$
	$\sim 24 . .48 \mathrm{~V}$	LAD4BBVE
	$\sim 50 . .127 \mathrm{~V}$	LAD4BBVG
	$\sim 110 . .250 \mathrm{~V}$	LAD4BBVU
LC1 D40A...80A Without coil suppression		LAD4BB3

(1) For 24 V operation, the contactor must be fitted with a 21 V coil (code Z) See pages B8/32 to B8/35.
(2) The kit is compatible with a coil voltage of $\sim 24 \mathrm{~V}$ to $\sim 250 \mathrm{~V}$ (B7 to U7) and $-\mathrm{-}-24 \mathrm{~V}$ to $=-$ 250 V (BD to UD)
(3) LAD4BB can not be used with 4 poles contactors.

References - TeSys D

TeSys contactors

TeSys D contactors and reversing contactors

Accessories

Accessories for main pole and control connections					
Description		For use with contactors LC1		Sold in Unit lots of reference	
		\sim	--		
Connectors for cable, size (1 connector)	4-pole $10 \mathrm{~mm}^{2}$	DT20, DT25	DT20, DT25	1	LAD92560
	3-pole $25 \mathrm{~mm}^{2}$	D09...D38	D09...D38	1	LA9D3260
EverLink ${ }^{\circledR}$ terminal block	3 -pole	D40A...D80A	D40A...D80A	1	LAD96560
Connectors for cables (2 connectors)	3 -pole $120 \mathrm{~mm}^{2}$	D115, D150	D115, D150	1	LA9D115603
	4 -pole $120 \mathrm{~mm}^{2}$	D115	D115	1	LA9D115604

Connectors for lug type terminals (2 connectors)	3 -pole	D1156, D1506	D1156, D1506	1	LA9D115503
	4 -pole	D1156	D1156	1	LA9D115504
Protective covers for connectors for lug type terminals	3 -pole	D40A6...D80A6	D40A6...D80A6	1	LAD96570
		D1156, D1506	D1156, D1506	1	LA9D115703 ${ }^{(1)}$
	4-pole	D60A6...D80A6	D60A6...D80A6	1	LAD96580
		D1156, D1506	D1156, D1506	1	LA9D115704
IP 20 covers for lug type terminals (for mounting with circuit breakers GV3 P $\bullet 6$ and GV3 L••6)	3 poles	D40A6...D80A6	D40A6...D80A6	1	LAD96575
Links for parallel connection of	2 poles	D09...D38	D09...D38	10	LA9D2561
		DT20, DT25 (4P)	DT20, DT25 (4P)	10	LA9D1261
		DT32, DT40 (4P)	DT32, DT40 (4P)	10	LAD96061
		D40A...D80A	D40A...D80A	1	LAD9P32
		D80, D95	D80, D95	2	LA9D80961
	3 poles	D09...D38	D09...D38	10	LAD9P3 ${ }^{(2)}$

for increasing the pole pitch to 45 mm
(1) For 3-pole contactors: 1 set of 6 covers, for 4 -pole contactors: 1 set of 8 covers.
(2) Separate connecting bar for connecting 2 poles in parallel.

References－TeSys D
TeSys contactors
TeSys D contactors and reversing contactors
Accessories

Sets of contacts and arc chambers			
Description	For contactor		Reference
Sets of contacts	3－pole	LC1 D115	LA5D1158031
		LC1 D150	LA5D150803
	4－pole	LC1 D115004	LA5D115804
Arc chambers	3－pole	LC1 D115	LA5D11550
		LC1 D150	LA5D15050

Power connection accessories

Terminal block	For supply to one or more GV2 G busbar sets	GV1G09
Set of 63 A busbars for parallelling of contactors	$\frac{2 \text { contactors LC1 D09．．．D18 or D25．．．D38 }}{4 \text { contactors LC1 D09．．．D18 or D25．．．D38 }}$	GV2G245
Set of 115 A busbars for parallelling of contactors	$\frac{2 \text { contactors LC1 D40A．．．D80A }}{3 \text { contactors LC1 D40A．．．D80A }}$	GV2G445
Set of S－shape busbars	For circuit breakers GV3 P・ャ and GV3 L・ャ ${ }^{(3)}$ and contactors LC1 D40A．．．D73A	GV3G264

Protection accessories			
Description	Use	Sold in lots of	Reference
Miniature control circuit fuse holder	5×20 with $4 \mathrm{~A}-250 \mathrm{~V}$ fuse	1	LA9D941
Sealing cover	For LAD T，LAD R	1	LA9D901
Safety cover preventing access to the moving contact carrier	LC1 D09．．．D80A and DT20．．．DT80A	1	LAD9ET1
	Red cover（for safety chain indication）	1	LAD9ET1S
	LC1 D80 and D95	1	LAD9ET3
	Red cover（for safety chain indication）	1	LAD9ET3S
	LC1 D115 and D150	1	LAD9ET4
	Red cover（for safety chain indication）	1	LAD9ET4S

Marking accessories			
Description	Use	Sold in lots of	Unit reference
Sheet of 64 blank legends， self－adhesive， $8 \times 33 \mathrm{~mm}{ }^{(2)}$	Contactors（except 4P） LC1 D80．．．D115， LAD N（4 contacts），LA6 DK	10	LAD21
Sheet of 112 blank legends， self－adhesive， $8 \times 12 \mathrm{~mm}^{(2)}$	LAD N（2 contacts）， LAD T，LAD R，LRD	10	LAD22
Sheet of 64 blank legends for marking using plotter or $8 \times 33 \mathrm{~mm}$ engraver	Contactors（except 4P） LC1 D80．．．D115， LAD（4 contacts），LA6 DK	10	LAD23
Sheet of 440 blank legends for marking using plotter or $8 \times 12 \mathrm{~mm}$ engraver	All products	35	LAD24
Marker holder snap－in， $8 \times 22 \mathrm{~mm}$	4－pole contactors， LC1 D80．．．D115，LA6 DK	100	LA9D92
Marker holder snap－in， $8 \times 18 \mathrm{~mm}$	LC1 D09．．．D65A，LC1 DT20．．．DT80A， LAD N（4 contacts），LAD T，LAD R		LAD90
Bag of 300 blank legends self－adhesive， $7 \times 21 \mathrm{~mm}$	On holder LA9 D92	1	LA9D93
Mounting accessories			
Retrofit plate for screw fixing	For replacement of LC1 D40 to D80 with LC1 D40A to D80A	1	LAD7X3
Mounting plate	For replacement of LC1 F115 or F150 with LC1 D115 or D150	1	LA9D730
Size 4 Allen key，insulated， 1000 V	For use on contactors LC1 D40A to LC1 D150	5	LADALLEN4

（1）With this set of busbars，any one contactor can be supplied directly by its EverLink ${ }^{\ominus}$ double cage power terminal block．
The other two contactors are supplied by the busbar set．The 115 A limitation is therefore applied to these two contactors．
Example： 1 LC1 D65A supplied directly＋ 1 contactor LC1 D65A and 1 contactor LC1 D50 A supplied via the busbar set＝ 115 A．This combination is compatible with busbar set GV3 G364．
（2）These legends are for sticking onto the safety cover of the contactors or add－on block，if fitted．
（3）With 73 A current limit for GV3L73，GV3P73．

References - TeSys D

TeSys contactors

Component parts for assembling reversing contactors for motor control, low-speed/high-speed starters and star-delta starters

LAD 9R1

LA9 D8069

For 3-pole reversing contactors for motor control
Contactors with screw clamp terminals or connectors. Horizontally mounted, assembled by customer.

Description	For contactors (2 identical contactors)	Reference
Kits for assembly of reversing contactors		
Kit comprising: - a mechanical interlock LAD 9V2 with electrical interlocking LAD 9V1 - a set of power connections LAD 9V5 (parallel) and LAD 9V6 (reversing).	LC1 D09 to D38	LAD9R1V
Kit comprising: a mechanical interlock LAD 9V2 without electrical interlocking - a set of power connections LAD 9V5 (parallel) and LAD 9V6 (reversing).	LC1 D09 to D38	LAD9R1

Kit comprising: LC1 D40A to D80A LAD9R3

- a mechanical interlock LAD 4CM
- a set of power connections LA9 D65A69.

Mechanical interlocks

Mechanical interlock with integral electrical interlocking	LC1 D80 and D95 ()	LA9D4002
	LC1 D80 and D95 (--)	LA9D8002
	LC1 D115 and D150	LA9D11502
Mechanical interlock without integral electrical interlocking	LC1 D09 to D38	LAD9V2
	LC1 D40A to D80A	LAD4CM
	LC1 D80 and D95 ()	LA9D50978
	LC1 D80 and D95 (---)	LA9D80978
Sets of power connections		
Comprising: - a set of parallel bars - a set of reverser bars.	LC1 D09 to D38 with screw clamp terminals or connectors	LAD9V5 + LAD9V6
	LC1 D09...D32 with spring terminal connections	LAD9V12 + LAD9V13 ${ }^{(2)}$
	LC1 D40A to D80A	LA9D65A69
	LC1 D80 and D95 ()	LA9D8069
	LC1 D80 and D95 (--)	LA9D8069
	LC1 D115 and D150	LA9D11569
For low-speed/high-speed starter		
Description	For LC1D09... D38 contactors with connection type	Reference
Connection kit enabling	Screw clamps or connectors	LAD9PVGV
reversing of low and high speed directions using a reversing contactor and a $2 \mathrm{~N} / \mathrm{O}+2 \mathrm{~N} / \mathrm{C}$ main pole contactor	Spring terminals	LAD3PVGV
For star-delta starter		
Description	For contactors	Reference Without timer LADS2
Mounting kit comprising:	LC1 D09 to D38 ${ }^{(3)}$	LAD91217 LAD91218
- 1 time delay contact block LAD S2 (LC1 D09...D80),	LC1 D09 to D38 ${ }^{(4)}$	LAD93217 LAD93218
power circuit connections (LC1 D09...D80), hardware required for fixing the contactors	LC1 D40A to D65A	LAD9SD3 -
onto the mounting plate (LC1 D80).	LC1 D80	LA9D8017
Equipment mounting plates	LC1 D09 to D38	LA9D12974
	LC1 D40A and D50A	-
	LC1 D80	LA9D80973

(1) To order the 2 contactors: see pages $B 8 / 3$ and $B 8 / 16$.
(2) To assemble a reversing contactor with spring terminal connections, the following components must be ordered:

- 1 mechanical interlock LAD 9V2,
- 1 upstream power connection kit and 1 downstream power connection kit.

Upstream power connection kit LAD 9V10: installed in the Quickfit system with power connection module LAD 34
(lf module LAD 34 is not used, replace LAD 9V10 with LAD 9V12).
Downstream power connection kit LAD 9V11: installed in the Quickfit system with outgoing terminal block LAD 331.
(If LAD 331 is not used, replace LAD 9V11 with LAD 9V13).
(3) For assembly of 3 contactors of the same physical size (depth).
(4) For assembly of 3 contactors with star contactor physically smaller (depth).

Selection:	Characteristics:	Dimensions:	Schemes:
pages A6/25 to A6/49	pages B8/61 to B8/73	pages B8/83 and B8/84	pages B8/85 and B8/86

References - TeSys D

TeSys contactors

Component parts for assembling changeover contactor pairs

	For 4-pole changeover contactor pairs (3-phase distribution + neutral) Contactors with screw clamp terminals or connectors. Horizontally mounted, assembled by customer. Rescription	For contactors ${ }^{\text {(1) }}$ $(2$ identical contactors)

[^2]| Selection:
 pages A6/25 to A6/49 | Characteristics:
 pages B8/61 to B8/73 | Dimensions:
 pages B8/83 and B8/84 | Schemes:
 pages B8/85 and B8/86 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

References - TeSys D

TeSys contactors

a.c. coils for TeSys D, 3 or 4-pole contactors

For ~ contactors LC1 D09...D38 and LC1 DT20...DT40

Specifications

Average consumption at $20^{\circ} \mathrm{C}$:
■ inrush ($\cos \phi=0.75$) 70 VA ,
■ sealed ($\cos \phi=0.3$) $50 \mathrm{~Hz}: 7 \mathrm{VA}, 60 \mathrm{~Hz}: 7.5 \mathrm{VA}$.
Operating range $\left(\theta \leqslant 60^{\circ} \mathrm{C}\right)$: $50 \mathrm{~Hz}: 0.8 \ldots 1.1 \mathrm{Uc}, 60 \mathrm{~Hz}: 0.85 \ldots 1.1 \mathrm{Uc}$.

Control circuit voltage Uc	Average resistance at $20^{\circ} \mathrm{C} \pm 10 \%$	Inductance of closed circuit	Reference ${ }^{(1)}$
V	Ω	H	
			$50 / 60 \mathrm{~Hz}$
12	1.33	0.05	LXD1J7
$21^{(2)}$	4.17	0.17	LXD1Z7
24	5.37	0.22	LXD1B7
32	10.1	0.39	LXD1C7
36	12.8	0.49	LXD1CC7
42	17	0.67	LXD1D7
48	21.7	0.87	LXD1E7
60	34.6	1.4	LXD1EE7
100	100.4	3.8	LXD1K7
110	124.1	4.6	LXD1F7
115	129.8	5	LXD1FE7
120	150.6	5.4	LXD1G7
127	158.5	6.1	LXD1FC7
200	410.7	15	LXD1L7
208	430.4	16	LXD1LE7
220	515.4	18	LXD1M7 ${ }^{(3)}$
230	538.6	20	LXD1P7
240	562.3	22	LXD1U7
277	800.7	29	LXD1W7
380	1551	55	LXD1Q7 ${ }^{(4)}$
400	1633	60	LXD1V7
415	1694	65	LXD1N7
440	1993	73	LXD1R7
480	2398	87	LXD1T7
500	2499	95	LXD1S7
575	3294	125	LXD1SC7
600	3810	136	LXD1X7
660	4656	165	LXD1YC7
690	5020	180	LXD1Y7

(1) The last 2 digits in the reference represent the voltage code.
(2) Voltage for special coils fitted in contactors with serial timer modules, with 24 V supply.
(3) Suitable for use on $\mathbf{2 3 0} \mathrm{V} / 50 \mathrm{~Hz}$. In this case, apply a coefficient of 0.6 to the mechanical durability of the contactor (see page B8/62 and B8/64).
(4) Suitable for use on $400 \mathrm{~V} / 50 \mathrm{~Hz}$. In this case, apply a coefficient of 0.6 to the mechanical durability of the contactor (see page B8/62 and B8/64).

References - TeSys D
TeSys contactors
a.c. coils for TeSys D, 3 or 4-pole contactors

For ~ contactors LC1 D40A...D80A, LC1 DT60A and LC1 DT80A

Specifications

Average consumption at $20^{\circ} \mathrm{C}$:
■ inrush $(\cos \phi=0.75) 160 \mathrm{VA}$

- sealed ($\cos \phi=0.3) 50 \mathrm{~Hz}: 15 \mathrm{VA}, 60 \mathrm{~Hz}: 15 \mathrm{VA}$.

Operating range $\left(\theta \leqslant 60^{\circ} \mathrm{C}\right)$: $50 \mathrm{~Hz}: 0.8 \ldots 1.1 \mathrm{Uc}, 60 \mathrm{~Hz}: 0.85 \ldots 1.1 \mathrm{Uc}$.

Control circuit voltage Uc	Average resistance at $20^{\circ} \mathrm{C} \pm 10 \%$	Inductance of closed circuit	Reference ${ }^{(1)}$
V	Ω	H	
			$50 / 60 \mathrm{~Hz}$
12	0.49	0.03	LXD3J5 ${ }^{(2)}$
24	1.98	0.12	LXD3B7
32	3.76	0.22	LXD3C7
42	6.18	0.37	LXD3D7
48	7.97	0.48	LXD3E7
100	37.63	2.07	LXD3K7
110	42.28	2.50	LXD3F7
115	48.76	2.74	LXD3FE7
120	37.63	2.07	LXD3G7 ${ }^{(5)}$
127	60.29	3.34	LXD3FC7
200	149	8.27	LXD3L7
208	105	6.22	LXD3LE7 ${ }^{(5)}$
220	182	10	LXD3M7 ${ }^{(3)}$
230	192	10.9	LXD3P7
240	202	11.9	LXD3U7
277	193	11	LXD3W7 ${ }^{(5)}$
380	512	29.9	LXD3Q7 ${ }^{(4)}$
400	607	33.1	LXD3V7
415	635	35.6	LXD3N7
440	682	40.1	LXD3R7
480	607	33.1	LXD3T7 ${ }^{(5)}$
500	878	51.7	LXD3S7
575	1238	68.4	LXD3SC7
600	1304	74.5	LXD3X7
660	1593	90.1	LXD3YC7
690	1683	98.5	LXD3Y7

(1) The last 2 digits in the reference represent the voltage code.
(2) This coil can only be used on 50 Hz .
(3) Suitable for use on $\mathbf{2 3 0 ~ V} / 50 \mathrm{~Hz}$. In this case, apply a coefficient of 0.6 to the mechanical durability of the contactor (see page B8/62 and B8/64).
(4) Suitable for use on $400 \mathrm{~V} / 50 \mathrm{~Hz}$. In this case, apply a coefficient of 0.6 to the mechanical durability of the contactor (see page B8/62 and B8/64).
(5) This coil can only be used on 60 Hz .

References - TeSys D

TeSys contactors

a.c. coils for TeSys D, 3 or 4-pole contactors

For 3 or 4-pole contactors LC1D40, D50, D65, D80, D95

Specifications

Average consumption at $20^{\circ} \mathrm{C}$:
■ inrush ($\cos \phi=0.75$) $50 \mathrm{~Hz}: 200 \mathrm{VA}, 60 \mathrm{~Hz}: 220 \mathrm{VA}$
■ sealed ($\cos \phi=0.3$) $50 \mathrm{~Hz}: 20 \mathrm{VA}, 60 \mathrm{~Hz}: 22 \mathrm{VA}$
Operating range $\left(\theta \leqslant 55^{\circ} \mathrm{C}\right): 0.85 \ldots 1.1 \mathrm{Uc}$.

Control circuit voltage Uc	Average resistance at $20^{\circ} \mathrm{C}$ ± 10 \%	Inductance of closed circuit	Reference	Average resistance at $20^{\circ} \mathrm{C}$ ± 10 \%	Inductance of closed circuit	Reference
V	Ω	H		Ω	H	
			50 Hz			60 Hz
24	1.4	0.09	LX1D6B5	1.05	0.06	LX1D6B6
32	2.6	0.16	LX1D6C5	-	-	-
42	4.4	0.27	LX1D6D5	-	-	-
48	5.5	0.35	LX1D6E5	4.2	0.23	LX1D6E6
110	31	1.9	LX1D6F5	22	1.2	LX1D6F6
115	31	1.9	LX1D6FE5	-	-	-
120	-	-	-	28	1.5	LX1D6G6
127	41	2.4	LX1D6G5	-	-	-
208	-	-	-	86	4.3	LX1D6L6
220	-	-	-	98	4.8	LX1D6M6
220/230	127	7.5	LX1D6M5	-	-	-
230	133	8.1	LX1D6P5	-	-	-
240	152	8.7	LX1D6U5	120	5.7	LX1D6U6
256	166	10	LX1D6W5	-	-	-
277	-	-	-	157	8	LX1D6W6
380	-	-	-	300	14	LX1D6Q6
380/400	381	22	LX1D6Q5	-	-	-
400	411	25	LX1D6V5	-	-	-
415	463	26	LX1D6N5	-	-	-
440	513	30	LX1D6R5	392	19	LX1D6R6
480	-	-	-	480	23	LX1D6T6
500	668	38	LX1D6S5	-	-	-
575	-	-	-	675	33	LX1D6S6
600	-	-	-	775	36	LX1D6X6
660	1220	67	LX1D6Y5	-	-	-

Specifications

Average consumption at $20^{\circ} \mathrm{C}$:
■ inrush ($\cos \phi=0.75$) $50 / 60 \mathrm{~Hz}: 245 \mathrm{VA}$ at 50 Hz

- sealed $(\cos \phi=0.3) 50 / 60 \mathrm{~Hz}: 26 \mathrm{VA}$ at 50 Hz .

Operating range ($\theta \leqslant 55^{\circ} \mathrm{C}$): $0.85 \ldots 1.1 \mathrm{Uc}$.

24	-	-	-	1.22	0.08	LX1D6B7
42	-	-	-	3.5	0.25	LX1D6D7
48	-	-	-	5	0.32	LX1D6E7
110	-	-	-	26	1.7	LX1D6F7
115	-	-	-	-	-	LX1D6FE7
120	-	-	-	32	2	LX1D6G7
$220 / 230$	-	-	-	102	6.7	LX1D6M7
230	-	-	-	115	7.7	LX1D6P7
$230 / 240^{(3)}-$	-	-	131	8.3	LX1D6U7	
$380 / 400$	-	-	-	310	20	LX1D6Q7
400	-	-	-	349	23	LX1D6V7
415	-	-	-	390	24	LX1D6N7
440	-	-	-	410	27	LX1D6R7

(1) The last 2 digits in the reference represent the voltage code.
(2) For use on $230 \mathrm{~V} / 50 \mathrm{~Hz}$, apply a coefficient of 0.6 to the mechanical durability of the contactor, see page B8/62 and B8/64. This coil can be used on 240 V at 60 Hz .
(3) This coil can be used on $220 / 240 \mathrm{~V}$ at 50 Hz and on 240 V only at 60 Hz
(4) For use on $400 \mathrm{~V} / 50 \mathrm{~Hz}$, apply a coefficient of 0.6 to the mechanical durability of the contactor, see page B8/62 and B8/64.

a.c. coils for TeSys D, 3 or 4-pole contactors

For 3 or 4-pole contactors LC1 D115

Specifications

Average consumption at $20^{\circ} \mathrm{C}$:
■ inrush ($\cos \phi=0.8$) 50 or $60 \mathrm{~Hz}: 300$ VA

- sealed $(\cos \phi=0.3) 50$ or $60 \mathrm{~Hz}: 22 \mathrm{VA}$.

Operating range ($\theta \leqslant 55^{\circ} \mathrm{C}$): 0.85...1.1 Uc.

Control circuit voltage Uc	Average resistance at $20^{\circ} \mathrm{C}$ ± 10 \%	Inductance of closed circuit	Reference	Average resistance at $20^{\circ} \mathrm{C}$ ± 10 \%	Inductance of closed circuit	Reference
V	Ω	H		Ω	H	
			50 Hz			60 Hz
24	1.24	0.09	LX1D8B5	0.87	0.07	LX1D8B6
32	2.14	0.17	LX1D8C5	-	-	-
42	3.91	0.28	LX1D8D5	-	-	-
48	4.51	0.36	LX1D8E5	3.91	0.28	LX1D8E6
110	26.53	2.00	LX1D8F5	19.97	1.45	LX1D8F6
115	26.53	2.00	LX1D8FE5	-	-	-
120	-	-	-	24.02	1.70	LX1D8G6
127	32.75	2.44	LX1D8FC5	-	-	-
208	-	-	-	67.92	5.06	LX1D8L6
220	104.77	7.65	LX1D8M5	79.61	5.69	LX1D8M6
230	104.77	8.29	LX1D8P5	-	-	-
240	125.25	8.89	LX1D8U5	97.04	6.75	LX1D8U6
277	-	-	-	125.75	8.89	LX1D8W6
380	338.51	22.26	LX1D8Q5	243.07	17.04	LX1D8Q6
400	368.43	25.55	LX1D8V5	-	-	-
415	368.43	27.65	LX1D8N5	-	-	-
440	441.56	30.34	LX1D8R5	338.51	22.26	LX1D8R6
480	-	-	-	368.43	25.55	LX1D8T6
500	566.62	38.12	LX1D8S5	-	-	-

For 3 or 4-pole contactors LC1 D115, LC1 D150

Specifications

Average consumption at $20^{\circ} \mathrm{C}$:
■ inrush: $\cos \phi=0.9-280$ to 350 VA
■ sealed: $\cos \phi=0.9-2$ to 18 VA.
Operating range ($\theta \leqslant 55^{\circ} \mathrm{C}$): 0.8...1.15 Uc.
Coils with integral suppression device fitted as standard, class B.

