

Contactors TeSys SK, K, D, SKGC, GC, GY, GF

Contactors – TeSys D – TeSys D	Green		
Type of product	Range		Pages
AC-3 applications - 3-pole, 4-pole contactors	From 9 to 150 A		B8/2
AC-1 applications - 3-pole, 4-pole contactors	From 25 to 200 A		B8/3
UL CSA standards - 3-pole contactors	From 25 to 200 A		B8/8
AC/DC compatible coil contactors - TeSys D Green AC-3, AC-1, UL CSA	From 9 to 80 A		B8/9
Reversing, changeover pre-assembled contactors	From 9 to 150 A		B8/16
AC/DC compatible coil, reversing contactors - TeSys D Green	From 9 to 80 A		B8/18
Contactors for capacitor banks switching	From 12.5 to 60 kVAR		B8/21
Auxiliary contact blocks – accessories – spa	re coils for TeSys D, TeSys D Green		B8/23

Auxiliary contact blocks – accessories – spare coils for TeSys D, TeSys D Green

Mini contactors – TeSys SK, K		
Mini contactors TeSys SK	Up to 6 A	B8/38
Mini contactors TeSys K	From 6 to 16 A	B8/40
Reversing pre-assembled mini contactors TeSys K	From 6 to 16 A	B8/44
Auxiliary contact blocks - accessories		B8/49

Contactors for use in modul	ar enclosures / Din rail		
Mini contactors TeSys SKGC	Up to 20 A		B8/52
Modular contactors TeSys GC	From 16 to 100 A		B8/54
Dual tariff contactors TeSys GY	16, 25, 40 or 100 A		B8/55
Impulse relay TeSys GF	Up to 16 A		B8/56
Auxiliary contact blocks - accessories TeSys GC, GY			B8/57
Technical Data for Designers		ſ	38/59

TeSys contactors

TeSys D contactors for motor control up to 75 kW at 400 V, in category AC-3 For connection by screw clamp terminals and lugs

LC1 D25.

LC1 D95••

Contactors

LC1 D115.

	ard po Hz in c) °C)				ase mo	otors	Rated opera- tional current in AC-3	Insta taneo auxil conta	ous iary	Basic reference, to be completed by adding the control voltage code ⁽²⁾	Weight (3)
220 V 230 V		415 V	440 V	500 V	660 V 690 V	1000 V	[–] 440 V up to		7		
kW	kW	kW	kW	kW	kW	kW	A				kg
Conn	ectio	n by s	crew	clamp	o term	inals					
2.2	4	4	4	5.5	5.5	-	9	1	1	LC1D09ee	0.320
3	5.5	5.5	5.5	7.5	7.5	-	12	1	1	LC1D12ee	0.325
4	7.5	9	9	10	10	-	18	1	1	LC1D18ee	0.330
5.5	11	11	11	15	15	-	25	1	1	LC1D25ee	0.370
7.5	15	15	15	18.5	18.5	-	32	1	1	LC1D32ee	0.375
9	18.5	18.5	18.5	18.5	18.5	-	38	1	1	LC1D38ee	0.380
Powe	er con	nectio	ons by	y Ever	Link®	BTR so	rew conr	necto	rs (4) a	nd control by screw clamp terminal	
11	18.5	22	22	22	30	-	40	1	1	LC1D40Aee	0.850
15	22	25	30	30	33	-	50	1	1	LC1D50Aee	0.855
18.5	30	37	37	37	37	-	65	1	1	LC1D65Aee	0.860
22	37	37	37	37	37	-	66	1	1	LC1D80A.	0.860
Conn	ectio	n by s	crew	clamp	o term	inals or	connect	ors			
22	37	45	45	55	45	45	80	1	1	LC1D80	1.590
25	45	45	45	55	45	45	95	1	1	LC1D95ee	1.610
30	55	59	59	75	80	65	115	1	1	LC1D11500	2.500
40	75	80	80	90	100	75	150	1	1	LC1D150ee	2.500

Connection by lugs or bars

3-pole contactors

In the references selected above, insert a figure 6 before the voltage code. Example: LC1 D09ee becomes LC1 D096ee.