Control circuit voltage Uc	Average resistance at $20^{\circ} \mathrm{C}$ ± 10 \%	Inductance of closed circuit	Reference (1)	Average resistance at $20^{\circ} \mathrm{C}$ ± 10 \%	Inductance of closed circuit	Reference (1)
V	Ω	H		Ω	H	
						$50 / 60 \mathrm{~Hz}$
24	-	-	-	147	3.03	LX1D8B7
32	-	-	-	301	8.28	LX1D8C7
42	-	-	-	498	13.32	LX1D8D7
48	-	-	-	1061	24.19	LX1D8E7
110	-	-	-	4377	109.69	LX1D8F7
115	-	-	-	4377	109.69	LX1D8FE7
120	-	-	-	4377	109.69	LX1D8G7
127	-	-	-	6586	152.65	LX1D8FC7
208	-	-	-	10895	260.15	LX1D8LE7
220	-	-	-	9895	210.72	LX1D8M7
230	-	-	-	9895	210.72	LX1D8P7
240	-	-	-	9895	210.72	LX1D8U7
277	-	-	-	21988	533.17	LX1D8UE7
380	-	-	-	21011	482.42	LX1D8Q7
400	-	-	-	21011	482.42	LX1D8V7
415	-	-	-	21011	482.42	LX1D8N7
440	-	-	-	21501	507.47	LX1D8R7
480	-	-	-	32249	938.41	LX1D8T7
500	-	-	-	32249	938.41	LX1D8S7

[^3]References - TeSys D

TeSys contactors

d.c. coils for TeSys D, 3 or 4-pole contactors

For 3-pole contactors LC1 D80 or 4-pole contactors LP1 D80
Specifications
Average consumption: 22 W .
Operating range: 0.85...1.1 Uc.

Control circuit voltage Uc	Average resistance at $20^{\circ} \mathrm{C} \pm 10 \%$	Inductance of closed circuit	Reference ${ }^{(1)}$	Weight
V	Ω	H		kg
12	6.6	0.46	LX4D7JD	0.680
24	27	1.89	LX4D7BD	0.680
36	57	4	LX4D7CD	0.680
48	107	7.5	LX4D7ED	0.680
60	170	11.9	LX4D7ND	0.680
72	230	16.1	LX4D7SD	0.680
110	564	39.5	LX4D7FD	0.680
125	718	50.3	LX4D7GD	0.680
220	2215	155	LX4D7MD	0.680
250	2850	200	LX4D7UD	0.680
440	9195	640	LX4D7RD	0.680

(1) The last 2 digits in the reference represent the voltage code.

References - TeSys D

TeSys contactors

d.c. coils for TeSys D, 3 or 4-pole contactors

For contactors LC1 D115, D150

Specifications

Consumption: inrush 270 to 365 W , sealed 2.4 to 5.1 W .
Operating range: 0.75...1.2 Uc.
Coils with integral suppression device fitted as standard, class B.

Control circuit voltage Uc	Average resistance at $20^{\circ} \mathrm{C} \pm 10 \%$	Inductance of closed circuit	Reference ${ }^{(1)}$	Weight
V	Ω	H		kg
24	147	3.03	LX4D8BD	0.300
48	1061	24.19	LX4D8ED	0.300
60	1673	38.44	LX4D8ND	0.300
72	2500	56.27	LX4D8SD	0.300
110	4377	109.69	LX4D8FD	0.300
125	6586	152.65	LX4D8GD	0.300
220	9895	210.72	LX4D8MD	0.300

250	18022	345.40	LX4D8UD	0.300
440	21501	684.66	LX4D8RD	0.300

For 3-pole contactors LC1 D80 or 4-pole contactors LP1 D80

Specifications

Wide range coils for specific applications
Average consumption: 23 W .
Operating range: 0.75 to 1.2 Uc.
Coils with "TH" treatment as standard.

Control circuit voltage Uc	Average resistance at $20^{\circ} \mathrm{C} \pm 10 \%$	Inductance of closed circuit	Reference ${ }^{(1)}$	Weight
V	Ω	H		kg
12	6.2	0.49	LX4D7JW	0.680
24	23.5	1.75	LX4D7BW	0.680
36	51.9	4.18	LX4D7CW	0.680
48	94.2	7	LX4D7EW	0.680
72	204	15.7	LX4D7SW	0.680
110	483	36	LX4D7FW	0.680
220	1922	144	LX4D7MW	0.680

TeSys contactors

Mini-contactors TeSys LC1 SK and LP1 SK

LC1 SK06

LA1 SK10

Width of contactor 27 mm .

- Mounting on $35 \mathrm{~mm} \simeq$ rail.

■ Screw clamp terminals.

| Mini-contactors for motor in category AC-3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Add-on block with 1 power pole (for 3-phase circuits)

Note: Auxiliary contact blocks and coil suppressor module, see next page.
(1) For use in AC-3 category and 3-phase circuits, an LA1 SK•• auxiliary contact block should be ordered separately for mounting on the contactor.
(2) Standard control circuit voltages (variable delivery times, please consult your Regional Sales Office):

Mini-contactors LC1 SK									
Volts \sim $\mathbf{5 0 / 6 0 ~ H z ~}$	$\mathbf{2 4}$	$\mathbf{4 8}$	$\mathbf{1 1 0}$	$\mathbf{1 2 0}$	$\mathbf{2 2 0}$	$\mathbf{2 3 0}$	$\mathbf{2 4 0}$	$\mathbf{3 8 0}$	$\mathbf{4 0 0}$
Code	B7	E7	F7	G7	M7	P7	U7	Q7	V7
Mini-contactors LP1 SK									
Volts $=-$	$\mathbf{1 2}$	$\mathbf{2 4}$	$\mathbf{3 6}$	$\mathbf{4 8}$	$\mathbf{7 2}$				
Code	JD	BD	CD	ED	SD				

References - TeSys SK
TeSys contactors
Mini-contactors TeSys LC1 SK and LP1 SK
Instantaneous auxiliary contacts and coil suppressor modules

LA1 SK11

Instantaneous auxiliary contact blocks			
Clip-on front mounting For use on contactor	Maximum number of blocks per contactor	Composition	

Coil suppressor modules				
Clip-on fixing and electrical connection on right-hand side, without use of tools				
For use on contactors	Type	For voltages	Sold in lots of	Unit reference
$\begin{aligned} & \text { LC1 SK06 } \\ & \text { and LP1 SK06 } \end{aligned}$	Varistor ${ }^{(1)}$	$\begin{aligned} & \sim \text { and }=- \\ & 24 \mathrm{~V} \ldots 48 \mathrm{~V} \end{aligned}$	10	LA4SKE1E
		$\begin{aligned} & \hline \text { and }-\bar{~} \\ & 110 \mathrm{~V} \ldots 250 \mathrm{~V} \end{aligned}$	10	LA4SKE1U
	Diode ${ }^{(2)}$	$\begin{aligned} & \overline{-\quad-} \\ & 24 \mathrm{~V} \ldots 250 \mathrm{~V} \end{aligned}$	10	LA4SKC1U

(1) Protection provided by limiting the transient voltage to 2 Uc max. Maximum reduction of transient voltage peaks. Slight increase in drop-out time (1.1 to 1.5 times the normal time).
(2) No overvoltage or oscillating frequency.

Slight increase in drop-out time (1.1 to 1.5 times the normal time).

TeSys contactors

Contactors for motor control, 6 to 16 A in category AC-3
and 6 to 12 A in category AC-4
Control circuit: a.c.

LC1 K0910••

LC1 K09103••

LC1 K09107••

LC1 K09105••

LC7 K0910••

Contactor selection according to utilisation category, see pages A6/25 to A6/29 and A6/32 to A6/35.
Mounting on $35 \mathrm{~mm} _$rail or $\varnothing 4$ screw fixing
Screws in the open "ready-to-tighten" position.
Add-on auxiliary contact blocks and accessories, see pages B8/49 to B8/51.

3-pole contactors for standard applications

Standard power ratings of 3-phase motors $50-60 \mathrm{~Hz}$ in category AC-3			Rated operational current in category AC-3 440 V up to	Instantaneous auxiliary contacts		Basic reference, to be completed by adding the voltage code (1) (2)
$\begin{aligned} & 220 \mathrm{~V} \\ & 230 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 380 \mathrm{~V} \\ & 415 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 440 / 500 \mathrm{~V} \\ & 660 / 690 \mathrm{~V} \end{aligned}$				
kW	kW	kW	A			
Screw clamp connections						
1.5	2.2	3	6	1	-	LC1K0610•๑
				-	1	LC1K0601•๑
2.2	4	4	9	1	-	LC1K0910•๑
				-	1	LC1K0901•๑
3	5.5	4 (>440)	12	1	-	LC1K1210••
		5.5 (440)		-	1	LC1K1201••
4	7.5	4 (>440)	16	1	-	LC1K1610••
		5.5 (440)		-	1	LC1K1601•๑

Spring terminal connections ${ }^{(3)}$
For 6 to 12 A ratings only, in the references selected above, insert a figure $\mathbf{3}$ before the voltage code. Example: LC1 K0610•• becomes LC1 K06103••.
Faston connectors, 1×6.35 or 2×2.8
For 6 to 16 A ratings, in the references selected above, insert a figure 7 before the voltage code.
Example: LC1 K0610•• becomes LC1 K06107••

Solder pins for printed circuit boards

For 6 to 16 A ratings, in the references selected above, insert a figure 5 before the voltage code.
Example: LC1 K0610•• becomes LC1 K06105••

3-pole silent contactors

Recommended for use in areas sensitive to noise, high interference mains supplies, etc. Coil with rectifier incorporated, suppressor fitted as standard.

Screw clamp connections

1.5	2.2	3	6	1	-	LC7K0610•๑
				-	1	LC7K0601•๑
2.2	4	4	9	1	-	LC7K0910•๑
				-	1	LC7K0901•๑
3	5.5	4 (>440)	12	1	-	LC7K1210•๑
		5.5 (440)		-	1	LC7K1201•๑

Faston connectors, 1×6.35 or 2×2.8
In the references selected above, insert a figure 7 before the voltage code.
Example: LC7 K0610•• becomes LC7 K06107••

Solder pins for printed circuit boards

In the references selected above, insert a figure 5 before the voltage code.
Example: LC7 K0610•• becomes LC7 K06105••
(1) Standard control circuit voltages (for other voltages, please consult your Regional Sales Office):
a.c. supply ${ }^{(4)}$

Contactors LC1 K (0.8...1.15 Uc) (0.85...1.1 Uc)

Up to and including 240 V , coil with integral suppression device available: add 2 to the code required. Example: J 72.
Contactors LC7 K (0.85...1.1 Uc)

Volts	$\mathbf{2 4}$	$\mathbf{4 2}$	$\mathbf{4 8}$	110	$\mathbf{1 1 5}$	$\mathbf{2 2 0}$	230/240
$50 / 60 \mathrm{~Hz}$	B7	D7	E7	F7	FE7	M7	U7

(2) For mains supplies with a high level of interference (voltage surge $>800 \mathrm{~V}$), use a suppressor module LA4 KE1FC (50... 129 V) or LA4 KE1UG (130 ... 250 V), see page B8/50.
(3) For LC \bullet K $\bullet \bullet \bullet 3 / L P \bullet K \bullet \bullet \bullet \bullet 3$ with spring terminal, Ith max $=10 \mathrm{~A}$.
(4) (0.8...1.15 Uc) for single voltage coil; ($0.85 \ldots 1.1$ Uc) for dual voltage coil, exemple 200/208 VAC.
(5) Only available for 'screw clamp terminals' versions.

TeSys contactors

Contactors for motor control, 6 to 12 A in categories AC-3 and AC-4

Control circuit: d.c. or low consumption

LP1 K0910••

LP1 K09103••

LP1 K09107••

LP1 K09105••

Contactor selection according to utilisation category, see pages A6/25 to A6/29 and A6/32 to A6/35.
Mounting on $35 \mathrm{~mm} _$rail or $\varnothing 4$ screw fixing.
Screws in the open "ready-to-tighten" position.
Add-on auxiliary contact blocks and accessories, see pages B8/49 to B8/51.

3-pole contactors, d.c. supply						
Standard power ratings of 3 -phase motors $50-60 \mathrm{~Hz}$ in category AC-3			Rated operational current in category AC-3 440 V up to	Instantaneous auxiliary		Basic reference, to be completed by adding the voltage code
$\begin{aligned} & 220 \mathrm{~V} \\ & 230 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 380 \mathrm{~V} \\ & 415 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 440 / 500 \mathrm{~V} \\ & 660 / 690 \mathrm{~V} \end{aligned}$				
kW	kW	kW	A			
Screw clamp connections						
1.5	2.2	3	6	1	-	LP1K0610•๑
				-	1	LP1K0601•๑
2.2	4	4	9	1	-	LP1K0910••
				-	1	LP1K0901•๑
3	5.5	4 (>440)	12	1	-	LP1K1210••
		5.5 (440)		-	1	LP1K1201••
Spring	termin	connectio	ns ${ }^{(3)}$			

In the references selected above, insert a figure 3 before the voltage code.
Example: LP1 K0610•๑ becomes LP1 K06103•๑.

Faston connectors, 1×6.35 or 2×2.8

In the references selected above, insert a figure 7 before the voltage code.
Example: LP1 K0610•• becomes LP1 K06107•e.

Solder pins for printed circuit boards

In the references selected above, insert a figure 5 before the voltage code.
Example: LP1 K0610•• becomes LP1 K06105•๑.
3 -pole low consumption contactors
Compatible with programmable controller outputs.
Wide range coil ($0.7 \ldots 1.30 \mathrm{Uc}$), suppressor fitted as standard, consumption 1.8 W.

Screw clamp connections

1.5	2.2	3	6	1	-	LP4K0610•
				-	1	LP4K0601•๑
2.2	4	4	9	1	-	LP4K0910••
				-	1	LP4K0901••
3	5.5	4 (>440)	12	1	-	LP4K1210••
		5.5 (440)		-	1	LP4K1201•

Spring terminal connections

In the references selected above, insert a figure 3 before the voltage code.
Example: LP4 K0610•• becomes LP4 K06103•๑.

Faston connectors, 1×6.35 or 2×2.8

In the references selected above, insert a figure 7 before the voltage code.
Example: LP4 K0610•๑ becomes LP4 K06107•e.

Solder pins for printed circuit boards

In the references selected above, insert a figure 5 before the voltage code.
Example: LP4 K0610•๑ becomes LP4 K06105•๑.
(1) Standard control circuit voltages (for other voltages, please consult your Regional Sales Office):
d.c. supply (contactors LP1 K: 0.8...1.15 Uc)

Volts	$\mathbf{1 2}$	$\mathbf{2 0}$	$\mathbf{2 4} \mathbf{4}^{(2)}$	$\mathbf{3 6}$	$\mathbf{4 8}$	$\mathbf{6 0}$	$\mathbf{7 2}$	$\mathbf{1 0 0}$	$\mathbf{1 1 0}$	$\mathbf{1 2 5}$	$\mathbf{1 5 5}$	$\mathbf{1 7 4}$	$\mathbf{2 0 0}$	$\mathbf{2 2 0}$	$\mathbf{2 3 0}$	$\mathbf{2 4 0}$	$\mathbf{2 5 0}$
Code	$J D$	ZD	BD	CD	ED	ND	SD	KD	FD	GD	PD	QD	LD	MD	MPD	$M U D$	UD

Coil with integral suppression device available: add 3 to the code required. Example: JD3

Low consumption (contactors LP4 K: 0.7...1.3 Uc)							
Volts	12	20	24	48	72	110	120
Code	JW3	ZW3	BW3	EW3	SW3	FW3	GW3

Coil with integral suppression device fitted as standard, by bi-directional peak limiting diode.
(2) For LP1 K only, when connecting an electronic sensor or timer in series with the contactor coil, select a 20 V coil (~ control circuit voltage code Z7, .-. control circuit voltage code ZD) so as to compensate for the incurred voltage drop.
(3) For LC $\mathrm{K} \bullet \bullet \bullet \bullet 3 / L P \bullet K \bullet \bullet \bullet \bullet 3$ with spring terminal), Ith max $=10 \mathrm{~A}$.

Selection:			
pages A6/25 and A6/29	Characteristics:		
pages B8/93 to B8/96	Dimensions: page B8/97	Schemes: page B8/98	

- Click HERE for access to online contactor selector

TeSys contactors

Contactors for control in category AC-1, 20 A
Control circuit: a.c.

LC1 K09004••

LC1 K09103••

LC1 K09107••

LC1 K09004••

Contactor selection according to utilisation category, see pages A6/30 and A6/31.
Mounting on $35 \mathrm{~mm} _$rail or $\varnothing 4$ screw fixing.
Screws in the open "ready-to-tighten" position.
Add-on auxiliary contact blocks and accessories, see pages B8/49 to B8/51.
3 or 4-pole contactors for standard applications (1)

In the references selected above, insert a figure 3 before the voltage code.
Example: LC1 K0910•• becomes LC1 K09103••.

Faston connectors, 1×6.35 or 2×2.8

In the references selected above, insert a figure 7 before the voltage code.
Example: LC1 K0910•• becomes LC1 K09107••

Solder pins for printed circuit boards

In the references selected above, insert a figure 5 before the voltage code.
Example: LC1 K0910•• becomes LC1 K09105•๑.

3 or 4 -pole silent contactors (1)

Recommended for use in areas sensitive to noise, high interference mains supplies, etc.
Coil with rectifier incorporated, suppressor fitted as standard.

a.c. supply ${ }^{(5)}$

Contactors LC1 K (0.8...1.15 Uc) (0.85...1.1 Uc)

Volts	$\mathbf{1 2}$	$\mathbf{2 0}$	$\mathbf{2 4} 4^{(3)}$	$\mathbf{3 6}$	$\mathbf{4 2}$	$\mathbf{4 8}$	$\mathbf{1 1 0}$	$\mathbf{1 1 5}$	$\mathbf{1 2 0}$	$\mathbf{1 2 7}$	$\mathbf{2 0 0 / 2 0 8}$	$\mathbf{2 2 0 / 2 3 0}$	$\mathbf{2 3 0}$	$\mathbf{2 3 0 / 2 4 0}$	
$50 \mathrm{~Hz}{ }^{(6)}$			B5		D5	E5								P5	
$50 / 60 \mathrm{~Hz}$	J7	Z7	B7	C7	D7	E7	F7	FE7	G7	FC7	L7		$M 7$	P7	U7
Volts	$\mathbf{2 5 6}$	$\mathbf{2 7 7}$	$\mathbf{3 8 0 / 4 0 0}$	$\mathbf{4 0 0}$	$\mathbf{4 0 0 / 4 1 5}$	$\mathbf{4 4 0}$	$\mathbf{4 8 0}$	$\mathbf{5 0 0}$	$\mathbf{5 7 5}$	$\mathbf{6 0 0}$	$\mathbf{6 6 0 / 6 9 0}$				
$50 / 60 \mathrm{~Hz}$	W7	UE7	Q7	V7	N7		R7	T7	S7	SC7	X7	Y7			

Up to and including 240 V , coil with integral suppression device available: add $\mathbf{2}$ to the code required. Example: J72.
Contactors LC7 K (0.8...1.1 Uc)

Volts	24	42	48	110	115	220	$230 / 240$
$50 / 60 \mathrm{~Hz}$	B7	D7	E7	F7	FE7	M7	U7

(3) For mains supplies with a high level of interference (voltage surge > 800 V), use a suppressor module LA4 KE1FC (50... 129 V) or LA4 KE1UG (130... 250 V), see page B8/50.
(4) For LC $\mathrm{K} \bullet \bullet \bullet \bullet 3 / L P \bullet K \bullet \bullet \bullet \bullet 3$ with spring terminal, Ith max $=10 \mathrm{~A}$.
(5) (0.8..1.15 Uc) for single voltage coil; ($0.85 \ldots 1.1$ Uc) for dual voltage coil, exemple 200/208 VAC.
(6) Only available for 'screw clamp terminals' versions.

Contactor selection according to utilisation category, see pages A6/30 and A6/31.
Mounting on $35 \mathrm{~mm} \longleftarrow$ rail or $\varnothing 4$ screw fixing.
Screws in the open "ready-to-tighten" position.
Add-on auxiliary contact blocks and accessories, see pages B8/49 to B8/51.

LC1 K09004••

LC1 K09103••

LC1 K09105••

LC1 K09004••

In the references selected above, insert a figure 3 before the voltage code.
Example: LP1 K0910•• becomes LP1 K09103•๑.

Faston connectors, 1×6.35 or 2×2.8

In the references selected above, insert a figure 7 before the voltage code.
Example: LP1 K0910•• becomes LP1 K09107•e.

Solder pins for printed circuit boards

In the references selected above, insert a figure 5 before the voltage code.
Example: LP1 K0910•• becomes LP1 K09105•๑.

3 or 4-pole low consumption contactors ${ }^{(1)}$

Compatible with programmable controller outputs.
Wide range coil ($0.7 \ldots 1.30 \mathrm{Uc}$), suppressor fitted as standard, consumption 1.8 W.

Screw clamp connections

20	3	-	1	-	LP4K0910•e७
					or LP4K1210•eャ
	3	-	-	1	LP4K0901•*๑
					or LP4K1201
	4	-	-	-	LP4K09004•*๑
					or LP4K12004•*๑
	2	2	-	-	LP4K09008•*७
Spring terminal connections					

In the references selected above, insert a figure 3 before the voltage code.
Example: LP4 K0910•e becomes LP4 K09103•๑.

Faston connectors, 1×6.35 or 2×2.8

In the references selected above, insert a figure 7 before the voltage code.
Example: LP4 K0910・ゃ becomes LP4 K09107•๑.

Solder pins for printed circuit boards

In the references selected above, insert a figure 5 before the voltage code.
Example: LP4 K0910•๑ becomes LP4 K09105••.
(1) Selection between 9 and 12 A ratings according to number of operating cycles, see AC-1 curve on page A6/30.
(2) Standard control circuit voltages (for other voltages, please consult your Regional Sales Office):

d.c. supply (contactors LP1 K: 0.8...1.15 Uc)																	
Volts -..	12	20	$24{ }^{(3)}$	36	48	60	72	100	110	125	155	174	200	220	230	240	250
Code	JD	ZD	BD	CD	ED	ND	SD	KD	FD	GD	PD	QD	LD	MD	MPD	MUD	UD

Coil with integral suppression device available: add 3 to the code required. Example: JD3.

Low consumption (contactors LP4 K: 0.7...1.3 Uc)							
Volts -..	12	20	24	48	72	110	120
Code	JW3	ZW3	BW3	EW3	SW3	FW3	GW3

Coil with integral suppression device fitted as standard, by bi-directional peak limiting diode.
(3) For LP1 K only, when connecting an electronic sensor or timer in series with the contactor coil, select a 20 V coil (~ control circuit voltage code Z7, --. control circuit voltage code ZD) so as to compensate for the incurred voltage drop.
(4) For LC \bullet K $\bullet \bullet \bullet 3 / L P \bullet K \bullet \bullet \bullet \bullet 3$ with spring terminal, Ith max $=10 \mathrm{~A}$.