Separate components

Auxiliary contact blocks and add-on modules: see pages B8/23 to B8/29.

(1) LC1 D09 to D80A: clip-on mounting on 35 mm _rail AM1 DP or screw fixing.

- LC1 D80 to D95 ~: clip-on mounting on 35 mm 🖵 rail AM1 DP or 75 mm 🖵 rail AM1 DL or screw fixing. LC1 D80 to D95 ...: clip-on mounting on 75 mm 🖵 rail AM1 DL or screw fixing. LC1 D115 and D150: clip-on mounting on 2 x 35 mm 🖵 rails AM1 DP or screw fixing.

(2) Standard control circuit voltages (for other voltages, please consult your Regional Sales Office):

a.c. supply Volts	24	42	48	110	115	220	230	240	380	400	415	440	500
LC1 D09D150 (D115 and													500
50/60 Hz	B7	D7	E7	F7	FE7	M7	P7	U7	Q7	V7	N7	R7	S7
LC1 D09D65 (not availab						1017		07	QI	V1	117	TX/	
50 Hz	B5	D5	E5	o or bar	0)		P5						
LC1 D80D115													
50 Hz	B5	D5	E5	F5	FE5	M5	P5	U5	Q5	V5	N5	R5	S5
60 Hz	B6	_	E6	F6	_	M6	_	U6	Q6	_	_	R6	_
d.c. supply													
Volts	12	24	36	48	60	72	110	125	220	250	440		
LC1 D09D38 (coils with in	ntegral sup	pressio	n device	e fitted a	as stand	ard by					de)		
U 0.71.25 Uc	JD	BD	CD	ED	ND	SD	FD	GD	MD	UD	RD		
LC1 D40A D65A (coils with	th integral :	suppres	sion de	vice fitte	ed as st	andard	, by bi-d	irection	al peak	limiting	diode)		
U 0.751.25 Uc	JD	BD	CD	ED	ND	SD	FD	GD	MD	UD	RD		
LC1 D80D95													
U 0.851.1 Uc	JD	BD	CD	ED	ND	SD	FD	GD	MD	UD	RD		
U 0.751.2 Uc	JW	BW	CW	EW	-	SW	FW	-	MW	-	-		
LC1 D115 and D150 (coil wi	ith built-in s	suppres	sion de	vice as	standar	d)							
U 0.751.2 Uc	-	BD	-	ED	ND	SD	FD	GD	MD	UD	RD		
Low consumption													
Volts	5	12	20	24	48	110	220	250					
LC1 D09D38 (coils with in	ntegral sup	pressio	n devic	e fitted a	as stanc	lard, by	bi-dired	ctional p	eak lim	iting dia	ode)		
U 0.81.25 Uc	AL	JL	ZL	BL	EL	FL	ML	UL					
a.c. / d.c. supply - low	consum	ption											
See TeSys D Green, page	B8/13												
			_										

For other voltages between 5 and 690 V, see pages B8/32 to B8/35.

(3) The weights indicated are for contactors with a.c. control circuit. For d.c. or low consumption control circuit, add 0.160 kg from LC1 D09 to D38, 0.075 kg from LC1 D40A to D80A and 1 kg for LC1 D80 and D95.

(4) BTR screws: hexagon socket head. In accordance with local electrical wiring regulations, a size 4 insulated Allen key must be used (reference LAD ALLEN4, see page B8/29).

n

Selection:	Characteristics:	Dimensions:	Schemes:	Click HERE for access
pages A6/25 to A6/49	pages B8/61 to B8/73	pages B8/74 to B8/77	pages B8/81 to B8/82	
B8/2 Life Is On	Schneider Belectric			

TeSys contactors

TeSys D contactors for motor control up to 30 kW at 400 V, in category AC-3 For connection by spring terminals

LC1 D123.