Selection:	Characteristics:	Dimensions:	Schemes:
pages $A 6 / 30$ and $A 6 / 31$	pages B8/93 to B8/96	page B8/97	page B8/98

- Click HERE for access to online contactor selector
Schneider

TeSys contactors

Reversing contactors for motor control, 6 to 16 A in category AC-3 and 6 to 12 A in category AC-4
Control circuit: a.c.
Reversing contactor selection according to utilisation category, see pages A6/25 to A6/29 and A6/32 to A6/35. Integral mechanical interlock.
It is essential to link the contacts of the electrical interlock.
Pre-wired power circuit connections as standard on screw clamp versions.
Mounting on $35 \mathrm{~mm} _$rail or $\varnothing 4$ screw fixing. Screws in the open "ready-to-tighten" position.
Add-on auxiliary contact blocks and accessories, see pages B8/49 to B8/51.

3-pole reversing contactors for standard applications

For 6 to 12 A ratings only, in the references selected above, insert a figure $\mathbf{3}$ before the voltage code.

Example: LC2 K0610•๑ becomes LC2 K06103•๑.

Faston connectors, 1×6.35 or 2×2.8

For 6 to 16 A ratings, in the references selected above, insert a figure 7 before the voltage code.
Example: LC2 K0610•• becomes LC2 K06107••

Solder pins for printed circuit boards

For 6 to 16 A ratings, in the references selected above, insert a figure 5 before the voltage code.
Example: LC2 K0610•๑ becomes LC2 K06105••.

3 -pole silent reversing contactors

Recommended for use in areas sensitive to noise, high interference mains supplies, etc.
Coil with rectifier incorporated, suppressor fitted as standard.
Screw clamp connections

1.5	2.2	3	6	1	-	LC8K0610•๑
				-	1	LC8K0601•๑
2.2	4	4	9	1	-	LC8K0910••
				-	1	LC8K0901•๑
3	5.5	4 (>440)	12	1	-	LC8K1210••
		5.5 (440)		-	1	LC8K1201••

Faston connectors, 1×6.35 or 2×2.8

In the references selected above, insert a figure 7 before the voltage code.
Example: LC8 K0610ゃゃ becomes LC8 K06107••.

Solder pins for printed circuit boards

In the references selected above, insert a figure 5 before the voltage code.
Example: LC8 K0610•• becomes LC8 K06105••.
(1) Standard control circuit voltages (for other voltages, please consult your Regional Sales Office):

a.c. supply ${ }^{(4)}$

Reversing contactors LC2 K (0.8...1.15 Uc) (0.85...1.1 Uc)

Volts	12	20	$24{ }^{(2)}$	36	42	48	110	115	120	127	200/2		220/230 230	230/240
$50 / 60 \mathrm{~Hz}$	J7	Z7	B7	C7	D7	E7	F7	FE7	G7	FC7	L7		M7 P7	U7
Volts	256	277	380/400		400	400/415		440	480	500	575	600	660/690	
$50 / 60 \mathrm{~Hz}$	W7	UE7	Q7		V7	N7		R7	T7	S7	SC7	X7	Y7	

Up to and including 240 V , coil with integral suppression device available: add $\mathbf{2}$ to the code required. Example: J72.
Reversing contactors LC8 K (0.8 ..1.1 Uc)

Volts	$\mathbf{2 4}$	$\mathbf{4 2}$	$\mathbf{4 8}$	$\mathbf{1 1 0}$	$\mathbf{1 1 5}$	$\mathbf{2 2 0}$	$\mathbf{2 3 0 / 2 4 0}$
$50 / 60 \mathrm{~Hz}$	B7	D7	E7	F7	FE7	M7	U7
(2)	Fermains						

(2) For mains supplies with a high level of interference (voltage surge $>800 \mathrm{~V}$), use a suppressor module LA4 KE1FC (50... 129 V) or LA4 KE1UG (130 ... 250 V), see page B8/50.
(3) For LC \bullet K $\bullet \bullet \bullet 3 / L P \bullet K \bullet \bullet \bullet \bullet 3$ with spring terminal, Ith max $=10 \mathrm{~A}$.
(4) (0.8..1.15 Uc) for single voltage coil; (0.85...1.1 Uc) for dual voltage coil, exemple 200/208 VAC.
pages A6/25 and A6/35 pages B8/93 to B8/96 page B8/97 page B8/98 to online contactor selector

TeSys contactors

Reversing contactors for motor control, 6 to 12 A in categories AC-3 and AC-4 Control circuit: d.c. or low consumption

Reversing contactor selection according to utilisation category, see pages A6/25 to A6/29 and A6/32 to A6/35. Integral mechanical interlock.
It is essential to link the contacts of the electrical interlock.
Pre-wired power circuit connections as standard on screw clamp versions.
Mounting on $35 \mathrm{~mm} _$rail or $\varnothing 4$ screw fixing.
Screws in the open "ready-to-tighten" position.
Add-on auxiliary contact blocks and accessories, see pages B8/49 to B8/51.

In the references selected above, insert a figure 3 before the voltage code.
Example: LP2 K0610•• becomes LP2 K06103•๑.

Faston connectors, 1×6.35 or 2×2.8

In the references selected above, insert a figure 7 before the voltage code.
Example: LC2 K0610•• becomes LC2 K06107••.

Solder pins for printed circuit boards

For 6 to 16 A ratings, in the references selected above, insert a figure 5 before the voltage code.
Example: LC2 K0610•• becomes LC2 K06105•๑.
3-pole low consumption reversing contactors
Compatible with programmable controller outputs.
Wide range coil ($0.7 \ldots 1.30 \mathrm{Uc}$), suppressor fitted as standard, consumption 1.8 W .
Screw clamp connections

1.5	2.2	3	6	1	-	LP5K0610•๑
				-	1	LP5K0601•๑
2.2	4	4	9	1	-	LP5K0910•๑
				-	1	LP5K0901•๑
3	5.5	4 (>440)	12	1	-	LP5K1210••
		5.5 (440)		-	1	LP5K1201•॰

Spring terminal connections

In the references selected above, insert a figure 3 before the voltage code.
Example: LP5 K0610•• becomes LP5 K06103•๑.

Faston connectors, 1×6.35 or 2×2.8

In the references selected above, insert a figure 7 before the voltage code.
Example: LP5 K0610•• becomes LP5 K06107•e.

Solder pins for printed circuit boards

In the references selected above, insert a figure 5 before the voltage code.
Example: LP5 K0610•๑ becomes LP5 K06105•๑.
(1) Standard control circuit voltages (for other voltages, please consult your Regional Sales Office):

d.c. supply

Reversing contactors LP2 K (0.8...1.15 Uc)

Volts	12	20	$24{ }^{(2)}$	36	48	60	72	100	110	125	155	174	200	220	230	240	250
Code	JD	ZD	BD	CD	ED	ND	SD	KD	FD	GD	PD	QD	LD	MD	MPD	JD	UD

Coil with integral suppression device available: add $\mathbf{3}$ to the code required. Example: JD3.

Low consumption							
Reversing contactors LP5 K (0.7...1.3 Uc)							
Volts	12	20	24	48	72	110	120
Code	JW3	ZW3	BW3	EW3	SW3	FW3	GW3

Coil with integral suppression device fitted as standard, by bi-directional peak limiting diode.
(2) For LP2 K only, when connecting an electronic sensor or timer in series with the contactor coil, select a 20 V coil (~ control circuit voltage code Z7, -.- control circuit voltage code ZD) so as to compensate for the incurred voltage drop.
(3) For LC $\mathrm{K} \bullet \bullet \bullet \bullet 3 / \mathrm{LP} \bullet K \bullet \bullet \bullet 3$ with spring terminal, Ith max $=10 \mathrm{~A}$.

TeSys contactors

Reversing contactors for control in category AC-1, 20 A
Control circuit: a.c.

LC2 K0910.0.

LC2 K09105••

Spring terminal connections ${ }^{(4)}$

In the references selected above, insert a figure 3 before the voltage code.
Example: LC2 K0910•๑ becomes LC2 K09103ゃ๑.

Faston connectors, 1×6.35 or 2×2.8

In the references selected above, insert a figure 7 before the voltage code.
Example: LC2 K0910•• becomes LC2 K09107••

Solder pins for printed circuit boards

In the references selected above, insert a figure 5 before the voltage code.
Example: LC2 K0910•๑ becomes LC2 K09105•๑.

3 or 4 -pole silent reversing contactors ${ }^{(1)}$

Recommended for use in areas sensitive to noise, high interference mains supplies, etc.
Coil with rectifier incorporated, suppressor fitted as standard.

Screw clamp connections						
20	3	-	1	-		LC8K0910••
					or	LC8K1210••
	3	-	-	1		LC8K0901••
					or	LC8K1201••
	4	-	-	-		LC8K09004••
					or	LC8K12004••

Faston connectors, 1×6.35 or 2×2.8
In the references selected above, insert a figure 7 before the voltage code.
Example: LC8 K0910•• becomes LC8 K09107••

Solder pins for printed circuit boards

In the references selected above, insert a figure 5 before the voltage code.
Example: LC8 K0910•• becomes LC8 K09105••
(1) Selection between 9 and 12 A ratings according to number of operating cycles, see AC-1 curve on page A6/30.
(2) Standard control circuit voltages (for other voltages, please consult your Regional Sales Office):

a.c. supply ${ }^{(5)}$

Reversing contactors LC2 K (0.8...1.15 Uc) (0.85...1.1 Uc)

Volts	12	20	$24{ }^{(3)}$	36	42	48	110	115	120	127	200/20		220/230	230	230/240
50/60 Hz	J7	Z7	B7	C7	D7	E7	F7	FE7	G7	FC7	L7		M7	P7	U7
Volts	256	277	380/400		400	400/415		440	480	500	575	600	660/690		
$50 / 60$ Hz	W7	UE7	Q7		V7	N7		R7	T7	S7	SC7	X7	Y7		

Up to and including 240 V , coil with integral suppression device available: add $\mathbf{2}$ to the code required. Example: J72.
Reversing contactors LC8 K (0.8...1.1 Uc)

Volts	$\mathbf{2 4}$	$\mathbf{4 2}$	$\mathbf{4 8}$	$\mathbf{1 1 0}$	$\mathbf{1 1 5}$	$\mathbf{2 2 0}$	$\mathbf{2 3 0 / 2 4 0}$
$50 / 60 \mathrm{~Hz}$	B7	D7	E7	F7	FE7	M7	U7

(3) For mains supplies with a high level of interference (voltage surge >800 V), use a suppressor module LA4 KE1FC (50... 129 V) or LA4 KE1UG (130... 250 V), see page B8/50.
(4) For LC॰K $\bullet \bullet \bullet 3 / L P \bullet K \bullet \bullet \bullet \bullet 3$ with spring terminal, Ith max $=10 \mathrm{~A}$.
(5) (0.8..1.15 Uc) for single voltage coil; (0.85...1.1 Uc) for dual voltage coil, exemple 200/208 V AC.
pages $\mathrm{A} 6 / 30$ and $\mathrm{A} 6 / 31 \quad$ pages $\mathrm{B} 8 / 93$ to $\mathrm{B} 8 / 96 \quad$ page $\mathrm{B} 8 / 97 \quad$ page $\mathrm{B} 8 / 98$ to online contactor selector

TeSys contactors

Reversing contactors for control in category AC-1, 20 A
Control circuit: d.c. or low consumption

Warning: reversing contactors LP2 K0910•• and LP2 K0901•• are pre-wired for reverse motor operation as standard.
Reversing contactor selection according to utilisation category, see pages A6/30 and A6/31.
Integral mechanical interlock.
It is essential to link the contacts of the electrical interlock.
Mounting on $35 \mathrm{~mm} _$rail or $\varnothing 4$ screw fixing.
Screws in the open "ready-to-tighten" position.
Add-on auxiliary contact blocks and accessories, see pages B8/49 to B8/51.

3 or 4-pole reversing contactors, d.c. supply ${ }^{(1)}$						
Non-inductive loads Category AC-1 Maximum current at $\theta \leqslant 50^{\circ} \mathrm{C}$		er es	$\begin{aligned} & \text { Ins } \\ & \text { au } \\ & \text { co } \\ & \text { co } \end{aligned}$	ntan ary cts ctor		Basic reference, to be completed by adding the voltage code ${ }^{(2)(3)}$
A						
Screw clamp connections						
20	3	-	1	-		LP2K0910•๑
					or	LP2K1210•e
	3	-	-	1		LP2K0901•*
					or	LP2K1201•e
	4	-	-	-		LP2K09004•*
					or	LP2K12004••
Spring terminal connections ${ }^{(4)}$						

In the references selected above, insert a figure 3 before the voltage code.
Example: LP2 K0910•• becomes LP2 K09103••.

Faston connectors, 1×6.35 or 2×2.8

In the references selected above, insert a figure $\mathbf{7}$ before the voltage code.
Example: LP2 K0910•• becomes LP2 K09107••.

Solder pins for printed circuit boards

In the references selected above, insert a figure 5 before the voltage code.
Example: LP2 K0910•• becomes LP2 K09105••.

3 or 4-pole low consumption reversing contactors ${ }^{(1)}$

Compatible with programmable controller outputs.
Wide range coil ($0.7 \ldots 1.30 \mathrm{Uc}$), suppressor fitted as standard, consumption 1.8 W .
Screw clamp connections

In the references selected above, insert a figure 3 before the voltage code.
Example: LP5 K0910•e becomes LP5 K09103•๑.

Faston connectors, 1×6.35 or 2×2.8

In the references selected above, insert a figure 7 before the voltage code.
Example: LP5 K0910•• becomes LP5 K09107••.

Solder pins for printed circuit boards

In the references selected above, insert a figure 5 before the voltage code.
Example: LP5 K0910•• becomes LP5 K09105••.
(1) Selection between 9 and 12 A ratings according to number of operating cycles, see AC-1 curve on page A6/30.
(2) Standard control circuit voltages (for other voltages, please consult your Regional Sales Office):

Volts ..-	12	20	$24{ }^{(3)}$	36	48	60	72	100	110	125	155	174	200	220	230	240	250
Code	JD	ZD	BD	CD	ED	ND	SD	KD	FD	GD	PD	QD	LD	MD	MPD	MUD	UD

Coil with integral suppression device available: add 3 to the code required. Example: JD3.

Low consumption (reversing contactors LP5 K: 0.7...1.3 Uc)							
Volts -..	12	20	24	48	72	110	120
Code	JW3	ZW3	BW3	EW3	SW3	FW3	GW3

Coil with integral suppression device fitted as standard, by bi-directional peak limiting diode.
(3) For LP2 K only, when connecting an electronic sensor or timer in series with the contactor coil, select a 20 V coil (~ control circuit voltage code Z7, -.- control circuit voltage code ZD) so as to compensate for the incurred voltage drop.
(4) For LC $\bullet \bullet \bullet \bullet \bullet 3 / L P \bullet K \bullet \bullet \bullet \bullet 3$ with spring terminal, Ith max $=10 \mathrm{~A}$.

References - TeSys K
TeSys contactors
TeSys K contactors and reversing contactors
Auxiliary contact blocks

| Instantaneous auxiliary contact blocks | |
| :--- | :--- | :--- | :--- | :--- |
| Recommended for standard applications. Clip-on front mounting, 1 block per
 contactor | |
| Connection | For use on contactors |

Electronic time delay auxiliary contact blocks

Relay output with common point changeover contact, ~ or $-=240 \mathrm{~V}, 2 \mathrm{~A}$
maximum.
Control voltage 0.85...1.1 Uc.
Maximum switching capacity 250 VA or 150 W.
Operating temperature $-10 \ldots+60^{\circ} \mathrm{C}$.
Reset time: 1.5 s during the time delay period, 0.5 s after the time delay period.

Clip-on front mounting, 1 block per contactor				
Voltage	Type	Timing range	Composition	Reference
V		s		
$\begin{gathered} \sim \text { or }=- \\ 24 \ldots . .48 \end{gathered}$	On-delay	1... 30	1	LA2KT2E
$\sim 110 . .240$	On-delay	1... 30	1	LA2KT2U

Characteristics:	Dimensions:	Schemes:
page B8/96	pages B8/97 and B8/99	pages B8/98 and B8/100

References－TeSys K

TeSys contactors

TeSys K contactors and reversing contactors

Suppressor modules incorporating LED indicator

LA4 Keゃ०

References				
Mounting and connection	Type	For voltages	Sold in lots of	Unit reference
Clip－on fixing on the front of contactors LC1 and LP1，with locating device． No tools required．	Varistor ${ }^{(1)}$	\sim and $=-12 \ldots .24 \mathrm{~V}$	5	LA4KE1B
		\sim and $--32 \ldots 48 \mathrm{~V}$	5	LA4KE1E
		\sim and－－ $50 . .129 \mathrm{~V}$	5	LA4KE1FC
		\sim and－－．130．．． 250 V		LA4KE1UG
	Diode + Zener $\text { diode }^{(2)}$	－－－ $12 \ldots 24 \mathrm{~V}$	5	LA4KC1B
		－－ $32 . .48 \mathrm{~V}$	5	LA4KC1E
	$\mathrm{RC}^{(3)}$	$\sim 110 . .250 \mathrm{~V}$	5	LA4KA1U

（1）Protection provided by limiting the transient voltage to 2 Uc max．
Maximum reduction of transient voltage peaks．
Slight increase in drop－out time（1．1 to 1.5 times the normal time）．
（2）No overvoltage or oscillating frequency．
Polarised component．
Slight increase in drop－out time（1．1 to 1.5 times the normal time）．
（3）Protection by limiting the transient voltage to 3 Uc max．and limitation of the oscillating frequency．
Slight increase in drop－out time（1．2 to 2 times the normal time）．

Characteristics： page B8／96		Dimensions： pages B8／97 and B8／99	Schemes： pages B8／98 and B8／100
B8／50	Life Is じn	chneider	

References - TeSys K

TeSys contactors

TeSys K contactors and reversing contactors

Accessories

Mounting and marking accessories				
Description	Application		Sold in lots of	Unit reference
Mounting plates ${ }^{(1)}$	For fixing on 1 ـr rail	Clip-on	1	LA9D973
	For fixing on 2 ـr rails	110/120 mm fixing centres	10	DX1AP25
Marker holder	Clip-on	Onto front of contactor	100	LA9D90
Clip-in markers	4 maximum per contactor	Strips of 10 identical numbers 0... 9	25	AB1R• ${ }^{(2)}$
		Strips of 10 identical letters A...Z	25	AB1G ${ }^{(2)}$

DX1 AP25

Connection accessories Description	Application		Sold in lots of	Unit preference
Paralleling links	For 2 poles	With screw clamps	4	LA9E01
	For 4 poles	With screw clamps	2	LA9E02
Set of 6 power connections	For 3-pole reversing contactors for motor control	For contactors with screw clamp terminals	100	LA9K0969
Set of 4 power connections	For 4-pole changeover contactor pairs	For contactors with screw clamp terminals	100	LA9K0970

1) Order 1 mounting plate for fixing a contactor and 2 mounting plates for fixing a reversing contactor.
(2) Complete the reference by replacing the dot with the required character.

TeSys contactors

Mini-contactors TeSys LC1 SKGC, for use in modular panels

LC1 SKGC200

LC1 SKGC400

■ Mounting on $35 \mathrm{~mm} _$rail or fixing by four $\varnothing 4$ screws, except for LC1 SKGC200.

- Connection by connectors.

■ Mini-contactor fitted with transparent, sealable protective cover to prevent front face access.
Mini-contactors, width 27 mm

Standard power ratings of 3-phase motors $50 / 60 \mathrm{~Hz}$ in category $\mathrm{AC}-3$			Rated operational current in AC-3 up to 400 V	Non inductive No. of poles$\begin{array}{l}\text { loads } \\ \text { category AC-1 } \\ \text { maximum } \\ \text { current } \\ \theta \leqslant 50^{\circ} \mathrm{C}\end{array}$ 			Basic reference, to be completed by adding the
$\begin{aligned} & 220 \mathrm{~V} \\ & 230 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 380 \mathrm{~V} \\ & 415 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 660 \mathrm{~V} \\ & 690 \mathrm{~V} \end{aligned}$					voltage code ${ }^{(1)}$
kW	kW	kW	A	A			
-	-	-	5	20	2	-	LC1SKGC200••

Mini-contactors, width 45 mm

3	-	1	LC1SKGC301••
4	-	-	LC1SKGC400••

(1) Standard control circuit voltages (for other voltages, please consult your Regional Sales Office):

Volts ~ $50 / 60 \mathrm{~Hz}$	24	48	110	120	220	230	240	380	400	
Code	B7	E7	F7	G7	M7	P7	U7	Q7	V7	

References - TeSys SKGC
TeSys contactors
Mini-contactors TeSys LC1 SKGC, for use in modular panels
Suppressor modules

Suppressor modules
Connection without need for tools by clipping onto right-hand side of contactor

For use on contactors	Type	For voltages	Sold in lots of	Unit reference
LC1SKGC	Varistor ${ }^{(1)}$	\sim and.$--24 . . .48 \mathrm{~V}$	10	LA4SKE1E
		$\begin{aligned} & \sim \text { and }=- \\ & 110 \ldots 250 \mathrm{~V} \end{aligned}$	10	LA4SKE1U

(1) Protection provided by limiting the transient voltage to 2 Uc max. Maximum reduction of transient voltage peaks.
Slight increase in drop-out time (1.1 to 1.5 times the normal time).
(2) No overvoltage or oscillating frequency.

Slight increase in drop-out time (1.1 to 1.5 times the normal time).

References - TeSys GC

Modular equipment

Standard contactors TeSys GC

GC 10020

\star for 60 Hz coil replace last figure 5 by 6 .

References - TeSys GY

Modular equipment

TeSys GY "dual tariff" contactors

GY 6340M5

\star for 60 Hz coil replace last figure 5 by 6 .

References - TeSys GC, GY

Modular equipment

 TeSys GC, GY accessories

GAC 5

A9A15922

A9A15923

Accessories					
Description	For use on Number contactor of modules	Operational voltage in V	Sold in lots of	Unit reference	
Coil suppression blocks comprising 2 RC circuits	-	1	$12 \ldots 48$	1	GAP21
			$110 \ldots 240$	1	GAP23

Ventilation 1/2 module clips onto - r rail	-	$1 / 2$	-	10	GAC5
Set of screw shields (10 top parts +10 bottom parts)	40 or 63A 2 contacts	2	-	1	A9A15922
40 or 63A 3 - 1 A9A15923 3 or 4 contacts					

Contents

TeSys D, TeSys D Green:
$>$ characteristics..........B8/61 to B8/73
> dimensions................B8/74 to B8/87
TeSys SK:
> characteristics...........B8/88 to B8/91
$>$ dimensions B8/92

TeSys K:
> characteristics...........B8/93 to B8/96
> dimensions..............B8/97 to B8/100
TeSys SKGC:
> characteristics......B8/101 to B8/104
> dimensions............................B8/105

TeSys GC:
> characteristics......B8/106 to B8/113
$>$ dimensions........B8/114 and B8/115
TeSys GY:
> characteristics......B8/116 to B8/119
$>$ dimensions..........B8/120 and B8/78
TeSys GF:
> characteristics......B8/122 to B8/125
> dimensions............................B8/126
Standard IEC tests - Contactors conforming to UL/CSA

Characteristics - TeSys D, TeSys D Green

TeSys contactors

TeSys D, TeSys D Green contactors

(1) Contactor LC1 D95 with d.c. coil is not UL/CSA certified.
(2) Protection provided for the cabling c.s.a.'s indicated on the next page and for connection by cable. For lug type: add a protective cover.
(3) As per IEC60947-4-1, operating time and drop out voltage given and tested for $-5 . .+40^{\circ} \mathrm{C}$.
(4) Refer to operational current in AC1 (page A6/30).
(5) When mounting on a vertical rail, use a stop.
(6) Without modifying the power contact states, in the most unfavourable direction (coil energised at Ue). In case of vibration, it is recommended to mount the devices separately by screws on metal plate.