LCD 80A3.

Standard power ratings of 3-phase motors 50-60 Hz in category AC-3 $(\theta \le 60 \ ^{\circ}C)$		o ci A	Rated Insta operational taneo current in auxili AC-3 440 V conta up to		us ary	Basic reference, to be completed by adding the control voltage code ⁽²⁾ Fixing ⁽¹⁾				
	/ 380 V / 400 V		440 V	500 V	660 V 10 690 V	00 V			7	
kW	kW	kW	kW	kW	kW kV	V A				
Pow	ver and	d cont	rol co	nnect	ions by s	spring t	terminals			
2.2	4	4	4	5.5	5.5	9		1	1	LC1D093.
3	5.5	5.5	5.5	7.5	7.5	12	2	1	1	LC1D123.
4	7.5	9	9	10	10	18	;	1	1	LC1D183.
5.5	11	11	11	15	15	25	5	1	1	LC1D253.
7.5	15	15	15	18.5	18.5	32	(4)	1	1	LC1D323.
Pow	ver cor	nnectio	ons by	y Ever	Link [®] BT	R scre	w conne	ctors	5) and	d control by spring terminals
11	18.5	22	22	22	30	40)	1	1	LC1D40A3••
15	22	25	30	30	33	50)	1	1	LC1D50A3ee
18.5	30	37	37	37	37	65	5	1	1	LC1D65A3.
22	37	37	37	37	37	66	;	1	1	LC1D80A3

Connection by Faston connectors

These contactors are fitted with Faston connectors: 2 x 6.35 mm on the power poles and 1 x 6.35 mm on the coil and auxiliary terminals

For contactors LC1 D09 and LC1 D12 only, replace the figure 3 with a 9 in the references selected above. Example: LC1 D093 •• becomes LC1 D099 ••.

Separate components

Auxiliary contact blocks and add-on modules: see pages B8/23 to B8/29.

(1) LC1 D09 to D32: clip-on mounting on 35 mm _r rail AM1 DP or screw fixing.

(2) Standard control circuit voltages (for other voltages, please consult your Regional Sales Office):

a.c. supply												
Volts	24	42	48	110	115	220	230	240	380	400	415	440
LC1 D09D80A												
50/60 Hz	B7	D7	E7	F7	FE7	M7	P7	U7	Q7	V7	N7	R7
d.c. supply												
Volts	12	24	36	48	60	72	110	125	220	250	440	
LC1 D09D32 (coils with integral suppression device fitted as standard, by bi-directional peak limiting diode)												
U 0.71.25 Uc	JD	BD	CD	ED	ND	SD	FD	GD	MD	UD	RD	
LC1 D40AD65A (coils with in	ntegral s	uppress	ion devi	ce fitted	as stan	dard, by	/ bi-dired	ctional p	eak limit	ing diod	e)	
U 0.751.25 Uc	JD	BD	CD	ED	ND	SD	FD	GD	MD	UD	RD	
Low consumption												
Volts	5	12	20	24	48	110	220	250				
LC1 D09D32 (coils with integ	ral supp	ression	device f	itted as	standar	d, by bi-	directior	nal peak	limiting	diode)		
U 0.81.25 Uc	AL	JL	ZL	BL	EL	FL	ML	UL				

For other voltages between 5 and 690 V, see pages B8/32 to B8/35.

(3) The weights indicated are for contactors with a c. control circuit. For d.c. or low consumption control circuit, add 0.160 kg from LC1 D09 to D32 and 0.075 kg from LC1 D40A to D80A. (4) Must be wired with 2 x 4 mm² cables in parallel on the upstream side. On the downstream side, outgoing terminal block LAD 331 may be used (Quickfit technology, see page B1/18). When wired with a single cable, the product is limited to 25 A (11 kW/400 V motors).

(5) BTR screws: hexagon socket head. In accordance with local electrical wiring regulations, a size 4 insulated Allen key must be used (reference LAD ALLEN4, see page B8/29).

Click HERE for access

B8/3

TeSys contactors

TeSys D, 3-pole contactors

For control in category AC-1, from 25 to 200 A

LC1 D80A...

3-pole contac	tors												
Non inductive	Numb	or	Inc	tan-		D.	asic r	oforo	200			10	eight
loads maximum	of po			eous			be co			ov ad	dina	**	(3)
current	or po	103		xiliary			ie con						
(θ ≤ 60 °C)	1	1	COI	ntacts	5				Ŭ				
utilisation category	ď	Ь.		1		Fi	ixing	2)				_	
AC-1	\mathbf{N}	7	1	I	1		-						
		(1	(
A	-	•											ka
Connection by so	row	lamr	n tori	mina	le								kg
25	3	namp	1	1	13	10	C1D0	9					0.320
20	0			'			C1D1						0.325
32	3		1	1			C1D1						0.330
40	3		1	1			C1D2						0.370
50	3		1	1			C1D3						0.375
00	0					_	C1D3						0.380
Connection by Ev	/erLir	nk®. B	STR s	screv	v coi	nnec	tors	(4)					
60	3	, _	1	1			C1D4						0.850
80	3		1	1			C1D5						0.855
						or L	C1D6	5A	(5)				0.860
						or L	C1D8	0Aee	(5)				0.860
Connection by so	rew c	lam	o teri	mina	ls or	con	nect	ors					
125	3		1	1			C1D8						1.590
125	5		1	1			C1D9						1.610
200	3		1	1			C1D1						2.500
200	0			'			C1D1		(6)				2.500
3-pole contac	tore	for	con	nec									2.000
In the references se										ltogr		_	
					0	·	b Delo	sie u	ie vo	nage	e cou	e.	
Example: LC1 D09 (1) Standard control cir							ease c	onsuli	t your	Regi	onal S	ales (Office):
a.c. supply													
Volts	24	42	40	440									
VUILS					115	220	220	240	200	400	115	110	500
1 C1 D09 D150 (1 C1			48				230						500
LC1 D09D150 (LC1	D115 a	and D'	150 co	oils wi	th bui	lt-in s	uppre	ssion	devic	e as	stand	ard)	
50/60 Hz	D115 a B7	and D' D7	150 co E7	oils wi F7	th bui FE7	ilt-in s M7	uppre P7	ssion U7					500 S7
50/60 Hz LC1 D09D65 (not av	D115 a B7 vailable	and D´ D7 e with	150 co E7 "conn	oils wi F7	th bui FE7	ilt-in s M7	uppre P7 r bars'	ssion U7	devic	e as	stand	ard)	
50/60 Hz LC1 D09D65 (not av 50 Hz	D115 a B7	and D' D7	150 co E7	oils wi F7	th bui FE7	ilt-in s M7	uppre P7	ssion U7	devic	e as	stand	ard)	
50/60 Hz LC1 D09D65 (not av 50 Hz LC1 D80D150	D115 a B7 vailable B5	and D7 D7 e with D5	150 co E7 "conn E5	oils wi F7 nectior	th bui FE7 h for lu	ilt-in s M7 ugs oi	P7 P7 r bars P5	U7 ")	devic Q7	ve as V7	stand N7	ard) R7	S7
50/60 Hz LC1 D09D65 (not av 50 Hz LC1 D80D150 50 Hz	D115 a B7 vailable B5 B5	and D´ D7 e with	150 co E7 "conn E5 E5	F7 F7 ectior F5	th bui FE7	ilt-in s M7 ugs or M5	uppre P7 r bars'	U7 U7) U5	devic Q7 Q5	e as	stand	ard) R7 R5	