Characteristics - TeSys D, TeSys D Green

TeSys contactors

TeSys D, TeSys D Green contactors

Pole characteristics TeSys D, TeSys D Green

Contactor type	LC1		$\begin{aligned} & \text { D09 } \\ & \text { (3P) } \end{aligned}$	$\begin{array}{\|l} \hline \text { DT20 } \\ \text { D098 } \end{array}$	$\begin{aligned} & \text { D12 } \\ & \text { (3P) } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { DT25 } \\ \text { D128 } \end{array}$	$\begin{aligned} & \text { D18 } \\ & \text { (3P) } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { DT32 } \\ \text { D188 } \end{array}$	$\begin{aligned} & \text { D25 } \\ & \text { (3P) } \end{aligned}$	$\begin{aligned} & \text { DT40 } \\ & \text { D258 } \end{aligned}$
Rated operational current (le) (Ue $\leqslant 440$ V)	In AC-3, $\theta \leqslant 60^{\circ} \mathrm{C}$	A	9		12		18		25	
	In AC-1, $\theta \leqslant 60{ }^{\circ} \mathrm{C}$	A	$25{ }^{(1)}$	20	$25{ }^{(1)}$	25	$32{ }^{(1)}$	32	$40{ }^{(1)}$	40
Rated operational voltage (Ue)	Up to	V	690		690		690		690	
Frequency limits	Of the operational current	Hz	25... 400		25... 400		25... 400		25... 400	
Conventional thermal current (Ith)	$\theta \leqslant 60^{\circ} \mathrm{C}$	A	$25{ }^{(1)}$	20	$25{ }^{(1)}$	25	$32{ }^{(1)}$	32	$40{ }^{(1)}$	40
Rated making capacity (440 V)	Conforming to IEC 60947	A	250		250		300		450	
Rated breaking capacity (440 V)	Conforming to IEC 60947	A	250		250		300		450	
Permissible short time rating	For 1 s	A	210		210		240		380	
No current flowing for preceding	For 10 s	A	105		105		145		240	
15 minutes with $\theta \leqslant 40{ }^{\circ}$	For 1 min	A	61		61		84		120	
	For 10 min	A	30		30		40		50	
Fuse protection against short-circuits ($\mathrm{U} \leqslant 690 \mathrm{~V}$)	Without thermal overload relay, gG fuse type 1 type 2	A	25		40		50		63	
		A	20		25		35		40	
	With thermal overload relay	A	See pages B11/4 and B11/5, for aM or gG fuse ratings corresponding to the associated thermal overload relay							
Average impedance per pole	At lth and 50 Hz	$\mathrm{m} \Omega$	2.5		2.5		2.5		2	
Power dissipation per pole for the above operational currents	AC-3	W	0.20		0.36		0.8		1.25	
	AC-1	W	1.56		1.56		2.5		3.2	

Control circuit characteristics, a.c. supply TeSys D

(1) Versions with spring terminal connections:

16 A for LC1 D093 and LC1 D123 (20 A possible with $2 \times 2.5 \mathrm{~mm}^{2}$ in parallel),
25 A for LC1 D183 to LC1 D323 (32 A possible for LC1 D183 connected with $2 \times 4 \mathrm{~mm}^{2}$ cables in parallel; 40 A possible for LC1 D253 and LC1 D323 connected with $2 \times 4 \mathrm{~mm}^{2}$ in parallel).
(2) The closing time " C " is measured from the moment the coil supply is switched on to closure of the main poles. The opening time " O " is measured from the moment the coil supply is switched off to the moment the main poles separate.

Selection: pages A6/25 to A6/49	References: pages B8/2 to B8/7	Dimensions: pages B8/74 to B8/77	Schemes: pages B8/81 and B8/82

pages $B 8 / 2$ to $B 8 / 7$ pages B8/74 to B8/77 pages $B 8 / 81$ and $B 8 / 82$

D32	D38	D40A	DT60A	D50A	D65A	D80A	DT80A	D80	D95	D115	D150
32	38	40	-	50	65	80	-	80	95	115	150
$50{ }^{(1)}$	50	60	60	80	80	80	80	125	125	200	200
690	690	690	690	690	690	690	690	1000	1000	1000	1000
25... 400	25... 400	25... 400	25... 400	25... 400	25... 400	25... 400	25... 400	25... 400	25... 400	25... 400	25... 400
50	50	60	60	80	80	80	80	125	125	200	200
550	550	800	800	900	1000	1000	1000	1100	1100	1260	1660
550	550	800	800	900	1000	1000	1000	1100	1100	1100	1400
430	430	720	720	810	900	900	900	990	1100	1100	1400
260	310	320	320	400	640	640	640	640	800	950	1200
138	150	165	165	208	260	260	260	320	400	550	580
60	60	72	72	84	110	110	110	135	135	250	250
63	63	80	80	100	125	125	125	200	200	250	315
63	63	80	80	100	125	125	125	160	160	200	250

See pages B11/4 and B11/5 for aM or gG fuse ratings corresponding to the associated thermal overload relay

Characteristics - TeSys D

TeSys contactors

TeSys D contactors

d.c. control circuit characteristics TeSys D							
Contactor type				LC1 D09...D38 LC1 DT20...DT40	LC1 D40A...D80A LC1 DT60A and DT80A	$\begin{aligned} & \text { LC1 or LP1 D80 } \\ & \text { LC1 D95 } \end{aligned}$	LC1 D115 and LC1 D150
Rated control circuit voltage (Uc)	--		V	12... 440	12... 440		24... 440
Rated insulation voltage	Conforming to IEC 60947-1		V	690			
	Conforming to UL, CSA		V	600			
Control voltage limits	Operation	Standard coil		$\begin{aligned} & 0.7 \ldots 1.25 \mathrm{Uc} \\ & \text { at } 60^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.75 \ldots 1.25 \mathrm{Uc} \\ & \text { at } 60^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.85 \ldots 1.1 \mathrm{Uc} \\ & \text { at } 55^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.75 \ldots 1.2 \mathrm{Uc} \\ & \text { at } 55^{\circ} \mathrm{C} \end{aligned}$
		Wide range coil		-	-	$\begin{aligned} & 0.75 \ldots 1.2 \mathrm{Uc} \\ & \text { at } 55^{\circ} \mathrm{C} \end{aligned}$	-
	Drop-out			$\begin{aligned} & 0.1 \ldots 0.25 \mathrm{Uc} \\ & \text { at } 60^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.1 \ldots 0.3 \mathrm{Uc} \\ & \text { at } 60^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.1 \ldots 0.3 \mathrm{Uc} \\ & \text { at } 55^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.15 \ldots 0.4 \mathrm{Uc} \\ & \text { at } 55^{\circ} \mathrm{C} \end{aligned}$
Average consumption at $20^{\circ} \mathrm{C}$ and at Uc	--	Inrush	W	5.4	19	22	270... 365
		Sealed	W	5.4	7.4	22	2.4...5.1
Operating time ${ }^{(1)}$ average at Uc	Closing	"C"	ms	63 ± 15 \%	$50 \pm 15 \%$	95... 130	20... 35
	Opening	"O"	ms	20 ± 20 \%	$20 \pm 20 \%$	20... 35	40... 75
			Note: The arcing time depends on the circuit switched by the poles. For all normal 3-phase applications, the arcing time is less than 10 ms . The load is isolated from the supply after a time equal to the sum of the opening time and the arcing time.				
Time constant (L/R)			ms	28	34	75	25
Mechanical durability at Uc	In millions of operating cycles			30	10	10	8
Maximum operating rate at ambient temperature $\leqslant 60^{\circ} \mathrm{C}$	In operating cycles per hour			3600	3600	3600	1200
Low consumption control circuit characteristics TeSys D							
Rated insulation voltage	Conforming to IEC 60947-1		V	690	-		
	Conforming to UL, CSA		V	600	-		
Maximum voltage	Of the control circuit on --.		V	250	-		
Average consumption d.c. at $20^{\circ} \mathrm{C}$ and at Uc	Wide range coil (0.8...1.25 Uc)	Inrush	W	2.4	-		
		Sealed	W	2.4	-		
Operating time ${ }^{(1)}$ at Uc and at $20^{\circ} \mathrm{C}$	Closing	"C"	ms	77 ± 15 \%	-		
	Opening	"O"	ms	25 ± 20 \%	-		
Voltage limits $\left(\theta \leqslant 60^{\circ} \mathrm{C}\right)$ of the control circuit	Operation			0.8 to 1.25 Uc	-		
	Drop-out			0.1...0.3 Uc	-		
Time constant (L/R)			ms	40	-		
Mechanical durability	In millions of operating cycles			30	-		
Maximum operating rate at ambient temperature $\leqslant 60^{\circ} \mathrm{C}$	In operating cycles per hour			3600	-		

(1) The operating times depend on the type of contactor electromagnet and its control mode.

The closing time "C" is measured from the moment the coil supply is switched on to initial contact of the main poles.
The opening time " O " is measured from the moment the coil supply is switched off to the moment the main poles separate.

Selection:	References:	Dimensions:
pages A6/25 to A6/49	pages B8/2 to B8/7	Schemes: pages B8/74 to B8/77

Characteristics

TeSys D Green

Contactors with AC/DC coil

Wide band TeSys D Green AC/DC coil circuit characteristics								
Rated control circuit voltage (Uc)	V	AC/DC 24... 250						
Operation	V	0.85 Uc mini...1.1 Uc maxi at $60^{\circ} \mathrm{C}$ in AC or DC (BNE coil: 0.8 Uc mini at $24 \mathrm{VDC}, 0.85 \mathrm{Uc}$ mini in AC).						
Drop-out	V	0.1 Uc maxi (e.g. 100 to $250 \mathrm{~V}=25 \mathrm{~V}$ at $60^{\circ} \mathrm{C}$)						
Contactor type Coil code		LC1 D09...D38			LC1 D40A...D80A, LC1 DT60A, LC1 DT80A			
		BNE	EHE	KUE	BBE	BNE	EHE	KUE
Rated control circuit voltage (Uc)		24-60	48-130	100-250	24 DC	24-60	48-130	100-250
AC supply at $20^{\circ} \mathrm{C}$	VA	15	25	25	-	15	23	18
	VA	0.9	1.3	1.6	-	1	1.4	1.8
	mA	28	15	9	-	35	17	9.5
	W	0.6	0.8	1.1	-	0.8	0.9	1.3
DC supply at $20^{\circ} \mathrm{C}$	W	14	24	18	11	16	19	14
	mA	23	13	7	20	30	15	7.7
	W	0.6	0.8	1.1	0.5	0.7	0.9	1.2
Max operating time ${ }^{(2)}$	ms	$50 \pm 5 \mathrm{~ms}$			$60 \pm 5 \mathrm{~ms}$			
	ms	20... 90 ms			20... 80 ms			
EMC immunity		Meets IEC 60947-4-1 standard, table 14						
EMC emission IEC 60947-4-1 $\S 9.4 .3$		Environment A ${ }^{(1)}$						
Maximum operating rate at ambient temperature $\leqslant 60^{\circ} \mathrm{C}$ Mechanical durability at Uc In millions of operating cycles	cycle/h	3600						
		15			6			

(1) Use of this product in EMC environment B may require mitigation measures to avoid unwanted disturbance.
(2) The closing time " C " is measured from the moment the coil supply is switched on to closure of the main poles. The opening time " O " is measured from the moment the coil supply is switched off to the moment the main poles separates.

Characteristics - TeSys D, TeSys D Green

TeSys contactors

TeSys D, TeSys D Green contactors

Power circuit connections

Screw clamp terminal connections TeSys D, TeSys D Green

Contactor type	LC1		D09 and D12 DT20 and DT25	$\begin{array}{\|l\|l\|} \text { D18 } \\ \text { (3P) } \end{array}$	$\begin{aligned} & \text { D25 } \\ & (3 P) \end{aligned}$	D32	D38	D18 and D25 (4P) DT32 and DT40	D40A to D80A DT60A and DT80A	$\begin{aligned} & \text { D80 } \\ & \text { and D95 } \end{aligned}$	D115 and D150
Tightening			Screw clamp terminals					Connector 2 inputs	Screw clamp terminals	Connector 1 input	Connector 2 inputs
Flexible cable without cable end	1 conductor	mm^{2}	1... 4	1.5... 6	2.5... 10			2.5... 10	1... 35	4... 50	10... 120
	2 conductors	mm^{2}	1... 4	1.5... 6	2.5... 10			2.5... 10	$\begin{aligned} & 1 \ldots 25 \\ & \text { and } 1 \ldots 35 \end{aligned}$	4... 25	$\begin{aligned} & 10 \ldots 120 \\ & +10 \ldots 50 \end{aligned}$
Flexible cable with cable end	1 conductor	mm^{2}	1... 4	1... 6	1... 10			2.5... 10	1... 35	4... 50	10... 120
	2 conductors	mm^{2}	1... 2.5	1... 4	1.5... 6			2.5... 10	$\begin{aligned} & 1 \ldots 25 \\ & \text { and 1... } 35 \end{aligned}$	4...16	$\begin{aligned} & 10 \ldots 120 \\ & +10 \ldots 50 \end{aligned}$
Solid cable without cable end	1 conductor	mm^{2}	1... 4	1.5... 6	1.5.. 10			2.5...16	1... 35	4... 50	10... 120
	2 conductors	mm^{2}	1... 4	1.5... 6	2.5... 10			2.5... 16	$\begin{aligned} & 1 \ldots 25 \\ & \text { and } 1 \ldots 35 \end{aligned}$	6... 25	$\begin{aligned} & 10 \ldots 120 \\ & +10 \ldots 50 \end{aligned}$
Screwdriver	Philips		$\mathrm{N}^{\circ} 2$	$\mathrm{N}^{\circ} 2$	$\mathrm{N}^{\circ} 2$			$\mathrm{N}^{\circ} 2$	-	-	-
	Flat screwdriver \varnothing		Ø6	Ø6	Ø6			Ø6	-	Ø6...ø8	-
Hexagonal key			-	-	-			-	4	4	4
Tightening torque		N.m	1.7	1.7	2.5			1.8	$\begin{aligned} & \text { 5: } \\ & \leqslant 25 \mathrm{~mm}^{2} \\ & \text { 8: } 35 \mathrm{~mm}^{2} \end{aligned}$	9	12
Spring terminal connections ${ }^{(2)}$ TeSys D											
Flexible cable without cable end	1 conductor	mm^{2}	$\begin{aligned} & 2.5 \\ & \text { (4: DT25) } \\ & \hline \end{aligned}$	4	4	4	-	10	-	-	
	2 conductors	mm^{2}	2.5 (except DT25)	4	4	4	-	-	-	-	

Connection by bars or lugs TeSys D

Bar c.s.a.		-	-	-	-	-	-	3×16	5×25
Lug external \varnothing	mm	8	8	10	10	8	16.5	17	25
\varnothing of screw	mm	M3.5	M3.5	M4	M4	M3.5	M6	M6	M8
Screwdriver Philips		$\mathrm{N}^{\circ} 2$	-	-	-				
Flat screwdriver \varnothing		Ø6	$\varnothing 6$	Ø6	$\varnothing 6$	Ø6	-	$\varnothing 8$	-
Key for hexagonal headed screw		-	-	-	-	-	10	10	13
Tightening torque	N.m	1.7	1.7	2.5	2.5	1.8	6	9	12

Control circuit connections

Connection by cable (tightening via screw clamps) TeSys D, TeSys D Green											
Flexible cable without cable end	1 conductor	mm^{2}	1... 4	1... 4	1... 4	1... 4		1... 4	1... 4	1... 4	1...2.5
	2 conductors	mm^{2}	1... 4	1... 4	1... 4	1... 4		1... 4	1... 4	1... 4	1...2.5
Flexible cable with cable end	1 conductor	mm^{2}	1... 4	1... 4	1... 4	1... 4		1... 4	1... 4	1...2.5	1...2.5
	2 conductors	mm^{2}	1...2.5	1...2.5	1...2.5	1...2.5		1...2.5	1...2.5	1...2.5	1...2.5
Solid cable without cable end	1 conductor	mm^{2}	1... 4	1... 4	1... 4	1... 4		1... 4	1... 4	1... 4	1...2.5
	2 conductors	mm^{2}	1... 4	1... 4	1... 4	1... 4		1... 4	1... 4	1... 4	1...2.5
Screwdriver	Philips		$\mathrm{N}^{\circ} 2$	N ${ }^{\circ} 2$	$\mathrm{N}^{\circ} 2$	N ${ }^{\circ} 2$		$\mathrm{N}^{\circ} 2$	$\mathrm{N}^{\circ} 2$	N ${ }^{\circ}$	N ${ }^{\circ} 2$
	Flat screwdriver \varnothing		Ø6	Ø6	Ø6	Ø6		Ø6	Ø6	Ø6	Ø6
Tightening torque		N.m	1.7	1.7	1.7	1.7		1.7	1.7	1.7	1.2
Spring terminal connections ${ }^{(2)}$ TeSys D											
Flexible cable without cable end	1 conductor	mm^{2}	2.5	2.5	2.5	2.5	-	2.5	0.75...2.5	-	-
	2 conductors	mm^{2}	2.5	2.5	2.5	2.5	-	2.5	0.75...2.5	-	-
Connection by bars or lugs TeSys D											
Lug external \varnothing		mm	8	8	8	8		8	8	8	8
\varnothing of screw		mm	M3.5	M3.5	M3.5	M3.5		M3.5	M3.5	M3.5	M3.5
Screwdriver	Philips		N ${ }^{\circ}$	N ${ }^{\circ} 2$	N ${ }^{\circ} 2$	N ${ }^{\circ}$		N ${ }^{\circ}$	N ${ }^{\circ} 2$	N ${ }^{\circ}$	N ${ }^{\circ} 2$
	Flat screwdriver \varnothing		Ø6	Ø6	Ø6	Ø6		Ø6	Ø6	Ø6	Ø6
Tightening torque		N.m	1.7	1.7	1.7	1.7		1.7	1.7	1.7	1.2

[^4]
Characteristics - TeSys D, TeSys D Green

TeSys contactors
TeSys D, TeSys D Green contactors

Characteristics of auxiliary contacts incorporated in the contactor				
Mechanically linked contacts	Conforming to IEC 60947-5-1			Each contactor has 2 N/O and N/C contacts mechanically linked on the same movable contact holder
Mirror contact	Conforming to IEC 60947-4-1			The N/C contact on each contactor represents the state of the power contacts and can be connected to a PREVENTA safety module
Rated operational voltage (Ue)	Up to		V	690
Rated insulation voltage (Ui)	Conforming to IEC 60947-1		V	690
	Conforming to UL, CSA		V	600
Conventional thermal current (lth)	For ambient temperature$\leqslant 60^{\circ} \mathrm{C}$		A	10
Frequency of the operational current			Hz	25... 400
Minimum switching capacity$\lambda=10^{-8}$	U min		V	17
	1 min		mA	5
Short-circuit protection	Conforming to IEC 60947-5-1			gG fuse: 10 A
Rated making capacity	Conforming to IEC 60947-5-1 I rms		A	~: 140, --.: 250
Short-time rating	Permissible for	1 s	A	100
		500 ms	A	120
		100 ms	A	140
Insulation resistance			M Ω	> 10
Non-overlap time	Guaranteed between N/C and N/O contacts		ms	1.5 (on energisation and on de-energisation)
Tightening torque	Philips head $\mathrm{n}^{\circ} 2$ and Ø6		N.m	1.7

d.c. supply, category DC-13

Electrical durability (valid for up to 1200 operating cycles/hour) on an inductive load such as the coil of an electromagnet, without economy resistor, the time constant increasing with the load.

Operating cycles	V	$\mathbf{2 4}$	$\mathbf{4 8}$	$\mathbf{1 2 5}$	$\mathbf{2 5 0}$	$\mathbf{4 4 0}$
1 million	W	96	76	76	76	44
3 million	W	48	38	38	32	-
10 million	W	14	12	12	-	-

Selection:	References:	Dimensions:	Schemes:
pages $A 6 / 25$ to $A 6 / 49$	pages B8/2 to B8/7	pages B8/74 to B8/77	pages B8/81 and B8/82

Characteristics - TeSys D, TeSys D Green
TeSys contactors
Auxiliary contact blocks without dust and damp protected contacts
for TeSys D, TeSys D Green contactors

Environment						
Contact block type			LAD N or LAD C	LAD T and LAD S	LAD R	LAD 8
Conforming to standards			IEC/EN 60947-5-1, UL 60947-5-1, CSA C22.2 n ${ }^{\circ}$ 60947-5-1, GB/T 14048.5			
Product certifications			UL, CSA, CCC, EAC, CB certification			
Degree of protection	Conforming to IEC 60529		Protection against direct finger contact IP 2X			
Ambient air temperature around the device	Storage	${ }^{\circ} \mathrm{C}$	-60...+80			
	Operation	${ }^{\circ} \mathrm{C}$	$-5 \ldots+60$			
Maximum operating altitude	Without derating	m	3000			
Connection by cable	Phillips $\mathrm{n}^{\circ} 2$ and $\varnothing 6 \mathrm{~mm}$ Flexible or solid cable with or without cable end	mm^{2}	Min: 1×1; max: 2×2.5			
Tightening torque		N.m	1.7			
Spring terminal connections	Flexible or solid cable without cable end	mm^{2}	Max: 2×2.5			

Instantaneous and time delay contact characteristics

Number of contacts				1,2 or 4	2	2	2
Rated operational voltage (Ue)	Up to		V	690			
Rated insulation voltage (Ui)	Conforming to IEC 60947-5-1		V	690			
	Conforming to UL, CSA		V	600			
Conventional thermal current (Ith)	For ambient temperature$\leqslant 60^{\circ} \mathrm{C}$		A	10			
Frequency of the operational current			Hz	25... 400			
Minimum switching capacity		U min	V	17			
		1 min	mA	5			
Short-circuit protection	Conforming to IEC 60947-5-1 gG fuse		A	10			
Rated making capacity	Conforming to IEC 60947-5-1		A	~: 140; --.: 250			
Short-time rating	Permissible for	1 s	A	100			
		500 ms	A	120			
		100 ms	A	140			
Insulation resistance			M Ω	> 10			
Non-overlap time	Guaranteed between N / C and N/O contacts		ms	1.5 (on energisation and on de-energisation)			
Overlap time	Guaranteed between N/C and N/O contacts on LAD C22		ms	1.5	-	-	-
Time delay (LADT, R and S contact blocks) Accuracy only valid for setting range indicated on the front face	Ambient air temperature for operation		${ }^{\circ} \mathrm{C}$	-	$-40 \ldots+70$	$-40 \ldots+70$	-
	Repeat accuracy			-	± 2 \%	± 2 \%	-
	Drift up to 0.5 million operating cycles			-	+15 \%	+15\%	-
	Drift depending on ambient air temperature			-	0.25 \% per ${ }^{\circ} \mathrm{C}$	0.25 \% per ${ }^{\circ} \mathrm{C}$	-
Mechanical durability	In millions of operating cycles			30	5	5	30
Operational power of contacts				See page B8/70			

Characteristics - TeSys D, TeSys D Green

TeSys contactors
Auxiliary contact blocks with dust and damp protected contacts
for TeSys D, TeSys D Green contactors

Environment							
Contact block type				LA1 DX	LA1 DZ		LA1 DY
				Protected	Protected	Non protected	Protected
Conforming to standards				IEC/EN 60947-5-1, UL 60947-5-1, CSA C22.2 n ${ }^{\circ}$ 60947-5-1, GB/T 14048.5			
Product certifications				UL, CSA, CCC, EAC, CB certification			
Degree of protection Conforming to IEC 60529				Protection against direct finger contact IP 2X			
Ambient air temperature	Storage and operation		${ }^{\circ} \mathrm{C}$	$-25 \ldots+70$			
Cabling	Phillips $\mathrm{n}^{\circ} 2$ and $\varnothing 6 \mathrm{~mm}$ Flexible or solid conductor with or without cable end		mm ${ }^{2}$	Min: 1×1; max: 2×2.5			
Tightening torque			N.m	1.7			
Number of contacts				2	2	2	2
Contact characteristics							
Rated operational voltage (Ue)	Up to		Vac	125	125	690	125
			Vdc	30	30		30
Rated insulation voltage (Ui)	Conforming to IEC 60947-5-1		V	250	250	690	250
	Conforming to UL, CSA		V	-	-	600	-
Conventional thermal current (lth)	For ambient temperature$\leqslant 40^{\circ} \mathrm{C}$		A	-	-	10	-
Maximum operational current (le)			mA	100	100	-	100
Frequency of the operational current			Hz	-	-	25... 400	-
Minimum switching capacity		\underline{U} min	V	5	5	17	5
		1 min	mA	1	1	5	1
Short-circuit protection	Conforming to IEC 609475-1 gG fuse		A	-	-	10	-
Rated making capacity	Conforming to IEC 609475-1		A	-	-	~:140; ---: 250	-
Short-time rating	Permissible for	1 s	A	-	-	100	-
		500 ms	A	-	-	120	-
		100 ms	A	-	-	140	-
Insulation resistance			M Ω	> 10	> 10	> 10	> 10
Mechanical durability	In millions of operating cycles			5	5	30	5
Materials and technology used for dust and damp protected contacts				Gold alloy Single break	Gold alloy Single break	-	Gold alloy Single break with crossed bars

TeSys contactors
Auxiliary contact blocks without dust and damp protected contacts for TeSys D, TeSys D Green contactors

Rated operational power of contacts (conforming to IEC 60947-5-1)

a.c. supply, categories AC-14 and AC-15

Electrical durability (valid for up to 3600 operating cycles/hour) on an inductive load such as the coil of an electromagnet: making current $(\cos \varphi 0.7)=10$ times the power broken $(\cos \varphi 0.4)$.

Operating cycles	V	$\mathbf{2 4}$	$\mathbf{4 8}$	$\mathbf{1 1 5}$	$\mathbf{2 3 0}$	$\mathbf{4 0 0}$	$\mathbf{4 4 0}$	$\mathbf{6 0 0}$
$\mathbf{1}$ million	VA	60	120	280	560	960	1050	1440
3 million	VA	16	32	80	160	280	300	420
10 million	VA	4	8	20	40	70	80	100

d.c. supply, category DC-13

Electrical durability (valid for up to 1200 operating cycles/hour) on an inductive load such as the coil of an electromagnet, without economy resistor, the time constant increasing with the load.

Operating cycles	V	$\mathbf{2 4}$	$\mathbf{4 8}$	$\mathbf{1 2 5}$	$\mathbf{2 5 0}$	$\mathbf{4 4 0}$
1 million	W	96	$\mathbf{7 6}$	$\mathbf{7 6}$	$\mathbf{7 6}$	$\mathbf{4 4}$
3 million	W	48	38	38	32	-
10 million	W	14	12	12	-	-

Characteristics - TeSys D, TeSys D Green

TeSys contactors

Control modules, coil suppressor modules and mechanical latch blocks for TeSys D, TeSys D Green contactors

Environment							
Conforming to standards				IEC/EN 60947-5-1, UL 60947-5-1, CSA C22.2 n ${ }^{\circ}$ 60947-5-1, GB/T 14048.5			
Product certifications				UL, CSA			
Degree of protection	Conforming to IEC 60529			Protection against direct finger contact IP 2X			
Ambient air temperature around the device	Storage		${ }^{\circ} \mathrm{C}$	$-40 \ldots+80$			
	Operation		${ }^{\circ} \mathrm{C}$	$-25 \ldots+55$			
	Permissible for operation at Uc		${ }^{\circ} \mathrm{C}$	-25...+70			
Suppressor modules TeSys D							
Module type				LA4 DA, LAD 4RC, LAD 4RC3	$\begin{aligned} & \text { LA4 DB, LAD 4T, } \\ & \text { LAD } 4 \mathrm{~T} 3 \end{aligned}$	LA4 DC, LAD 4D3	$\begin{aligned} & \text { LA4 DE, LAD 4V, } \\ & \text { LAD } 4 \mathrm{~V} 3 \end{aligned}$
Type of protection				RC circuit	Bidirectional peak limiting diode	Diode	Varistor
Rated control circuit voltage (Uc)			V	$\sim 24 . .415$	\sim or --. 24... 440	-- 12... 250	~ or --. 24... 250
Maximum peak voltage				3 Uc	2 Uc	Uc	2 Uc
Natural RC frequency		24/48 V	Hz	400	-	-	-
		$50 / 127 \mathrm{~V}$	Hz	200	-	-	-
		110/240 V	Hz	100	-	-	-
		380/415 V	Hz	150	-	-	-
Mechanical latch blocks ${ }^{(1)}$ TeSys D, TeSys D Green							
Mechanical latch block type				LAD 6K10		LA6 DK20	
For use on contactor				LC1 D09...D80A DT20...DT80A		LC1 D80...D150 LP1 D80 and LC1 D115	
Product certifications				UL, CSA		UL, CSA	
Rated insulation voltage	Conforming to IEC 60947-5-1		V	690		690	
Rated control circuit voltage	$\sim 50 / 60 \mathrm{~Hz}$ and -.-		V	24... 415		24...415	
Power required	For unlatching	\sim	VA	25		25	
		--	W	30		30	
Maximum operating rate	In operating cycles/hour			1200		1200	
On-load factor				10 \%		10 \%	
Mechanical durability at Uc	In millions of operating cycles			0.5		0.5	

(1) Unlatching can be manually operated or electrically controlled (pulsed).

The LA6 DK or LAD 6K latch coil and the LC1 D operating coil must not be energised simultaneously.
The duration of the LA6 DK or LAD $6 K$ and LC1 D control signals must be $\geqslant 100 \mathrm{~ms}$.

Characteristics - TeSys D, TeSys D Green

TeSys contactors

Electronic serial timer module for TeSys D, TeSys D Green contactors

Environment TeSys D, TeSys D Green		
Module type		LA4 DT (On-delay)
Conforming to standards		IEC 60255-5
Product certifications		UL, CSA
Degree of protection Conforming to IEC 60529		Protection against direct finger contact IP 2X
Ambient air temperature around the device	${ }^{\circ} \mathrm{C}$	-40... +80
	${ }^{\circ} \mathrm{C}$	$-25 . . .+55$
	${ }^{\circ} \mathrm{C}$	-25...+70
Rated insulation voltage (Ui) Conforming to IEC 60947-1	V	250
Cabling Phillips $\mathrm{n}^{\circ} 2$ and $\varnothing 6 \mathrm{~mm}$ Flexible or solid conductor with or without cable end	mm ${ }^{2}$	Min: 1×1; max: 2×2.5
Tightening torque	N.m	1.7
Control circuit characteristics		
Built-in protection		By varistor
		By varistor
Rated control circuit voltage (Uc)	V	\sim or ---: 24... 250
Permissible variation		0.8...1.1 Uc
Type of control		By mechanical contact only

Timing characteristics

Timing ranges		\mathbf{s}	$0.1 \ldots 2 ; 1.5 \ldots 30 ; 25 \ldots 500$
Repeat accuracy	$0 \ldots 40^{\circ} \mathrm{C}$		$\pm 3 \%(10 \mathrm{~ms}$ minimum $)$
Reset time	During time delay period	ms	150
	After time delay period	ms	50
Immunity to microbreaks	During time delay period	ms	10
	After time delay period	ms	2
Minimum control pulse duration	ms	-	
Time delay signalling	By LED		Illuminates during time delay period

Switching characteristics (solid state type)

Characteristics - TeSys D, TeSys D Green
TeSys contactors

Interface modules for TeSys D, TeSys D Green contactors

Environment TeSys D, TeSys D Green

Conforming to standards		
Product certifications		
Degree of protection	Conforming to IEC 60529	
Ambient air temperature around the device	Storage	${ }^{\circ} \mathrm{C}$
	Operation	${ }^{\circ} \mathrm{C}$
Other characteristics		

Module type

Module type				LA4 DFB for TeSys D With relay	LA4 DWB for TeSys D, TeSys D Green Solid state
Conventional thermal current (Ith)	For ambient temperature$\leqslant 50^{\circ} \mathrm{C}$		A	8	
Rated insulation voltage	Conforming to IEC 60947-5-1		V	250	
Rated operational voltage	Conforming to IEC 60947-5-1		V	250	
Indication of input state				By integral LED which illuminates when the contactor coil is energised	
Input signals	Control voltage (E1-E2)		V	--2 24	--2 24
	Permissible variation		V	17... 30	5... 30
	Current consumption at $20^{\circ} \mathrm{C}$		mA	25	$\begin{aligned} & 8.5 \text { for } 5 \mathrm{~V} \\ & 15 \text { for } 24 \mathrm{~V} \end{aligned}$
	State "0" guaranteed for U		V	<2.4	< 2.4
			mA	<2	<2
	State "1" guaranteed for U		V	17	5
Built-in protection	Against reversed polarity			By diode	By diode
	Of the input			By diode	By diode
Electrical durability at $220 \mathrm{~A} / 240 \mathrm{~V}$	In millions of operating cycles			10	20
Maximum immunity to microbreaks			ms	4	1
Power dissipated	At $20^{\circ} \mathrm{C}$		W	0.6	0.4
Direct mounting on contactor	With coil	$\sim 24 \ldots 250 \mathrm{~V}$		LC1 D80...D150	-
		$\sim 100 . .250 \mathrm{~V}$		-	LC1 D80...D115
		$\sim 380 . .415 \mathrm{~V}$		-	-
Mounting with cabling adapter LAD 4BB	With coil	$\sim 24 . . .250 \mathrm{~V}$		LC1 D09...D38, LC1 DT20...DT40	$\begin{aligned} & \text { LC1 D09...D38, } \\ & \text { LC1 DT20...DT40 } \end{aligned}$
		$\sim 380 \ldots 415 \mathrm{~V}$		-	-
Mounting with cabling adapter LAD 4BB3	With coil	$\sim 24 . . .250 \mathrm{~V}$		LC1 D40A...D80A	LC1 D40A...D80A
		$\sim 380 \ldots .415 \mathrm{~V}$		LC1 D40A...D80A	LC1 D40A...D80A

Total operating time at Uc
(of the contactor)

The operating times depend on the type of contactor electromagnet and its control mode.
The closing time "C" is measured from the moment the coil supply is switched on to initial contact of the main poles. The opening time "O" is measured from the moment the coil supply is switched off to the moment the main poles separate.

	LC1 D09...D38, LC1 DT20...DT40	LC1 D40A...D80A	LC1 D80 and D95
ms	$20 \ldots 30$	$28 \ldots 34$	$28 \ldots 43$
ms	$16 \ldots 24$	$20 \ldots 24$	$18 \ldots 32$
$\mathrm{~mm}^{2}$	Min: $1 \times 1 ; \mathrm{max}: 2 \times 2.5$		
N.m	1.7		

Dimensions - TeSys D

TeSys contactors

TeSys D contactors

Control circuit: a.c.

LC1 D09...D18 (3-pole)

LC1 D25...D38 (3-pole), LC1 DT20...DT40 (4-pole)

LC1	D09...D18	$\begin{aligned} & \text { D093... } \\ & \text { D123 } \end{aligned}$	$\begin{aligned} & \text { D099... } \\ & \text { D129 } \end{aligned}$	$\begin{aligned} & \text { D25... } \\ & \text { D38 } \end{aligned}$	$\begin{aligned} & \text { D183... } \\ & \text { D323 } \end{aligned}$	$\begin{aligned} & \text { D098, D128, } \\ & \text { DT20 and DT25 } \end{aligned}$	DT203 and DT253	DT32 and DT40	$\begin{aligned} & \text { D188, D258, } \\ & \text { DT323 and DT403 } \end{aligned}$
b without add-on blocks	77	99	80	85	99	85	99	91	105
b1 with LAD 4BB	94	107	95,5	98	107	98	-	-	-
with LA4 D•2	$110{ }^{(1)}$	$123{ }^{(1)}$	$111.5{ }^{(1)}$	$114{ }^{(1)}$	$123{ }^{(1)}$	114	-	-	-
with LA4 DF, DT	$119{ }^{(1)}$	$132{ }^{(1)}$	$120.5{ }^{(1)}$	$123{ }^{(1)}$	$132{ }^{(1)}$	129	-	-	-
with LA4 DW, DL	$126{ }^{(1)}$	$139{ }^{(1)}$	$127.5{ }^{(1)}$	$130{ }^{(1)}$	$139{ }^{(1)}$	190	-	-	-
c without cover or add-on blocks	84	84	84	90	90	90	90	97	97
with cover, without add-on blocks	86	86	86	92	92	92	92	99	99
c1 with LAD N or C (2 or 4 contacts)	117	117	117	123	123	123	123	131	131
c2 with LA6 DK10, LAD 6K10	129	129	129	135	135	135	135	143	143
c3 with LAD T, R, S	137	137	137	143	143	143	143	151	151
with LAD T, R, S and sealing cover	141	141	141	147	147	147	147	155	155

(1) Including LAD 4BB.

LC1 D40A...D80A (3-pole), LC1 DT60A...DT80A (4-pole)
LC1 D80 and D95 (3-pole), LC1 D80004 and D80008 (4-pole), D40008 and D65008 (4-pole)

LC1	D40A...D80A	DT60A...DT80A	D40008
a	55	70	85
b1 with LA4 D•2	-	-	135
with LA4 DB3 or LAD 4BB3	136	-	-
with LA4 DF, DT	157	-	142
with LA4 DM, DW, DL	166	-	150
c without cover or add-on blocks	118	118	125
with cover, without add-on blocks	120	120	-
c1 with LAD N (1 contact)	-	-	139
with LAD N or C (2 or 4 contacts)	150	150	147
c2 with LAD 6K10 or LA6 DK	163	163	159
c3 with LAD T, R, S	171	171	167
with LAD T, R, S and sealing cover	175	175	171
LC1 D115 and D150 (3-pole), LC	115004 (4-po		
LC1	D115, D150	D115004	D1150046
a	120	150	155
b1 with LA4 DA2	174	174	174
with LA4 DF, DT	185	185	185
with LA4 DM, DL	188	188	188
with LA4 DW	188	188	188
c without cover or add-on blocks	132	132	115
with cover, without add-on blocks	136	-	-
c1 with LAD N or C (2 or 4 contacts)	150	150	150
c2 with LA6 DK20	155	155	155
c3 with LAD T, R, S	168	168	168
with LAD T, R, S and sealing cover	172	172	172

D80	D95, D65008	D80004	D80008
85	85	96	96
135	135	135	135
135	-	-	-
142	142	142	142
150	150	150	150
125	125	125	140
130	130	-	-
150	150	150	150
158	158	158	158
170	170	170	170
178	178	178	178
182	182	182	182

Min. electrical clearance

Dimensions - TeSys D

TeSys contactors

TeSys D contactors
Control circuit: d.c. or low consumption

LC1 D09...D18 (3-pole)

LC1 D25...D38 (3-pole)

LC1	D09...D18	D093...D123	D099...D129	D25...D38	D183...D323
b	77	99	80	85	99
c without cover or add-on blocks	93	93	93	99	99
with cover, without add-on blocks	95	95	95	101	101
c1 with LAD N or C (2 or 4 contacts)	126	126	126	132	132
c2 with LA6 DK10	138	138	138	144	144
c3 with LAD T, R, S	146	146	146	152	152
with LAD T, R, S and sealing cover	150	150	150	156	156
LC1 DT20...DT40 (4-pole)					

LC1	DT20 and DT25 D098 and D128
b	85
c with cover	102
c 1 with LAD N or C (2 or 4 contacts)	123
c 2 with LA6 DK10	135
c 3 with LAD T, R, S	143
with LAD T, R, S and sealing cover	
LC1 D40A...D80A (3-pole), LC1 DT60A...DT80A (4-pole)	

DT203 and DT253 D0983 and D1283	DT32 and DT40 D188 \ldots D258	DT323 and DT403 D1883 and D2583
99	91	105
102	107	107
123	131	131
135	143	143
143	151	151
147	155	155

LC1 D80 and D95 (3-pole), LP1 D80004, LP1 D80008 (4-pole), LP1 D40008 and D65008 (4-pole)

	$\begin{aligned} & \text { LC1 D40A } \\ & \ldots \text {... D80A } \end{aligned}$	$\begin{aligned} & \text { LC1 } \\ & \text { DT60A...DT80A } \end{aligned}$	LP1 D40008 and D65008	$\begin{aligned} & \text { LC1 } \\ & \text { D80 and D95 } \end{aligned}$	LP1 D80004	LP1 D80008
a	55	72	85	85	96	96
b1 with LAD 4BB3	136	136	-	-	-	-
with LA4 DF, DT	157	157	-	-	-	-
c without cover or add-on blocks	118	118	182	181	181	196
with cover, without add-on blocks	120	120	-	186	-	-
c1 with LAD N (1 contact)	-	-	196	204	204	204
with LAD N or C (2 or 4 contacts)	150	150	202	210	210	210
c2 with LA6 DK10	163	163	213	221	221	221
c3 with LAD T, R, S	171	171	221	229	229	229
with LAD T, R, S and sealing cover	175	175	225	233	233	233

[^5]Mounting - TeSys D
TeSys contactors
TeSys D contactors

LC1 D09...D38, DT20...DT40

On mounting rail AM1 DP200, DR200 or AM1 DE200 (width 35 mm)
$\stackrel{\circ}{\circ}$
$\stackrel{\circ}{\circ}$
$\stackrel{\circ}{\circ}$
$\frac{0}{\circ}$

LC1 D40A...D80A, LC1 DT60A and DT80A, LC1 D80 and D95, LC1 D40008 and D65008
On mounting rail AM1 DL200 or DL201 (width 75 mm$)^{(2)}$
On mounting rail AM1 EDeeゃ or AM1 DE200 (width 35 mm)

Control circuit: a.c.				
LC1	$\begin{aligned} & \text { D09... } \\ & \text { D18 } \end{aligned}$	$\begin{aligned} & \text { D25... } \\ & \text { D38 } \end{aligned}$	DT20 and DT25	DT32 and DT40
b	77	85	85	100
c (AM1 DP200 or DR200) ${ }^{(1)}$	88	94	94	109
c (AM1 DE200) ${ }^{(1)}$	96	102	102	117

Control circuit: d.c.				
LC1	$\begin{aligned} & \text { D09... } \\ & \text { D18 } \end{aligned}$	$\begin{aligned} & \text { D25... } \\ & \text { D38 } \end{aligned}$	DT20 and DT25	DT32 and DT40
b	77	85	94	109
c (AM1 DP200 or DR200) ${ }^{(1)}$	97	103	103	118
c (AM1 DE200) ${ }^{(1)}$	105	110	111	126

(1) With safety cover.

Control circuit: a.c.			
LC1	$\begin{aligned} & \text { D40A...D80A } \\ & \text { DT60A...DT80A } \end{aligned}$	$\begin{aligned} & \text { D80 } \\ & \text { and D95 } \end{aligned}$	D40008 and D65008
b	122	127	127
c (AM1 DL200) ${ }^{(1)}$	-	147	143
c (AM1 DL201) ${ }^{(1)}$	-	137	133
c (AM1 ED $\bullet \bullet \bullet$ or DE200) ${ }^{(1)}$	128	137	133

Control circuit: d.c.				
	1	D40A...D80A DT60A...DT80A	$\begin{aligned} & \text { D80 } \\ & \text { and D95 } \end{aligned}$	D40008 and D65008
	$\left(\mathrm{AM1} \mathrm{DL200)}{ }^{(1)}\right.$	-	205	200
	(AM1 DL201) ${ }^{(1)}$	-	195	190
	(AM1 ED $\bullet \bullet \bullet$ or DE200) ${ }^{(1)}$	128	-	190

(1) With safety cover.
(2) Except for LC1 D40A ...D80A, LC1 DT60A and DT80A.