50/60 Hz LC1 D09D65 (not av 50 Hz LC1 D80D150 50 Hz 60 Hz	D115 a B7 vailable B5	and D' D7 e with D5 D5	150 co E7 "conn E5	oils wi F7 nectior	th bui FE7 n for lu FE5	ilt-in s M7 ugs oi	P7 P7 r bars' P5 P5	U7 ")	devic Q7	ve as V7	stand N7	ard) R7	S7 S5
50/60 Hz LC1 D09D65 (not av 50 Hz LC1 D80D150 50 Hz 60 Hz d.c. supply	D115 a B7 vailable B5 B5 B6	and D ² D7 with D5 D5 –	150 cd E7 "conn E5 E5 E6	F7 hection F5 F6	th bui FE7 n for lu FE5 –	It-in s M7 ugs or M5 M6	P7 P7 r bars' P5 P5 -	U7 ") U5 U6	devic Q7 Q5 Q6	v7 V7 V5 –	stand N7 N5 –	ard) R7 R5	S7 S5
50/60 Hz LC1 D09D65 (not av 50 Hz LC1 D80D150 50 Hz 60 Hz d.c. supply Volts	D115 a B7 vailable B5 B5 B6 12	and D ² D7 e with D5 D5 – 24	150 cd E7 "conn E5 E5 E6 36	F5 F6 48	th bui FE7 n for lu FE5 - 60	It-in s M7 ugs of M5 M6 72	P7 r bars' P5 P5 - 110	U7 1) U5 U6	devic Q7 Q5 Q6 220	e as V7 V5 - 250	stands N7 N5 – 440	R7 R7 R5 R6	S7 S5 -
50/60 Hz LC1 D09D65 (not av 50 Hz LC1 D80D150 50 Hz 60 Hz d.c. supply Volts LC1 D09D38 (coils of the second sec	D115 a B7 vailable B5 B5 B6 12	and D ² D7 e with D5 D5 – 24	150 cd E7 "conn E5 E5 E6 36	F5 F6 48	th bui FE7 n for lu FE5 - 60	It-in s M7 ugs of M5 M6 72	P7 r bars' P5 P5 - 110	U7 1) U5 U6	devic Q7 Q5 Q6 220	e as V7 V5 - 250	stands N7 N5 – 440	R7 R7 R5 R6	S7 S5 -
50/60 Hz LC1 D09D65 (not av 50 Hz LC1 D80D150 50 Hz 60 Hz d.c. supply Volts LC1 D09D38 (coils of limiting diode)	D115 a B7 vailable B5 B5 B6 12 with int	and D ² D7 with D5 - 24 egral s	150 cd E7 "conn E5 E5 E6 36 suppr	F5 F6 F8 F6 F8 F6	th bui FE7 for lu FE5 - 60 n dev	M7 Ugs of M5 M6 72 ice fitt	P7 r bars' P5 P5 - 110 ted as	U7 () U5 U5 U6 125 () ()	devic Q7 Q5 Q6 220 dard, I	×e as V7 V5 – 250 by bi-	N7 N5 - 440	R7 R7 R5 R6	S7 S5 -
50/60 Hz LC1 D09D65 (not av 50 Hz LC1 D80D150 50 Hz 60 Hz d.c. supply Volts LC1 D09D38 (coils of limiting diode) U 0.71.25 Uc	D115 a B7 vailable B5 B5 B6 12 with int	and D ² D7 with D5 - 24 egral s	150 cd E7 "conn E5 E5 E6 36 suppr CD	F5 F6 F8 F8 F8 F6 F6 F6 F6 F6 F6 F6 F6 F6 F6 F6 F6 F6	th bui FE7 n for lu FE5 - 60 n dev ND	M7 M3 M5 M6 72 ice fitt	P7 r bars' P5 P5 P5 - 110 ted as	U7 U7 U5 U5 U6 125 stanc	devic Q7 Q5 Q6 220 dard, I MD	×e as V7 V5 – 250 Dy bi-	stand N7 N5 - 440 direct	R7 R7 R5 R6	S7 S5 –