LC1 D80 and D95, LP1 D80

On 2 mounting rails DZ5 MB on 120 mm centres

Control circuit: a.c.	
LC1	D80 and D95
c with cover	130
Control circuit: d.c.	
LC1	D80 and D95
c with cover	186
LP1	D80
c	181

LC1 D115, D150
On 2 mounting rails DZ5 MB on 120 mm centres

Control circuit: a.c. or d.c.

| LC1 | D115 and D150 | D1156 and D1506 |
| :--- | :--- | :--- | :--- |
| C (AM1 DP200 or DR200) | 134.5 | 117.5 |
| c (AM1 DE200 or EDeゃe) | 142.5 | 125.5 |

$\left.\begin{array}{llll}\hline \text { Selection: } & \text { Characteristics: } & \begin{array}{l}\text { References: } \\ \text { pages A6/25 to A6/49 }\end{array} & \begin{array}{l}\text { pages B8/61 to B8/73 }\end{array} \\ \text { B8/76 B8/2 to B8/5 }\end{array} \quad \begin{array}{l}\text { Schemes: } \\ \text { pages B8/81 to B8/82 }\end{array}\right]$

[^6]TeSys contactors
TeSys D contactors

LC1 D09...D38 and LC1 DT20...DT40

LC1 D09...D38 and LC1 DT20...DT40
On pre-slotted mounting plate AM1 PA, PB, PC

Control circuit:	a.c	d.c		
LC1	D09...D18	D25...D38	D09...D18	D25...D38
c with cover	86	92	95	101
G	35	35	35	35
H	60/70	60/70	70	70
LC1	DT20 and DT25	DT32 and DT40	DT20 and DT25	DT32 and DT40
c with cover	80	93	118	132
G	35	35	35	35
H	60	60	70	70
LC1 D09...D38, LC1 DT20...DT40				

Control circuit:	a.c	d.c.
LC1	D40A...D80A,	D40A...65A,
	DT60A...DT80A	DT60A...DT80A
c with cover	120	120

LC1 D80 and D95, LC1 D40008 and D65008, LP1 D80
On pre-slotted mounting plate AM1 PA, PB, PC and panel mounted

| Control circuit: | a.c | d.c | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| LC1 | D09...D18 | D25...D38 | D09...D18 | D25...D38 |
| c with cover | 86 | 92 | 95 | 101 |
| 4-pole contactors | | | | |
| LC1 | DT20 | DT32 | DT20 | DT32 |
| and DT25 | and DT40 | and DT25 | and DT40 | |
| c with cover | 90 | 98 | 90 | 98 |
| LC1 D115, D150 | | | | |

Control circuit:	a.c	d.c.	
LC1	D80 and D95,	D80 and D95	
	D40008 and D65008	D40008 and D65008	
C with cover	130		186
LP1	-	-	D80
c without cover	-	-	181

Panel mounted

Control circuit:	a.c.	d.c.		
LC1	D09...D18	D25...D38	D09...D18	D25...D38
c with cover	86	92	95	101
G	35	35	35	35
H	60	60	70	70
H1	70	70	70	70
4-pole contactors				
LC1	DT20 and DT25	DT32 and DT40	DT20 and DT25	DT32 and DT40
c	92	100	101	109
G	35	35	35	35
H	60	60	70	70
H1	70	70	70	70

LC1 D40A...D80A, LC1 DT60A...DT80A
On pre-slotted mounting plate AM1 PA, PB, PC and panel mounted

路

[^7]| LC1 | D115 | D1156 | D150 | D1506 |
| :--- | :--- | :--- | :--- | :--- |
| C | 132 | 115 | 132 | 115 |
| G (3-pole) | $96 / 110$ | $96 / 110$ | $96 / 110$ | $96 / 110$ |
| G (4-pole) | $130 / 144$ | $130 / 144$ | - | - |
| | Schemes:
 pages $B 8 / 81$ to $B 8 / 82$ | | | |

Dimensions

TeSys D Green

Contactors with AC/DC coil

LC1 D09...D18 (3-pole), with AC/DC compatible coil		LC1 D25...D38 (3-pole), with AC/DC compatible coil
LC1	D09...D18 D25...D38	
b without add-on blocks	77 85	
c without cover or add-on blocks	84	
with cover, without add-on blocks	86 92	
c1 with LAD N or C (2 or 4 contacts)	117 123	
c2 with LA6 DK10	129 135	
c3 with LAD T, R, S	137	
with LAD T, R, S and sealing cover	141	

LC1 D40A...D80A (3-pole), LC1 DT60A...DT80A (4-pole), with AC/DC compatible coil

0
0.0
0
0
0
0

LC1	D40A...D80A	DT60A...DT80A
a	55	70
b1	LAD 4BB3	136

Mounting

TeSys D Green

Contactors with AC/DC coil

LC1 D09...D38 (3-pole),
with AC/DC compatible coil
On mounting rail AM1 DP200, DR200 or AM1 DE200 (width 35 mm)

LC1 D40A...D80A (3-pole), LC1 DT60A and DT80A (4-pole), with AC/DC compatible coil
On mounting rail AM1 DL200 or DL201 (width 75 mm) ${ }^{(2)}$ On mounting rail AM1 EDeゃe or AM1 DE200 (width 35 mm)

LC1	D09...D18	D25...D38
b	77	85
c (AM1 DP200 or DR200)	88	94
c	(AM1 DE200)	96

LC1	D40A...D80A
	DT60A...DT80A
b	122
c	(AM1 DL200)

Mounting

TeSys D Green

Contactors with AC/DC coil

LC1 D09...D38 (3-pole), with AC/DC compatible coil On 2 mounting rails DZ5 MB

LC1	D09...D18	D25...D38
c with cover	86	92
G	35	35
H	60	60
H1	70	70

LC1 D09...D38 (3-pole), with AC/DC compatible coil
On pre-slotted mounting plate AM1 PA, PB, PC

LC1	D09...D18	D25...D38
C \quad with cover	86	92
G	35	35
H	$60 / 70$	$60 / 70$

LC1 D09...D38 (3-pole), with AC/DC compatible coil
Panel mounted

c with cover 86

Schemes - TeSys D, TeSys D Green

TeSys contactors

TeSys D, TeSys D Green contactors

Contactors

TeSys D, TeSys D Green 3-pole contactors (References: pages B8/2 to B8/5)
LC1 D09 to D150

TeSys D 4-pole contactors (References: pages B8/6 and B8/7)

Front mounting add-on contact blocks
Instantaneous auxiliary contacts for TeSys D, TeSys D Green (References: page B8/23)

1 N/O LAD N10 ${ }^{(1)}$	1 N/C LAD N01 ${ }^{(1)}$	1 N/O + 1 N/C LAD N11	2 N/O LAD N20
2 N/C LAD N02	$2 \mathrm{~N} / \mathrm{O}+2 \mathrm{~N} / \mathrm{C}$ LAD $\mathbf{N} 22$	1 N/O + 3 N/C LAD N13	4 N/O LAD N40
4 N/C LAD N04	$2 \mathrm{~N} / \mathrm{O}+2 \mathrm{~N} / \mathrm{C}$ including $1 \mathrm{~N} / \mathrm{O}+1 \mathrm{~N} / \mathrm{C}$ make before break LAD C22		3 N/O + 1 N/C LAD N31

Instantaneous auxiliary contacts conforming to standard EN 50012 for TeSys D, TeSys D Green (References: page B8/23) 1 N/O + 1 N/C LAD N11G 1 N/O + 1 N/C LAD N11P 2 N/O + 2 N/C LAD N22G

2 N/O + 2 N/C LAD N22P

3 N/O + 1 N/C LAD N31G
3 N/O + 1 N/C LADN31P
1 N/O +3 N/C LAD N13G
1 N/O + 3 N/C LAD N13P

(1) Items in brackets refer to blocks mounted on right-hand side of contactor.

Selection:	Characteristics:	References: pages $\mathrm{A} 6 / 25$ to $\mathrm{A} / 49$

Schemes - TeSys D, TeSys D Green

TeSys contactors

TeSys D, TeSys D Green contactors

Front mounting add-on contact blocks for TeSys D, TeSys D Green				
Dust and damp protected instantaneous auxiliary contacts (References: page B8/23)				
$\begin{aligned} & 2 \mathrm{~N} / \mathrm{O}(24-50 \mathrm{~V}) \\ & \text { LA1 DX20 } \end{aligned}$	$\begin{aligned} & 2 \text { N/C (} 24-50 \mathrm{~V} \text {) } \\ & \text { LA1 DX02 } \end{aligned}$	2 N/O (5-24V) with 2 cable screen terminals LA1 DY20	2 N/O protected ($24-50 \mathrm{~V}$) 2 N/O standard LA1 DZ40	2 N/O protected (24-50 V) + 1 N/O + 1 N/C standard LA1 DZ31

| Time delay auxiliary contacts (References: page B8/24) | |
| :--- | :--- | :--- |
| On-delay 1 N/O +1 N/C Off-delay 1 N/O +1 N/C On-delay 1 N/C +1 N/O break before make LAD S
 LAD T LAD R | |

Mechanical latch blocks for TeSys D, TeSys D Green (References: page B8/24)
LAD 6K10 and LA6 DK20

Side mounting add-on contact blocks for TeSys D, TeSys D Green
Instantaneous auxiliary contacts (References: page B8/23)
1 N/O + 1 N/C LAD 8N11 ${ }^{(1)} \quad 2$ N/O LAD 8N20 ${ }^{(1)} \quad 2$ N/C LAD 8N02 ${ }^{(1)}$

(1) Items in brackets refer to blocks mounted on right-hand side of contactor.

Electronic serial timer modules for TeSys D, TeSys D Green

On-delay LA4 DT•U

Dimensions - TeSys D, TeSys D Green
TeSys contactors
TeSys D, TeSys D Green reversing and changeover contactors

e1 and e2: including cabling.
(1) With safety cover, without add-on block.

LC2 D40A to D80A for TeSys D, TeSys D Green

$2 \times$ LC1 D40A to D80A

Dimensions - TeSys D

TeSys contactors

TeSys D reversing and changeover contactors

LC2 D80 and D95

$2 \times$ LC1 D80 and D95 ~

$2 \times$ LC1 D80 and D95 --

c, e1 and e2: including cabling
$\mathrm{c}, \mathrm{e} 1$ and e2: including cabling.

LC2 D115 and D150

$2 \times$ LC1 D115 and D150

c, e1 and e2: including cabling.

Schemes - TeSys D, TeSys D Green

TeSys contactors

TeSys D, TeSys D Green reversing and changeover contactors

Reversing contactors for motor control

LC2 D09...D80A TeSys D , TeSys D Green LC2D80...D150 TeSys D
Horizontally mounted

LAD 9R1V TeSys D, TeSys D Green

With integral electrical interlocking

Changeover contactor pairs TeSys D

LC2 DT20...DT40
LAD T9R1V
Horizontally mounted
With integral electrical interlocking

TeSys contactors

TeSys D, TeSys D Green reversing and changeover contactors

Electrical interlocking of TeSys D, TeSys D Green reversing contactors fitted with:

Mechanical interlock with integral electrical contacts Mechanical interlock without integral electrical contacts

LA9 D4002, LA9 D8002 and LA9 D11502 LAD 9V2, LAD 4CM, LA9 D50978 and LA9 D80978

Low speed - High speed cabling kit, screw clamp terminals for LC1D09... D38 contactors (TeSys D, TeSys D Green)

 Low speed - High speed cabling kit, spring terminalsfor LC1D09... D38 contactors (TeSys D)

Dimensions, schemes - TeSys D
TeSys contactors
For switching 3-phase capacitor banks, used for power factor correction

Schemes

LC1 DoK

Characteristics - TeSys SK

TeSys contactors

Mini-contactors TeSys LC1 SK and LP1 SK

Characteristics - TeSys SK
TeSys contactors
Mini-contactors TeSys LC1 SK and LP1 SK

Pole characteristics			
Conventional thermal current (Ith)	For ambient temperature $\leqslant 55^{\circ} \mathrm{C}$	A	12
Rated operational frequency		Hz	50/60
Frequency limits of the operational current		Hz	Up to 400
Rated operational voltage (Ue)		V	690
Rated making capacity	I rms conforming to IEC 60947-1	A	66
Rated breaking capacity (for $\mathrm{Ue} \leqslant 400 \mathrm{~V}$)	Conforming to IEC 60947-1	A	52
Short time rating	In free air for a time "t" from cold state $\left(\theta \leqslant 55^{\circ} \mathrm{C}\right)$	A	50
Short-circuit protection	gl fuse U $\leqslant 440 \mathrm{~V}$	A	16
Average impedance per pole	At lth and 50 Hz	$\mathrm{m} \Omega$	4
Maximum rated operational current			
For a temperature$\leqslant 55^{\circ} \mathrm{C}$	$\begin{aligned} & \text { AC-3 }{ }^{(1)} \\ & (\mathrm{Ue} \leqslant 400 \mathrm{~V}) \end{aligned}$	A	6
	AC-1	A	12
Utilisation in category AC-1 resistive circuits, heating, lighting (Ue $\leqslant 440$ V)	Increase in operational current by paralleling of poles	A	20
Auxiliary contact characteristics of add-on blocks			
Rated operational voltage (Ue)	Up to	v	690
Rated insulation voltage (Ui)	$\begin{aligned} & \text { Conforming to IEC 60947, } \\ & \text { IEC 60947-1 } \end{aligned}$	V	690
Conventional thermal current (Ith)	For ambiant temperature $\leqslant 55^{\circ} \mathrm{C}$	A	10
Frequency of operational current		Hz	Up to 400
Short-circuit protection	Conforming to IEC 60947 and IEC 60947-1, gl fuse	A	10

Operational power of contacts conforming to IEC 60947 a.c. supply, category AC-15

Electrical durability (valid up to 3600 operating cycles per hour) on an inductive load such as the coil of an electromagnet: making current $(\cos \varphi 0.7)=10$ times the breaking current $(\cos \varphi 0.4)$.

| | | | | $\mathbf{1 1 0 /}$ | $\mathbf{2 2 0 /}$ | $\mathbf{3 8 0 /}$ | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | V | $\mathbf{2 4}$ | $\mathbf{4 8}$ | $\mathbf{1 2 7}$ | $\mathbf{2 3 0}$ | $\mathbf{4 0 0}$ | $\mathbf{4 4 0}$ |
| 1 million operating cycles | VA | 48 | 96 | 240 | 440 | 800 | 880 |
| 3 million operating cycles | VA | 17 | 34 | 86 | 158 | 288 | 317 |
| 1 million operating cycles | VA | 7 | 14 | 36 | 66 | 120 | 132 |
| Occasional making capacity | VA | 1000 | 2050 | 5000 | 10000 | 14000 | 13000 |

d.c. supply, category DC-13

Electrical durability (valid up to 1200 operating cycles per hour) on an inductive load such as the coil of an electromagnet, without economy resistor, the time constant increasing with the load.

	V	$\mathbf{2 4}$	$\mathbf{4 8}$	$\mathbf{1 1 0}$	$\mathbf{2 2 0}$	$\mathbf{4 4 0}$	$\mathbf{4 4 0}$
1 million operating cycles	W	120	80	60	52	51	880
3 million operating cycles	W	55	38	30	28	26	317
10 million operating cycles	W	15	11	9	8	7	132
Occasional making capacity	W	720	600	400	300	230	13000

(1) For LC1 contactors.

References:	Dimensions:	Schemes:
pages B8/38 and B8/39	page B8/92	page B8/92

Characteristics - TeSys SK

TeSys contactors

Mini-contactors TeSys LC1 SK and LP1 SK

Control circuit characteristics				
Type			LC1 SK06	LP1 SK06
Rated control circuit voltage (UC)		v	~ 24... 400	-.. 12... 72
$\begin{aligned} & \hline \text { Control voltage limits } \\ & \left(\mathrm{q} \leqslant 50^{\circ} \mathrm{C}\right) \end{aligned}$	For operation		0.85...1.1 Uc	0.85...1.1 Uc
	For drop-out		$\geqslant 0.20$ Uc	$\geqslant 0.10$ Uc
Average coil consumption at $20^{\circ} \mathrm{C}$ and at Uc	Inrush		16 VA	2.2 W
	Sealed		4.2 VA	2.2 W
Heat dissipation		w	1.4	2.2
Operating time at $20^{\circ} \mathrm{C}$ and at Uc				
Between coil energisation and	opening of the N / C contacts	ms	8... 16	10... 18
	closing of the N/O contacts	ms	7... 14	8... 12
Between coil de-energisation and	opening of the N / O contacts	ms	6... 8	4... 6
	closing of the N/C contacts	ms	8... 10	6... 8
Maximum operating rate	In operating cycles per hour		1200	1200
Mechanical durability at Uc In millions of operating cycles	$50 / 60 \mathrm{~Hz}$ coil		10	-
	-..coil		-	10

Contactor selection guide according to required electrical durability - TeSys SK TeSys contactors
Mini-contactors TeSys LC1 SK and LP1 SK

Use in category AC-3 (Ue $\leqslant 440 \mathrm{~V}$)
Control of 3-phase asynchronous squirrel cage motors with breaking whilst running.
The current broken (Ic) in category AC-3 is equal to the rated operational current (le) of the motor.

Use in category AC-1 (Ue $\leqslant 440 \mathrm{~V}$)
Control of resistive circuits $(\cos \varphi \geqslant 0.95)$.
The current broken (lc) in category AC-1 is equal to the current (le) normally drawn by the load.

TeSys contactors

Mini-contactors TeSys LC1 SK and LP1 SK

(1) Only on LC1 SK06.

Mounting

Mini-contactors

LC1 and LP1 SK06
On mounting rail AM1 DP200 or AM1 DE200 (־ 35 mm)

Schemes

2-pole mini-contactors
LC1 and LP1 SK06

Add-on power pole block
1 pole + 1 "N/O" aux. 1 pole + 1 "N/C" aux.
LA1 SK10 LA1 SK01

Instantaneous auxiliary contacts		
2 "N/O"	2 "N/C"	1 "N/O" + 1 "N/C"
LA1 SK20	LA1 SK02	LA1 SK11

Characteristics - TeSys K
TeSys contactors
TeSys K contactors and reversing contactors

Environment characteristics					
Conforming to standards			IEC/EN 60947-4-1, IEC/EN 60947-5-1, UL 60947-4-1, CSA C22.2 n o 60947-4-1, UL 60947-5-1, CSA C22.2 n ${ }^{\circ}$ 60947-5-1, GB/T 14048.4		
Product certifications	LC• and LP• K06 to K12		UL, CSA, CCC, EAC, CB certification		
Operating positions					
Connection$\begin{aligned} & \text { Screw clamp } \\ & \text { terminals }\end{aligned}$		mm ${ }^{2}$	Min.	Max.	Max. to IEC 60947
	Solid conductor		1×1.5	2×4	$1 \times 4+1 \times 2.5$
	Flexible conductor without cable end	mm ${ }^{2}$	1×0.75	2×4	2×2.5
	Flexible conductor with cable end	mm ${ }^{2}$	1×0.34	$1 \times 1.5+1 \times 2.5$	$1 \times 1.5+1 \times 2.5$
Spring terminals	Solid conductor	mm ${ }^{2}$	1×0.75	1×1.5	2×1.5
	Flexible conductor without cable end	mm ${ }^{2}$	1×0.75	1×1.5	2×1.5
Faston connectors	Clip	mm	2×2.8 or 1×6.35		
Solder pins for printed circuit board			With locating device between power and control circuits pins length 5 mm Recommended minimum width and thickness layer for power printed circuit board track : $4 \mathrm{~mm} \times 35$ microns		
Tightening torque	of screw-clamp terminals only Philips head $\mathrm{n}^{\circ} 2$ and $\varnothing 6$	N.m	0.8		
Terminal referencing	Conforming to standards EN 50005 and EN 50012		Up to 5 contacts, depending on model		
Rated insulation voltage (Ui)	Conforming to IEC 60947-4-1	V	690		
	Conforming to CSA 22-2 ${ }^{\circ}$ 60947-4-1, UL 60947-4-1	V	600		
Rated impulse withstand voltage (Uimp)		kV	8		
Degree of protection	Conforming to IEC 60529		Protection against direct finger contact IP2x		
Ambient air temperature around the device	Storage	${ }^{\circ} \mathrm{C}$	$-50 \ldots+80$		
	Operation	${ }^{\circ} \mathrm{C}$	$-25 \ldots+50$ in AC3, -25 ... +60 in AC1		
Maximum operating altitude	Without derating	m	2000		
Vibration resistance 5 ... 300 Hz	Contactor open		2 gn		
	Contactor closed		4 gn		
Flame resistance	according to IEC 60695-2-10	${ }^{\circ} \mathrm{C}$	850		
Shock resistance ($1 / 2$ sine wave, 11 ms)	Contactor open		On X axis: 6 gn On Y and Z axes: 10 gn		
	Contactor closed		$\begin{aligned} & \text { On } X \text { axis: } 10 \text { gn } \\ & \text { On } Y \text { and } Z \text { axes: } 15 \text { gn } \end{aligned}$		

Characteristics - TeSys K

TeSys contactors

TeSys K contactors and reversing contactors

(1) For LC K K $\bullet \bullet \bullet 3$ /LP•K $\bullet \bullet \bullet 3$ with spring terminal, Ith max $=10 \mathrm{~A}$.

Characteristics - TeSys K
TeSys contactors
TeSys K contactors and reversing contactors

(1) For mains supplies with a high level of interference (voltage surge > 800 V), use a suppressor module LA4 KE1FC (50... 129 V) or LA4 KE1UG (130... 250 V), see page B8/50.
(2) LC1K12, LC1K16... : 0.85...1.15 Uc.

TeSys contactors

TeSys K contactors and reversing contactors

Auxiliary contact characteristics of contactors and instantaneous contact blocks				
Number of auxiliary contacts	On LC•K or LP•K 3-pole			1
	On LA1K			2 or 4
Rated operational voltage (Ue)	Up to		v	690
Rated insulation voltage (Ui)	Conforming to IEC 60947		v	690
	Conforming to UL 60947-5-1, CSA C22.2 n ${ }^{\circ}$ 60947-5-1		v	600
Conventional thermal current (lth)	For ambient temperature $\leqslant 50^{\circ} \mathrm{C}$		A	10
Frequency of the operational current			Hz	Up to 400
Minimum switching	\underline{U} min		v	17
capacity	1 min		mA	5
Short-circuit protection	Conforming to IEC 60947, gG fuse		A	10
Rated making capacity	Conforming to IEC 60947	1 rms	A	110
Short-time rating	Permissible for	1 s	A	80
		500 ms	A	90
		100 ms	A	110
Insulation resistance			$\mathrm{M} \Omega$	> 10
Non-overlap distance	LA1 K: linked co conforming to IN and CNA specifi		mm	0.5 (see schemes pages B8/98 and B8/100)

Power broken in VA

Power broken in W

Operational power of contacts conforming to IEC 60947

a.c. supply, category AC-15

Electrical durability (valid for up to 3600 operating cycles/hour) on an inductive load such as the coil of an electromagnet: making current $(\cos \varphi 0.7)=10$ times the power broken $(\cos \varphi 0.4)$.

Operating cycles	V	$\mathbf{2 4}$	$\mathbf{4 8}$	$\mathbf{1 1 0 /}$	$\mathbf{2 2 0 /}$	$\mathbf{3 8 0 /}$		$\mathbf{2 3 0}$
$\mathbf{1 2 7}$	$\mathbf{4 0 0}$	$\mathbf{4 4 0}$	$\mathbf{6 0 0 /}$					
million operating cycles	VA	48	96	240	440	800	880	1200
3 million operating cycles	VA	17	34	86	158	288	317	500
10 million operating cycles	VA	7	14	36	66	120	132	200
Occasional making capacity	VA	1000	2050	5000	10000	14000	13000	9000

d.c. supply, category DC-13

Electrical durability (valid for up to 1200 operating cycles/hour) on an inductive load such as the coil of an electromagnet, without economy resistor, the time constant increasing with the load.

Operating cycles	V	$\mathbf{2 4}$	$\mathbf{4 8}$	$\mathbf{1 1 0}$	$\mathbf{2 2 0}$	$\mathbf{4 4 0}$	$\mathbf{6 0 0}$
1 million operating cycles	W	120	80	60	52	51	50
3 million operating cycles	\mathbf{W}	55	38	30	28	26	25
10 million operating cycles	\mathbf{W}	15	11	9	8	7	6
Occasional making capacity	\mathbf{W}	720	600	400	300	230	200

1. Breaking limit of contacts valid for:

- maximum of 50 operating cycles at 10 s intervals (power broken $=$ making current $x \cos \varphi 0.7)$.

2. Electrical durability of contacts for:

- 1 million operating cycles (2a)
- 3 million operating cycles (2b)
- 10 million operating cycles (2c).

3. Breaking limit of contacts valid for:

■ maximum of 20 operating cycles at 10 s intervals with current passing for 0.5 s per operating cycle.
4. Thermal limit.

Dimensions, mounting - TeSys K
TeSys contactors
TeSys K contactors

Contactors

LC1 K, LC7 K, LP1 K, LP4 K
On panel
On mounting rail AM1 DP200 or AM1 DE200 (־ 35 mm)

LA9 D973
On one asymmetrical rail DZ5 MB with clip-on mounting plates

On printed circuit board

Electronic time delay contact blocks

LA2 KT
On contactor

Suppressor modules
 LA4 K•

On contactor LC1 K or LP1 K

TeSys contactors

TeSys K contactors

Instantaneous auxiliary contacts LA1 K				
LA1 KN20, KN207, KN203	LA1 KN02, KN027, KN023	LA1 KN11, KN117, KN113		
$2 \mathrm{~N} / \mathrm{O}$	2 N/C	1 N/O + 1 N/C		
LA1 KN40, KN407, KN403	LA1 KN31, KN317, KN313	LA1 KN22, KN227, KN223	LA1 KN13, KN137, KN133	LA1 KN04, KN047, KN043
4 N/O	3 N/O + 1 N/C	$2 \mathrm{~N} / \mathrm{O}+2 \mathrm{~N} / \mathrm{C}$	1 N/O + 3 N/C	4 N/C

Terminal referencing conforming to standard EN 50012				
LA1 KN02M	LA1 KN11M	LA1 KN31M	LA1 KN22M	LA1 KN13M
$2 \mathrm{~N} / \mathrm{C}$	$1 \mathrm{~N} / \mathrm{O}+1 \mathrm{~N} / \mathrm{C}$	$3 \mathrm{~N} / \mathrm{O}+1 \mathrm{~N} / \mathrm{C}$	$2 \mathrm{~N} / \mathrm{O}+2 \mathrm{~N} / \mathrm{C}$	1 N/O + 3 N/C
LA1 KN11P		LA1 KN22P		
$1 \mathrm{~N} / \mathrm{O}+1 \mathrm{~N} / \mathrm{C}$		$2 \mathrm{~N} / \mathrm{O}+2 \mathrm{~N} / \mathrm{C}$		

Characteristics: pages B8/93 to B8/96	References: pages B8/40 to B8/43	Dimensions: page B8/97
B8/98 \quad Life Is OUn	Schneider	

Dimensions, mounting - TeSys K

TeSys contactors

TeSys K reversing contactors

Reversing contactors

LC2 K, LC8 K, LP2 K, LP5 K

On panel

On mounting rail AM1 DP200 or AM1 DE200 (ఒ 35 mm)

$2 \times$ LA9 D973

$2 \times$ DX1 AP25

On one asymmetrical mounting rail DZ5 MB with 2 clip-on mounting plates LA9 D973 or on 2 mounting plates DX1 AP25.

On printed circuit board for reversing contactors or 2 contactors mounted side by side.

Electronic time delay contact blocks LA2 KT

Suppressor modules

LA4 K•

> On reversing contactors LC2 K or LP2 K

Characteristics:	References:	Schemes:
pages $\mathrm{B} 8 / 93$ to $\mathrm{B} 8 / 96$	pages $\mathrm{B} 8 / 44$ to $\mathrm{B} 8 / 47$	page

Schemes - TeSys K
TeSys contactors
TeSys K reversing contactors

With Faston connectors or solder pins (printed circuit board)

$3 P+N / O$

4-pole reversing contactors		With Faston connectors or solder pins (printed		
Circuit board)			\quad LC8 K suppression device	LP5 K
:---				

Instantaneous auxiliary contacts LA1 K

 LA1 KN31, KN317, KN313 L

A1 KN22, KN227, KN223
erminal referencing conforming to standard EN 50012

Characteristics - TeSys SKGC
TeSys contactors
Mini-contactors TeSys LC1SKGC, for use in modular panels

Pole characteristics				
Mini-contactor type			LC1 SKGC2	LC1 SKGC3 and LC1 SKGC4
Conventional thermal current (Ith)	For ambient temperature $\leqslant 55^{\circ} \mathrm{C}$	A	20	20
Rated operational frequency		Hz	50/60	
Frequency limit of the operational current		Hz	up to 400	
Rated operational voltage (Ue)		V	690	
Rated making capacity	I rms conforming to IEC 60947	A	50	85
Rated breaking capacity (for $\mathrm{Ue} \leqslant 400 \mathrm{~V}$)	Conforming to IEC 60947 (Ims)	A	40	68
Permissible short time rating	In free air for a time " t " from cold state $\left(\theta \leqslant 55^{\circ} \mathrm{C}\right)$	A	40	60
Short-circuit protection	gl fuse $\mathrm{U} \leqslant 440 \mathrm{~V}$	A	20	20
Average impedance per pole	At lth and 50 Hz	$\mathrm{m} \Omega$	4	4
Maximum rated operational current	$\begin{array}{ll} \text { For temperature } & \text { AC-3 } \\ \leqslant 55^{\circ} \mathrm{C} & (\mathrm{Ue} \leqslant 400 \mathrm{~V}) \end{array}$	A	5	9
	AC-1	A	20	20
Use in category AC-1 resistive circuits, heating, lighting (Ue $\leqslant 440 \mathrm{~V}$)	Increase in rated operational current by paralleling of 2 poles	A	32	32
Auxiliary contact characteristics of mini-contactors				
Rated operational voltage (Ue)	Up to	v	690	
Rated insulation voltage (Ui)	Conforming to IEC 60947	V	690	
Conventional thermal current (Ith)	For ambient temperature $\leqslant 55^{\circ} \mathrm{C}$	A	10	
Frequency of the operational current		Hz	Up to 400	
Short-circuit protection	Conforming to IEC 60947, gl fuse	A	10	

Operational power of contacts conforming to IEC 60947

a.c. supply, category AC-15

Electrical durability (valid for up to 3600 operating cycles/hour) on an inductive load such as the coil of an electromagnet: making current $(\cos \varphi 0.7)=10$ times the power broken $(\cos \varphi 0.4)$.

	V	$\mathbf{2 4}$	$\mathbf{4 8}$	$\mathbf{1 1 0 /}$	$\mathbf{2 2 0 /}$	$\mathbf{3 8 0 /}$	$\mathbf{4 4 0}$
				$\mathbf{1 2 7}$	$\mathbf{2 3 0}$	$\mathbf{4 0 0}$	
mA	48	96	240	440	800	880	
3 million operating cycles	VA	17	34	86	158	288	317
10 million operating cycles	VA	7	14	36	66	120	132
Occasional making cycles capacity	VA	1000	2050	5000	10000	14000	13000

d.c. supply, category DC-13

Electrical durability (valid for up to 1200 operating cycles/hour) on an inductive load such as the coil of an electromagnet, without economy resistor, the time constant increasing with the load.

	V	$\mathbf{2 4}$	$\mathbf{4 8}$	$\mathbf{1 1 0}$	$\mathbf{2 2 0}$	$\mathbf{4 4 0}$	$\mathbf{4 4 0}$
1 million operating cycles	W	120	80	60	52	51	880
3 million operating cycles	W	55	38	30	28	26	317
10 million operating cycles	W	15	11	9	8	7	132
Occasional making capacity	W	720	600	400	300	230	13000

Mini-contactors TeSys LC1SKGC, for use in modular panels

Control circuit characteristics				
Mini-contactor type			LC1 SKGC2	LC1 SKGC3 and LC1 SKGC4
Rated control circuit voltage (Uc)		V	$\sim 24 \ldots 400$	
Control voltage limits ($\theta \leqslant 55^{\circ} \mathrm{C}$)	Operation		0.85...1.1 Uc	
	For drop-out		$\geqslant 0.20$ Uc	
Average coil consumption at $20^{\circ} \mathrm{C}$ and at Uc				
	Inrush	VA	16	23
	Sealed	VA	4.2	4.9
Heat dissipation		W	1.4	1.5
Operating time at $20^{\circ} \mathrm{C}$ and at Uc				
Between coil energisation and	opening of the N/C contacts	ms	8... 16	
	closing of the N/O contacts	ms	7... 14	
Between coil de-energisation and	opening of the N/O contacts	ms	6... 8	
	closing of the N/C contacts	ms	8... 10	
Maximum operating rate In operating cycles per hour			1200	
Mechanical durability at Uc $50 / 60 \mathrm{~Hz}$ coil in millions of operating cycles			10	

Use in category AC-3 (Ue $\leqslant 440 \mathrm{~V}$)

Control of 3-phase asynchronous squirrel cage motors with breaking whilst running.
The current broken (Ic) in category AC-3 is equal to the rated operational current of the motor.

1. LC1 SKGC2
2. LC1 SKGC3 and SKGC4
-- - - - only up to 415 V

Use in category AC-1 (Ue $\leqslant 440 \mathrm{~V}$)

Control of resistive circuits $(\cos \varphi \geqslant 0.95)$.
The current broken (Ic) in category AC-1 is equal to the current (le) normally drawn by the load.

Dimensions, mounting, schemes - TeSys SKGC
TeSys contactors
Mini-contactors TeSys LC1SKGC, for use in modular panels

Dimensions

Mini-contactors LC1 SKGC2

Dimensions
Mini-contactors LC1 SKGC3 and SKGC4

Mounting On panel

$$
\text { On mounting rail AM1 DP200 or AM1 DE200 (ఒ } 35 \mathrm{~mm} \text {) }
$$

2-pole mini-contactors
 LC1 SKGC2

4-pole mini-contactors

LC1 SKGC400

Presentation

TeSys GC contactors are designed for use in modular panels and enclosures. These contactors feature:

- Easy installation:
-quick clip-on fixing and locking onto 35 mm omega rail
םeasy connection by means of ready-to-tighten, captive, pozidrive screw terminals.

■ Compact size:

All units have a common depth of 60 mm and width in modules of 17.5 mm (width of one module: 17.5 mm).

■ User safety:

quse of materials conforming to strictest fire safety standards
alive parts protected against direct finger contact acompletely safe operation astate indication on front panel.

Standards

This range of modular contactors has been designed taking into account the requirements of international standard IEC 61095.
This standard is specific to "Electromagnetic contactors for domestic and similar use".
It has very strict requirements, meeting the expectations of users, with regard to the safety of equipment and persons in "premises and areas accessible to the public". Conformity with this standard makes it possible to obtain the following quality labels without the need for additional tests: NF-USE, VDE, CEBEC, etc.

Applications

TeSys GC modular contactors are designed for switching all single-phase, 3-phase or 4-phase loads up to 100 A .

Power switching

These contactors have multiple applications in industrial, agricultural and commercial premises, hospitals and the home, i.e. wherever switching of a specific supply is required:
■ lighting

- heating
- ventilation

■ motorised shutters or gates.

Modular equipment

Setting-up precautions

The contactor controls must be bounce free. If not, connect a coil suppression block 1 (GAP 21 or 23) across the coil terminals y 250 V .
When several contactors which operate at the same time are mounted side by side, a GAC 5 ventilation $1 / 2$ module 2 must be fitted every 2 contactors.

It is advisable to mount electronic units at the bottom of the modular panel and to separate them from electromechanical units by a space 3 equal to one module, or by 2 ventilation 1/2 modules (GAC 5).

Derating of contactors mounted in a modular enclosure if the temperature within the enclosure is $>40^{\circ} \mathrm{C}$.

Contactor rating	$\mathbf{4 0}{ }^{\circ} \mathrm{C}$	$\mathbf{5 0}{ }^{\circ} \mathrm{C}$	$\mathbf{6 0}^{\circ} \mathbf{C}{ }^{(1)}$
$\mathbf{1 6 A}$	16 A	14 A	13 A
$\mathbf{2 5 A}$	25 A	22 A	20 A
$\mathbf{4 0 \mathrm { A }}$	40 A	36 A	32 A
$\mathbf{6 3 \mathrm { A }}$	63 A	57 A	50 A
$\mathbf{1 0 0 \mathrm { A }}$	100 A	87 A	80 A

[^8]| Selection: | Characteristics: | References: |
| :--- | :--- | :--- |
| pages $\mathrm{B} 8 / 108$ to $\mathrm{B} 8 / 111$ | pages $\mathrm{B} 8 / 112$ and $\mathrm{B} 8 / 113$ | page $\mathrm{B} 8 / 54$ |

Contactor selection for lighting circuits - TeSys GC

Modular equipment

Modular contactors

Lighting (Maximum number of lamps depending on the power of each unit) Presentation of installations according to type of supply

■ Single-phase circuit, 230 V

■ 3-phase circuit, 230 V

The maximum number of lamps which can be operated per phase is equal to the number of lamps in the "single phase 230 V " table divided by $\sqrt{3}$.

■ 3-phase circuit, 400 V (with neutral)

The maximum number of lamps which can be operated per phase is equal to the total number of lamps in the "single-phase 230 V " table.

Contactor rating for a single-phase 230 V circuit (single-pole)											
Fluorescent lamps with starter											
Single fitting	Non corrected					With parallel correction					Contactor rating
P (W)	20	40	50	80	110	20	40	58	80	110	-
$\mathrm{I}_{\mathrm{B}}(\mathrm{A})$	0.39	0.43	0.70	0.80	1.2	0.19	0.29	0.46	0.57	0.79	-
$\mathrm{C}(\mu \mathrm{F})$	-	-	-	-	-	5	5	7	7	16	-
Maximum	22	20	13	10	7	15	15	10	10	5	16 A
num	30	28	17	15	10		20	15	15	7	25 A
	70	60	35	30	20	40	40	30	30	14	40 A
	100	90	56	48	32	60	60	43	43	20	63 A
Twin fitting	Non corrected					With series correction					Contactor rating
$\mathrm{P}(\mathrm{W})$	$2 \times 182 \times 362 \times 582 \times 802 \times 140$					$2 \times 182 \times 362 \times 582 \times 802 \times 140$					-
$\mathrm{I}_{\mathrm{B}}(\mathrm{A})$	0.44	0.82	1.34	1.64	2.2	0.26	0.48	0.78	0.96	1.3	-
$\mathrm{C}(\mu \mathrm{F})$	-	-	-	-	-	3.5	4.5	7	9	18	-
Maximum	20	11	7	5	4	30	17	10	9	6	16 A
	30	16	10	8	6		25	16	13	10	25 A
	50	26	16	13	10	80	43	27	22	16	40 A
	75	42	25	21	16	123	67	42	34	25	63 A

High pressure mercury vapour lamps

	Non corrected						With parallel correction							Contactor rating -
$\mathrm{P}(\mathrm{W})$	50	80	125	250	400	700	50	80	125	250	400	700	1000	
$\mathrm{I}_{\mathrm{B}}(\mathrm{A})$	0.6	0.8	1.15	2.15	3.25	5.4	0.35	0.50	0.7	1.5	2.4	4	5.7	-
$\mathrm{C}(\mu \mathrm{F})$	-	-	-	-	-	-	7	8	10	18	25	40	60	-
Maximum number of lamps	15	10	8	4	2	1	10	9	9	4	3	2	-	16 A
	20	15	10	6	4	2	15	13	10	6	4	2	1	25 A
	34	27	20	10	6	4	28	25	20	11	8	5	3	40 A
	53	40	28	15	10	6	43	38	30	17	12	7	5	63 A

[^9]C: unit capacitance for each lamp.
I_{B} and \mathbf{C} correspond to values normally quoted by lamp manufacturers

Modular equipment

Modular contactors

[^10]| Characteristics: | References: | Dimensions, schemes: |
| :--- | :--- | :--- |
| pages $B 8 / 112$ and $B 8 / 113$ | page $B 8 / 54$ | pages $B 8 / 114$ and $B 8 / 115$ |

Heating (AC-7a)
Single-phase, 2-pole switching

3-phase switching

Heating by resistive elements or by infra-red radiators, convectors or radiators, heating ducts, industrial furnaces. The current peak between the hot and cold states must not exceed 2 to 3 In at the moment of switch-on.

Contactor selection according to power and required electrical life						
Electrical durability (in operating cycles)	Maximum power (kW)					Contactor rating
	100×10^{3}	150×10^{3}	200×10^{3}	500×10^{3}	10^{6}	
Single-phase switching 230 V (2-pole)	3.5	3	2.2	1	0.8	16 A
	5.4	4.6	3.5	1.6	1.2	25 A
	8.6	7.4	5.6	2.6	1.9	40 A
	13.6	11.6	8.8	4	3	63 A
	21.6	18.4	14	6.4	4.8	100 A
$\begin{aligned} & \text { 3-phase switching } \\ & 400 \mathrm{~V} \\ & \text { (3-pole) } \end{aligned}$	10	9	6.5	3.2	2.2	16 A
	16	14	10	5	3.5	25 A
	26	22	17	7.5	6	40 A
	41	35	26.5	12	9	63 A
	64.8	55.2	42	19.2	14.4	100 A

Contactor selection for motor control - TeSys GC

Modular equipment

Modular contactors

Motor control (AC-7b)
Single-phase circuit, 230 V

3-phase circuit, 400 V

Contactor selection according to maximum power in kW		
230 V single-phase capacitor motor (2-pole)	400 V 3-phase motor	Contactor rating (Ith)
0.55	2.2	$\mathbf{1 6 \mathrm { A }}$
1.1	4	$\mathbf{2 5 A}$
2.2	7.5	40 A
4	11	63 A

Characteristics - TeSys GC

Modular equipment

TeSys GC standard contactors

Environment							
Contactor type			GC16	GC25	GC40	GC63	GC100
Rated insulation voltage (Ui)	Conforming to IEC 61095	V	500				
	Conforming to VDE 0110	V	500				
Rated impulse withstand voltage (Uimp)		kV	4 in enclosure				
Conforming to standards			IEC 61095 and IEC 60947-5-1 for auxiliary contacts				
Degree of protection	Conforming to IEC 60529		Protection against direct finger contact (IP 20 open, IP 40 in enclosure)				
Ambient air temperature around the device	Storage	${ }^{\circ} \mathrm{C}$	-40...+70				
	Operation	${ }^{\circ} \mathrm{C}$	$-5 \ldots+50$ (0.85...1.1 Uc)				
Maximum operating altitude	Without derating	m	3000				
Operating positions	Without derating		$\pm 30^{\circ}$ in relation to normal vertical mounting plane				
Shock resistance $1 / 2$ sine wave $=10 \mathrm{~ms}$	Contactor open		10 gn				
	Contactor closed		15 gn				
Vibration resistance$5 \ldots 300 \mathrm{~Hz}$	Contactor open		2 gn				
	Contactor closed		3 gn				
Flame resistance			Conforming to IEC 61095				

Pole characteristics

Number of poles			2,3 or 4				
Rated operational current (le) (Ue $\leqslant 440 \mathrm{~V}$)	In AC-7a (heating)	A	16	25	40	63	100
	In AC-7b (motor control)	A	5	8.5	15	25	-
Rated operational voltage (Ue)	Up to	V	250 two-pole contactors, 415 three and four-pole contactors				
Frequency limits	Of the operating current	Hz	400				
Conventional thermal current (lth)	$\theta \leqslant 50^{\circ} \mathrm{C}$	A	16	25	40	63	100
Rated breaking and making capacity Conforming to IEC 61095 (AC-7b) I rms 400 V 3-phase		A	40	68	120	200	-
Permissible short time rating no current flowing for preceding 15 minutes with $\mathrm{q} \leqslant 40^{\circ} \mathrm{C}$	For 10 s	A	128	200	320	504	800
	For 30 s	A	40	62	100	157	250
Short-circuit protection by fuse or circuit breaker $\mathrm{U} \leqslant 440 \mathrm{~V}$	gl fuse	A	16	25	40	63	100
	Circuit breaker ${ }^{2} \mathrm{t} 232 \mathrm{~V}$	$A^{2} \mathrm{~s}$	5000	10000	16000	18000	-
	(at 3 kArms prospective) $\quad 400 \mathrm{~V}$	$A^{2} \mathrm{~s}$	9000	14000	17500	20000	-
Electrical durability in operating cycles	AC-7a, AC-7b		100000	100000	100000	100000	30000
Average impedance per pole	At lth and 50 Hz	$\mathrm{m} \Omega$	2.5	2.5	2	2	1
Power dissipated per pole	For the above operational currents	W	0.65	1.6	3.2	8	10
Maximum cabling Flexible cable c.s.a. without cable end	1 conductor	mm^{2}	6	6	25	25	35
	2 conductors	mm^{2}	4	4	16	16	-
Flexible cable with cable end	1 conductor	mm^{2}	6	6	16	16	35
	2 conductors	mm^{2}	1.5	1.5	4	4	-
Solid cable without cable end	1 conductor	mm^{2}	6	6	25	25	35
	2 conductors	mm^{2}	4	4	6	6	10
Tightening torque	Power circuit connections	N.m	0.8	0.8	3.5	3.5	3.5

Selection:	References:	Dimensions, schemes:
pages B8/108 to B8/111	peage pages B8/54	

Characteristics - TeSys GC

Modular equipment

TeSys GC standard contactors

Control circuit characteristics						
Contactor type			GC16, GC25 single or 2-pole	GC16, GC25 3 or 4-pole GC40, GC63 2-pole	$\begin{aligned} & \text { GC40, GC63 } \\ & \text { 3 or 4-pole } \\ & \text { GC100 } \\ & \text { 2-pole } \end{aligned}$	$\begin{aligned} & \text { GC100 } \\ & \text { 4-pole } \end{aligned}$
Rated control circuit voltage (UC)	50 or 60 Hz	v	$12 . .240 \mathrm{~V}$, for other voltages, please consult your Regional Sales Office			
Control voltage limits $\quad 50 \mathrm{~Hz}$ coils$\left(\theta \leqslant 50^{\circ} \mathrm{C}\right)$	Operational		0.85...1.1 Uc			
	Drop-out		0.2...0.75 Uc			
Average coil $\sim 50 \mathrm{~Hz}$ consumption at $20^{\circ} \mathrm{C}$ and at Uc	Inrush	VA	15	34	53	106
	Sealed	VA	3.8	4.6	6.5	13
Maximum heat dissipation	$50 / 60 \mathrm{~Hz}$	w	1.3	1.6	2.1	4.2
Operating time	Closing "C"	ms	10... 30			
	Opening "O"	ms	10... 25			
Mechanical durability	In operating cycles		10^{6}			
Maximum operating rate at ambient temperature $\leqslant 50^{\circ} \mathrm{C}$	In operating cycles per hour		300			
Maximum cabling c.s.a.	1 or 2 conductors	mm^{2}	2.5			
	1 conductor	mm^{2}	2.5			
	2 conductors	mm^{2}	1.5			
	1 or 2 conductors	mm^{2}	1.5			
Tightening torque		N.m	0.8			
Instantaneous auxiliary contact characteristics						
Rated operational voltage (Ue)	Up to	v	250			
Rated insulation voltage (Ui)	Conforming to IEC 60947-5	v	500			
	Conforming to VDE 0110	v	500			
Conventional thermal current (Ith)	For ambient $\theta \leqslant 50^{\circ} \mathrm{C}$	A	5			
Mechanical durability	Operating cycles		10^{6}			
Maximum cabling c.s.a.	Flexible or solid conductor	mm ${ }^{2}$	2.5			
Tightening torque		N.m	0.8			

Dimensions - TeSys GC

Modular equipment

TeSys GC standard contactors
Contactors

Dimensions, schemes - TeSys GC

Modular equipment

TeSys GC standard contactors

Dimensions
Auxiliary contacts GAC 0511, 0531 and 0521

Coil suppression blocks

 GAP 21 and 23

Clip-on ventilation $1 / 2$ module
GAC 5

Schemes			
Contactors			
GC ••10	GC ••20	GC ••30	GC ••40

GC © ${ }^{11}$	GC © 22	GC © 02	GC © 04

Auxiliary contacts					
GAC 0521		GAC 0531		GAC 0511	
	$\underset{\sim}{\underset{\sim}{\sim}} \underset{\sim}{2}$		$\stackrel{\mathrm{O}}{\substack{N \\ N}} \mid$		$\stackrel{\text { O}}{\text { ¢ }}$
$\stackrel{+}{+}$	\mathbb{N}	$\stackrel{ \pm}{\stackrel{7}{2}}$	$\stackrel{~}{~ N}$		

GY 25

Presentation

TeSys GY "dual tariff" contactors are designed for use in modular panels and enclosures.
These contactors feature:
■ Easy installation:
aquick clip-on fixing and locking onto 35 mm omega rail
口easy connection by means of ready-to-tighten captive, pozidrive screw terminals.

- Compact size

All units have a common depth of 60 mm and width in modules of 17.5 mm (width of one module: 17.5 mm).

■ User safety:

םuse of materials conforming to strictest fire safety standards
alive parts protected against direct finger contact acompletely safe operation astate indication on front panel.
"Dual tariff" contactors are designed for use with Electricity Supply Authority dual tariffs.
They have a 4-position selector switch on the front panel:

"Stop" (O)	For switching off the load, e.g. for prolonged periods of absence.
"Off peak"	The contactor switches automatically during "off peak" hours as set by the Supply Authority remote control and thus supplies the load, (washing machine, dishwasher, convector heater, water heater) during this period, at an economy rate to the user.
"Peak time"	In this position, the contactor supplies the load to cater for additional requirements for hot water, heating, etc., but at the standard rate. The contactor returns automatically to the "off-peak" position at the start of the "off-peak" period.
Manual start (I)	Facility for setting the contactor to continuous manual operation, ignoring the automation system and the Supply Authority control; setting and locking is achieved by means of a tool, with manual return to the "AUTO" position.
"Peak time"	
Manual override with lock	

Standards

This range of modular contactors has been designed taking into account the requirements of international standard IEC 61095.
This standard is specific to "Electromagnetic contactors for domestic and similar use".
It has very strict requirements, meeting the expectations of users, with regard to the safety of equipment and persons in "premises and areas accessible to the public". Conformity with this standard makes it possible to obtain the following quality labels without the need for additional tests: NF-USE, VDE, CEBEC, etc.
"Dual tariff" modular contactors are designed for switching all single-phase, 3-phase or 4-phase loads up to 63 A.