50/60 Hz LC1 D09D65 (not av 50 Hz LC1 D80D150 50 Hz 60 Hz d.c. supply Volts LC1 D09D38 (coils of limiting diode)	D115 a B7 vailable B5 B5 B6 12 with int	and D ² D7 with D5 - 24 egral s	150 cd E7 "conn E5 E5 E6 36 suppr CD	F5 F6 F8 F8 F8 F6 F6 F6 F6 F6 F6 F6 F6 F6 F6 F6 F6 F6	th bui FE7 n for lu FE5 - 60 n dev ND	IIt-in s M7 ugs of M5 M6 72 ice fitt	P7 r bars' P5 P5 P5 - 110 ted as	U7 U7 U5 U5 U6 125 stanc	devic Q7 Q5 Q6 220 dard, I MD	×e as V7 V5 – 250 Dy bi-	stand N7 N5 - 440 direct	R7 R7 R5 R6	S7 S5 –
50/60 Hz LC1 D09D65 (not an 50 Hz LC1 D80D150 50 Hz 60 Hz d.c. supply Volts LC1 D09D38 (coils of limiting diode) U 0.71.25 Uc LC1 D40AD65A (coils of LC1 D40AD65A (coils of the second seco	D115 a B7 vailable B5 B5 B6 12 with int	and D ² D7 with D5 - 24 egral s	150 cd E7 "conn E5 E5 E6 36 suppr CD	F5 F6 F8 F8 F8 F6 F6 F6 F6 F6 F6 F6 F6 F6 F6 F6 F6 F6	th bui FE7 n for lu FE5 - 60 n dev ND	IIt-in s M7 ugs of M5 M6 72 ice fitt	P7 r bars' P5 P5 P5 - 110 ted as	U7 U7 U5 U5 U6 125 stanc	devic Q7 Q5 Q6 220 dard, I MD	×e as V7 V5 – 250 Dy bi-	stand N7 N5 - 440 direct	R7 R7 R5 R6	S7 S5 –
50/60 Hz LC1 D09D65 (not av 50 Hz LC1 D80D150 50 Hz 60 Hz d.c. supply Volts LC1 D09D38 (coils) limiting diode) U 0.71.25 Uc LC1 D40AD65A (cc peak limiting diode)	D115 a B7 vailable B5 B5 B6 12 with int JD bils with	and D ² D7 with D5 D5 - 24 egral = BD n integ	150 cd E7 "conn E5 E5 E6 36 suppr CD gral su	F5 F6 48 FD Jppres	th bui FE7 for lu FE5 - 60 n dev ND ssion	M5 M5 M6 72 ice fitt SD devic	P7 r bars' P5 P5 - 110 ted as FD e fitted	U7 U7 U5 U6 125 stanc GD d as s	devic Q7 Q5 Q6 220 dard, l MD tanda	e as V7 V5 – 250 Dy bi- UD rd, by	N7 N5 - 440 direct RD / bi-di	R7 R7 R5 R6	S7 S5 –
50/60 Hz LC1 D09D65 (not av 50 Hz LC1 D80D150 50 Hz 60 Hz d.c. supply Volts LC1 D09D38 (coils v limiting diode) U 0.71.25 Uc LC1 D40AD65A (cc peak limiting diode) U 0.751.25 Uc	D115 a B7 vailable B5 B5 B6 12 with int JD bils with	and D ² D7 with D5 D5 - 24 egral = BD n integ	150 cd E7 "conn E5 E5 E6 36 suppr CD gral su	F5 F6 48 FD Jppres	th bui FE7 for lu FE5 - 60 n dev ND ssion	M5 M5 M6 72 ice fitt SD devic	P7 r bars' P5 P5 - 110 ted as FD e fitted	U7 U7 U5 U6 125 stanc GD d as s	devic Q7 Q5 Q6 220 dard, l MD tanda	e as V7 V5 – 250 Dy bi- UD rd, by	N7 N5 - 440 direct RD / bi-di	R7 R7 R5 R6	S7 S5 –