TeSys GY contactors have multiple applications in industrial, agricultural and commercial premises, hospitals and the home, i.e. wherever switching of a specific supply is required:
■ lighting,

- heating, ventilation

■ motorised shutters or gates.

Modular equipment
TeSys GY "dual tariff" contactors

Setting-up precautions

The contactor controls must be bounce free. If not, connect a coil suppression block 1 (GAP 21 or 23) across the coil terminals $\leqslant 250 \mathrm{~V}$.
When several contactors which operate at the same time are mounted side by side, a GAC 5 ventilation $1 / 2$ module 2 must be fitted every 2 contactors.

It is advisable to mount electronic units at the bottom of the modular panel and to separate them from electromechanical units by a space equal to one module 3 or by 2 ventilation $1 / 2$ modules GAC 5 .

Derating of contactors mounted in a modular enclosure if the temperature within the enclosure is $>40^{\circ} \mathrm{C}$.

Contactor rating	$\mathbf{4 0}{ }^{\circ} \mathbf{C}$	$\mathbf{5 0}{ }^{\circ} \mathbf{C}$	$\mathbf{6 0}^{\circ} \mathbf{C}{ }^{(1)}$
16 A	16 A	14 A	13 A
25 A	25 A	22 A	20 A
40 A	40 A	36 A	32 A
63 A	63 A	57 A	50 A

(1) Ventilation $1 / 2$ module must be fitted.

Characteristics - TeSys GY

Modular equipment

TeSys GY "dual tariff" contactors

Environment						
Type			GY 16	GY 25	GY 40	GY 63
Rated insulation voltage (Ui)	Conforming to IEC 61095	v	500			
	Conforming to VDE 0110	v	500			
Rated impulse withstand voltage (Uimp)		kV	4 in enclosure			
Conforming to standards			IEC 61095 and IEC 60947-5-1 for auxiliary contacts			
Product certifications			NF-USE, VDE, CEBEC, ÖVE			
Degree of protection	Conforming to IEC 60529		Protection against direct finger contact IP 20 open, IP 40 in enclosure			
Ambient air temperature around the device	Storage	${ }^{\circ} \mathrm{C}$	$-40 \ldots+70$			
	Operation	${ }^{\circ} \mathrm{C}$	-5...+50 (0.85...1.1 Uc)			
Maximum operating altitude	Without derating	m	3000			
Operating positions	Without derating		$\pm 30^{\circ}$ in relation to normal vertical mounting plane			
Shock resistance $1 / 2$ sine wave = 11 ms	Contactor open		10 gn			
	Contactor closed		15 gn			
Vibration resistance 5... 300 Hz	Contactor open		2 gn			
	Contactor closed		3 gn			
Flame resistance			Conforming to IEC 61095			

Pole characteristics

Number of poles			2,3 or 4			
Rated operational current (le) (Ue $\leqslant 440 \mathrm{~V}$)	In AC-7a (heating)	A	16	25	40	63
	In AC-7b (motor control)	A	5	8.5	15	25
Rated operational voltage (Ue)	Up to	V	250-2-pole contactors, 415-3 and 4-pole contactors			
Frequency limits	Of the operating current	Hz	400			
Conventional thermal current (Ith)	$\theta \leqslant 50^{\circ} \mathrm{C}$	A	16	25	40	63
Rated breaking and making capacity	Conforming to IEC 61095 (AC-7b) I rms 400 V 3-phase	A	40	68	120	200
Short time rating with no current flow for the previous previous 15 minutes with $\theta \leqslant 40^{\circ} \mathrm{C}$ For 10 s 30 s		A	128	200	320	504
		A	40	62	100	157
Short-circuit protection by fuse or circuit breaker $\mathrm{U} \leqslant 440 \mathrm{~V}$ gl fuse		A	16	25	40	63
Circuit breaker ${ }^{12} \mathrm{t}$ (at 3 kA rms prospective)	230 V	$A^{2} \mathrm{~s}$	5000	10000	16000	18000
	400 V	$A^{2} \mathrm{~s}$	9000	14000	17500	20000
Electrical durability in operating cycles	AC-7a, AC-7b		100000	100000	100000	100000
Average impedance per pole	At lth and 50 Hz	$\mathrm{m} \Omega$	2.5	2.5	2	2
Power dissipated per pole	For the above operational currents	W	0.65	1.6	3.2	8
Maximum cabling c.s.a. Flexible cable without cable end	1 conductor	mm ${ }^{2}$	6	6	25	25
	2 conductors	mm^{2}	4	4	16	16
Flexible cable with cable end	1 conductor	mm ${ }^{2}$	6	6	16	16
	2 conductors	mm^{2}	1.5	1.5	4	4
Solid cable without cable end	1 conductor	mm^{2}	6	6	25	25
	2 conductors	mm^{2}	4	4	6	6
Tightening torque	Power circuit connections	N.m	0.8	0.8	3.5	3.5

Selection: \quad References: \quad Dimensions and schemes:

B8/118 Life Is Un $\begin{gathered}\text { Schneider } \\ \text { BElectric }\end{gathered}$

Characteristics - TeSys GY

Modular equipment

TeSys GY "dual tariff" contactors

Control circuit characteristics					
Type			GY 16, GY 25 single or 2-pole	GY 16, GY 25 3 or 4-pole	GY 40, GY 63 3 or 4-pole
				$\begin{aligned} & \text { GY 40, GY } 63 \\ & \text { 2-pole } \end{aligned}$	
Rated control circuit voltage (Uc)	50 or 60 Hz	V	12... 240 V , for other voltages, please consult your Regional Sales Office		
Control voltage limits ($\theta \leqslant 50^{\circ} \mathrm{C}$)					
50 Hz coils	Operational		0.85...1.1 Uc		
	Drop-out		0.2..0.75 Uc		
Average consumption at $20^{\circ} \mathrm{C}$ and at Uc					
$\sim 50 \mathrm{~Hz}$	Inrush	VA	15	34	53
	Sealed	VA	3.8	4.6	6.5
Heat dissipation	$50 / 60 \mathrm{~Hz}$	W	1.3	1.6	2.1
Operating time	Closing "C"	ms	10... 30		
	Opening "O"	ms	$10 \ldots 25$		
Mechanical durability	In operating cycles		10^{6}		
Maximum operating rate at ambient temperature $\leqslant 50^{\circ} \mathrm{C}$	In operating cycles per hour		300		
Maximum cabling c.s.a.					
Flexible cable without cable end	1 or 2 conductors	mm ${ }^{2}$	2.5		
Flexible cable with cable end	1 conductor	mm^{2}	2.5		
	2 conductors	mm^{2}	1.5		
Solid cable without cable end	1 or 2 conductors	mm ${ }^{2}$	1.5		
Tightening torque		N.m	0.8		
Instantaneous auxiliary contact characteristics					
Rated operational voltage (Ue)	Up to	V	250		
Rated insulation voltage (Ui)	Conforming to IEC 60947-5	V	500		
	Conforming to VDE 0110	V	500		
Conventional thermal current (Ith)	For ambient $\theta \leqslant 50^{\circ} \mathrm{C}$	A	5		
Mechanical durability	In operating cycles		10^{6}		
Maximum cabling c.s.a.	Flexible or solid conductor	mm ${ }^{2}$	2.5		
Tightening torque		N.m	0.8		

| Selection: | References:
 pages B8/108 to B8/111 | page B8/55 |
| :--- | :--- | :--- |\quad| Dimensions and schemes: |
| :--- |
| pages B8/120 and B8/121 |

Dimensions - TeSys GY

Modular equipment

TeSys GY "dual tariff" contactors

Dimensions

"Dual tariff" contactors

Common side view
GY 4020 GY 6320

GY 4030, 4040
2 modules
3 modules

[^11]Dimensions, schemes - TeSys GY

Modular equipment

TeSys GY "dual tariff" contactors

Dimensions

Auxiliary contacts
GAC 0511, 0531 and 0521

Coil suppression block GAP 21 and 23

Clip-on ventilation $1 / 2$ module

GAC 5

Schemes			
Contactors			
GY 0020	GY $0 \cdot 30$	GY 0.40	GY $0 \cdot 11$

GF 1611M7

Presentation

TeSys GF impulse relays are designed for use in modular enclosures.
They feature:
■ Easy installation:
-quick clip-on fixing and locking onto 35 mm omega rail
-easy connection by means of ready-to-tighten captive, pozidrive screw terminals.

- Compact size

Units have a common depth of 60 mm and width of 18 mm .
■ User safety:

- live parts protected against direct finger contact -completely safe operation -state indication on front panel.

Standards

This range of modular impulse relays has been designed taking into account the requirements of international standard IEC 60669-2.
This standard is specific to "Impulse relays".
Conformity with this standard makes it possible to obtain the following quality labels without the need for additional tests: NF-USE, VDE, CEBEC, etc.

Functions

Modular impulse relays are designed for opening and closing of circuits which are remotely controlled by impulses. The position is mechanically maintained.
These impulse relays are used in lighting circuits when there are more than two switching points.

Power switching

TeSys GF impulse relays have multiple applications in industrial, agricultural and commercial premises, hospitals and the home, i.e. wherever switching of a specific lighting supply is required.

Selection for lighting and heating circuits - TeSys GF

Modular equipment

TeSys GF impulse relays

Lighting circuits Fluorescent lamps with starter Single fitting Non corrected
Power in W

Incandescent lamps: halogen lamps				
Power in W	300	500	1000	1500
Number of lamps	5	3	1	1

Incandescent lamps: very low voltage halogen lamps				
Power in W	20	50	75	100
Number of lamps	70	28	19	4

Low pressure sodium vapour lamps 				
Nower in W	55	90	135	180
Number of lamps	24	15	10	7

Heating circuits
Single-phase 230 V, 2-pole
Power in kW 3.6

Characteristics - TeSys GF

Modular equipment

TeSys GF impulse relays

Characteristics - TeSys GF

Modular equipment

TeSys GF impulse relays

Control circuit characteristics			
Rated control circuit voltage (Uc)		v	12... 240 V , for other voltages, please consult your Regional Sales Office
Control voltage limits $\left(\theta<50^{\circ} \mathrm{C}\right)$	Operating threshold, dual frequency $50 / 60 \mathrm{~Hz}$	v	0.85...1.1 Uc
Average consumption at $20^{\circ} \mathrm{C}$ and at Uc	Inrush at 50 Hz	VA	19
Operating time	Closing "C"	ms	70
	Opening "O"	ms	70
Minimum impulse time		ms	70
Mechanical durability			10^{6} operating cycles
Electrical durability			
	AC-21		200000 operating cycles
	AC-22		100000 operating cycles
Maximum operating rate	Operating cycles per hour		900
Maximum cabling c.s.a. Flexible cable 1 or 2 conductors mm^{2} without cable end			
Flexible cable with cable end	1 conductor	mm ${ }^{2}$	2.5
	2 conductors	mm^{2}	1.5
Solid cable without cable end	1 or 2 conductors	mm^{2}	1.5
Tightening torque		N.m	0.8

| Presentation: | Selection:
 page B8/123 | References:
 page B8/122 | page B8/56 |
| :--- | :--- | :--- | :--- |\quad| Dimensions, schemes: |
| :--- |

Dimensions, schemes - TeSys GF

Modular equipment

TeSys GF impulse relays

Dimensions
GF 1610, GF 1611, GF 1620

General - TeSys SK, K, D, GC, GY, GF

Technical information

Tests according to standard utilisation categories conforming to IEC 60947-4-1 and 5-1

Contactors													
		Electrical durability: making and breaking conditions						Occasional duty: making and breaking conditions					
a.c. supply													
Typical applications	Utilisation category	Making			Breaking			Making			Breaking		
			U	$\boldsymbol{\operatorname { c o s }} \varphi$	1	U	$\boldsymbol{\operatorname { c o s }} \varphi$		U	$\boldsymbol{\operatorname { c o s }} \varphi$		U	$\boldsymbol{\operatorname { c o s }} \varphi$
Resistors, non inductive or slightly inductive loads	AC-1	le	Ue	0.95	le	Ue	0.95	1.5 le	1.05 Ue	0.8	1.5 le	1.05 Ue	0.8
Motors													
Slip ring motors: starting, breaking.	AC-2	2.5 le		0.65	2.5 le	Ue	0.65	4 le	1.05 Ue	0.65	4 le	1.05 Ue	0.65
Squirrel cage motors: starting, breaking whilst motor running.	AC-3												
	le ${ }^{(1)}$	6 le	Ue	0.65	1 le	0.17 Ue	0.65	10 le	1.05 Ue	0.45	8 le	1.05 Ue	0.45
	le> ${ }^{(2)}$	6 le	Ue	0.35	1 le	0.17 Ue	0.35	10 le	1.05 Ue	0.35	8 le	1.05 Ue	0.35
Squirrel cage motors: starting, reversing, inching	AC-4												
	le ${ }^{(1)}$	6 le	Ue	0.65	6 le	Ue	0.65	12 le	1.05 Ue	0.45	10 le	1.05 Ue	0.45
	le $>{ }^{(2)}$	6 le	Ue	0.35	6 le	Ue	0.35	12 le	1.05 Ue	0.35	10 le	1.05 Ue	0.35
d.c. supply													
Typical applications	Utilisation category	Making			Breaking			Making			Breaking		
Resistors, non inductive or slightly inductive loads	DC-1	le	Ue	1	le	Ue	1	1.5 le	1.05 Ue	1	1.5 le	1.05 Ue	1
Shunt wound motors: starting, reversing, inching	DC-3	2.51 le		2	2.51 le	Ue	2	4 le	1.05 Ue	2.5	4 le	1.05 Ue	2.5
Series wound motors: starting, reversing, inching	DC-5	2.51 le	Ue	7.5	2.51 le	Ue	7.5	4 le	1.05 Ue	15	4 le	1.05 Ue	15
Control relays and auxiliary contacts													
		Electrical durability: making and breaking conditions						Occasional duty: making and breaking conditions					
a.c. supply													
Typical applications	Utilisation category	Making		$\boldsymbol{\operatorname { c o s }} \varphi$	Breaking		$\boldsymbol{\operatorname { c o s }} \varphi$	Making			Breaking		
Electromagnets													
$\leqslant 72 \mathrm{VA}$	AC-14	-	-	-	-	-	-	6 le	1.1 Ue	0.7	6 le	1.1 Ue	0.7
> 72 VA	AC-15	10 le	Ue	0.7	le	Ue	0.4	10 le	1.1 Ue	0.3	10 le	1.1 Ue	0.3
d.c. supply													
Typical applications	Utilisation category	Making			Breaking			Making			Breaking		
			U	L/R (ms)		U	L/R (ms)		U	L/R (ms)	1	U	L / R (ms)
Electromagnets	DC-13	le	Ue	$6 \mathrm{P}^{(3)}$	le	Ue	$6 \mathrm{P}^{(3)}$	1.1 le	1.1 Ue	$6 \mathrm{P}^{(3)}$	1.1 le	1.1 Ue	$6 \mathrm{P}^{(3)}$

[^12](3) The value $6 P$ (in watts) is based on practical observations and is considered to represent the majority of d.c. magnetic loads up to the maximum limit of $P=50$ Wi.e. $6 P=300 \mathrm{~ms}=L / R$
Above this, the loads are made up of smaller loads in parallel. The value 300 ms is therefore a maximum limit whatever the value of current drawn.

Presentation - TeSys SK, K, D, GC, GY, GF
TeSys contactors
For the North American market Conforming to UL and CSA

Motor Disconnect (Disconnect switch)
2 Motor Branch Circuit Protection
(Short-circuit protection)
3 Motor Controller (Contactor)
4 Motor Overload Protection (Thermal overload relay)

Starters for the North American market

In recent years, the North American market has started to harmonise UL, CSA and ANCE standards, as well as the industrial installation codes provided by national regulations (NEC for the United States, CEC for Canada and MEC for Mexico). ${ }^{(1)}$ Major improvements, carried out by the Canena ${ }^{(2)}$ are aimed at harmonising product requirements based on IEC ${ }^{(3)}$ standards.
However, the North American codes use specific terminology for defining the functions of a starter.
These functions can be fulfilled by standard IEC products, accompanied by appropriate certifications.

Combination Starters

Combination Starters are the most common type of packaged motor starter. They are called "Combination" because of their structure and their combined functions. The figure opposite shows the four combined functions that constitute a complete motor starter circuit, defined as a "Motor branch circuit" by the NEC (US National Electric Code) in article 430. Standard UL508 currently gives different types of combination starter that meet the requirements of a "Motor branch circuit".

Type E, called "self-protected combination starter", covers all these functions and can be controlled manually (thermal-magnetic circuit breaker) or remotely (starter-controller). Type E starters withstand faults within their declared nominal rating without sustaining damage, after which they can be put back into service. In addition, they can withstand more severe short-circuit and durability performance tests without welding or excessive wear of the contact tips.

Type F, called "Combination motor starter", consists of a type E manual starter (thermal-magnetic circuit breaker) combined with a contactor. These starters are evaluated by means of basic short-circuit tests, but are not considered as "self-protected".

For this combination, the type E starter must be marked "Combination Motor Controller when used with ...", followed by the reference of the load side contactor.

Control panels

To help users properly coordinate their motor control equipment with their distribution system in the event of a fault, article 409 of the 2005 NEC requires panel builders to list the short-circuit withstand rating of their motor control panels. According to standard UL508A, manufacturers must use the short-circuit withstand value of the lowest rated device as the nominal withstand rating of the panel, unless the devices have been tested together for a higher coordinated rating. The minimum "short-circuit current rating" (SCCR), on motor control components for horsepower ratings of 50 hp or below is 5000 A .

Using a type E or type F combination starter eliminates the coordination problems of using individual components for the "motor branch circuit protection", "motor controller" and "motor overload protection" functions.
The panel builder uses the declared short-circuit current rating for the combination starter. This value is generally higher than 5000 A
This makes it easier to list the short-circuit current ratings and to check the compatibility of a UL508A motor control panel within a given distribution system.

Group protection

Article 430.53 of the NEC allows a single short-circuit protection device to be used for more than one motor circuit if the components used are marked and listed for such use.
Components suitable for use in group protection, known as "motor group installations", can be marked in one of the following two ways:

Case $\mathrm{n}^{\circ} 1$

The contactor and the motor overload relay are both listed as suitable for group installation.
An inverse time circuit breaker can be used as the short-circuit protection device if it is also listed as suitable for group installation.
The panel builder must therefore make sure that the short-circuit protection device selected (fuses or inverse time circuit breaker) does not exceed the value allowed by article 430.40 for the smallest overload relay used in the circuit.
Once these conditions have been met, the panel builder can reduce the size of the conductor connecting the short-circuit protection device to the individual motor contactor/overload relay, to one third of the size of the upstream circuit conductor supplying the protection device.
The panel builder must limit the length of the motor starter conductor (connecting the short-circuit protection device to the motor contactor/overload relay) to a maximum of 7.6 m (25 feet).

Case ${ }^{\circ} 2$

The motor contactor and overload relay are listed as suitable for "tap conductor protection" in group installations.
This category allows the panel designer to reduce the size of the conductor connecting the short-circuit protection device to the individual motor contactor/overload relay, to one tenth of the size of the upstream circuit conductor supplying the protection device.
The designer must limit the length of this conductor to a maximum of 3.05 m (10 feet).
In both cases, the supply circuits must not be less than 125% of the connected motor FLA (Full Load Amps) rating.
For panel builders, using type F combination starters in group installations simplifies group motor considerations.
Each starter is a fully coordinated motor branch circuit.
The panel builder follows the same NEC requirements for sizing the supply conductors as those required for single motor branch circuits.
The size of the supply conductors can be reduced in accordance with the specifications of article 430.28.
This allows the same flexibility in conductor sizing as that offered in article 430.53
(D), without a requirement to check the short-circuit protection rating marked on the components and the overload relay limit.
A UL508A panel does not need a short-circuit protection device when each motor starter installed is a type F.
The upstream short-circuit protection device supplying the starter protects the panel. The panel builder only has to consider the panel/enclosure disconnect requirements specified by the NEC or local codes.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Relay Sockets \& Fixings category:
Click to view products by Schneider Electric manufacturer:

Other Similar products are found below :
M41G 7-1616360-5 8000-DG2-5 GDA12HA GDA12HD GDA12SA GDA12SD GDA16HD GDA22HA GDA95A GDA95D GFX20
GUA1 GUA2-11 GUA2-20 GUA4-04 GUA4-31 GUM5R GUR-120 GUR-24 GUR-240 GUR-277 GURX-277 GUW12 GUW95 GUZ32S GUZ63L GUZ95L AS-11 AX-4MS-40 1611434-8 2-1608090-3 PB-16 SM2S-61 SQ9Z-C SYSWINSMP AR-12MW GDA16HA GDA16SA GDA16SD GDA22HD GDA22SA GDA22SD GDA32HA GDA32HD GDA32SA GDA32SD GDA63A GDA63D GFX02

[^0]: (1) 1 on LH side for AC coils - 1 on RH side for AC/DC coils. (4) With red front face - for safety chain indication.
 (2) Device fitted with 4 earth screen continuity terminals.
 (5) LA1D $\bullet \bullet$ dust \& damp proof auxiliary contact blocks not (3) LC: Iow consumption. allowed.

[^1]: (1) For satisfactory protection, a suppressor module must be fitted across the coil of each contactor except for TeSys D Green ($\bullet E$ coil), as surge protection is already embedded.
 (2) From D09 to D65A and from LC1 DT20 to DT80A, d.c, low consumption or TeSys D Green 3-pole contactors are fitted with a built-in bidirectional peak limiting diode suppressor as standard. This bidirectional peak limiting diode is removable and can therefore be replaced by the user. (See reference above). If a d.c. or low consumption contactor is used without suppression, the standard suppressor should be replaced with a blanking plug (reference LAD 9DL for LC1 D09 to D38 and LC1 DT20 to DT40; reference LAD 9DL3 for LC1 D40A to D65A and LC1 DT60A to DT80A).
 (3) Clipping-on makes the electrical connection. The overall size of the contactor remains unchanged.
 (4) Mounting at the top of the contactor on coil terminals A1 and A2.
 (5) In order to install these accessories, the existing suppression device must first be removed.

[^2]: (1) To order the 2 contactors: see pages B8/3 and B8/16.
 (2) Order 2 contact blocks LAD N•1 to build the electrical interlock, see page B8/23.

[^3]: (1) The last 2 digits in the reference represent the voltage code.

[^4]: (1) BTR screws: hexagon socket head. In accordance with local electrical wiring regulations, a size 4 insulated Allen key must be used (reference LAD ALLEN4, see page B8/29).
 (2) If cable ends are used, choose the next size down (example: for $2.5 \mathrm{~mm}^{2}$, use $1.5 \mathrm{~mm}^{2}$) and square crimp the cable ends using a special tool.

[^5]: LC1 D115・ゃ॰ and LC1 D150••॰ with -... coil: see page B8/74.

[^6]: B8/76

[^7]: | Selection: | Characteristics: | References: |
 | :--- | :--- | :--- |
 | pages A6/25 to A6/49 | pages B8/61 to B8/73 | pages B8/2 to |

[^8]: (1) Ventilation $1 / 2$ module must be fitted.

[^9]: I_{B} : value of current drawn by each lamp at its rated voltage.

[^10]: I_{B} : value of current drawn by each lamp at its rated voltage.
 C: unit capacitance for each lamp.
 I_{B} and \mathbf{C} correspond to values normally quoted by lamp manufacturers

[^11]: Contactors

[^12]: (1) $l e \leqslant 17$ A for electrical durability, le $\leqslant 100$ A for occasional duty.
 (2) $l e>17$ A for electrical durability, le >100 A for occasional duty.