50/60 Hz LC1 D09D65 (not av 50 Hz LC1 D80D150 50 Hz 60 Hz d.c. supply Volts LC1 D09D38 (coils of limiting diode) U 0.71.25 Uc LC1 D40AD65A (co peak limiting diode) U 0.751.25 Uc LC1 or LP1 D80 and D	D115 a B7 vailable B5 B5 B6 12 with int JD Dils with	and D' D7 with D5 D5 - 24 egral s BD n integ	150 cc E7 "conn E5 E5 E6 36 Suppr CD Tral su CD	F7 nection F5 F6 48 ression ED uppres ED	th bui FE7 n for lu FE5 - 60 n dev ND ssion ND	It-in s M7 ugs of M5 M6 72 ice fitt SD devic SD	P7 r bars' P5 P5 P5 110 ted as FD e fitted FD	U7 U7 U5 U6 125 stanc GD d as s GD	devic Q7 Q5 Q6 220 dard, l MD tanda	v7 V7 250 vy bi- UD rd, by UD	stands N7 N5 - 440 direct RD / bi-dir RD	R7 R7 R5 R6	S7 S5 –
50/60 Hz LC1 D09D65 (not av 50 Hz LC1 D80D150 50 Hz 60 Hz d.c. supply Volts LC1 D09D38 (coils of limiting diode) U 0.71.25 Uc LC1 D40AD65A (co peak limiting diode) U 0.751.25 Uc LC1 or LP1 D80 and E U 0.851.1 Uc	D115 a B7 vailable B5 B6 12 with int JD bils with JD D95 JD JW	and D' D7 s with D5 - 24 egral s BD n integ BD BD BW	150 ccd E7 "conn E5 E5 E6 36 Suppr CD CD CD CD	F7 Rectior F5 F6 48 ression ED ED ED ED EW	th bui FE7 n for lu FE5 60 n dev ND ssion ND ND	It-in s M7 M5 M5 M6 72 ice fitt SD devic SD SD SW	P7 r bars' P5 P5 P5 110 ted as FD FD FD FD	U7 ') U5 U6 125 stanc GD d as s GD GD	devic Q7 Q5 Q6 220 dard, l MD tanda MD MD	v5 - 250 UD UD UD - UD	N7 N5 440 direct RD / bi-dir RD RD	R7 R7 R5 R6	S7 S5 –
50/60 Hz LC1 D09D65 (not av 50 Hz LC1 D80D150 50 Hz 60 Hz d.c. supply Volts LC1 D09D38 (coils of limiting diode) U 0.71.25 Uc LC1 D40AD65A (co peak limiting diode) U 0.751.25 Uc LC1 or LP1 D80 and I U 0.8511 Uc U 0.751.2 Uc	D115 a B7 vailable B5 B6 12 with int JD bils with JD D95 JD JW	and D' D7 s with D5 - 24 egral s BD n integ BD BD BW	150 ccd E7 "conn E5 E5 E6 36 Suppr CD CD CD CD	F7 Rectior F5 F6 48 ression ED ED ED ED EW	th bui FE7 n for lu FE5 60 n dev ND ssion ND ND	It-in s M7 M5 M5 M6 72 ice fitt SD devic SD SD SW	P7 r bars' P5 P5 P5 110 ted as FD FD FD FD	U7 ') U5 U6 125 stanc GD d as s GD GD -	devic Q7 Q5 Q6 220 dard, l MD tanda MD MD	v5 - 250 UD UD UD - UD	N7 N5 440 direct RD / bi-dir RD RD	R7 R7 R5 R6	S7 S5 –
50/60 Hz LC1 D09D65 (not av 50 Hz LC1 D80D150 50 Hz 60 Hz d.c. supply Volts LC1 D09D38 (coils of limiting diode) U 0.71.25 Uc LC1 D40AD65A (co peak limiting diode) U 0.751.25 Uc LC1 or LP1 D80 and I U 0.8511 Uc U 0.751.2 Uc LC1 D115 and D150 (co	D115 a B7 vailable B5 B5 B6 12 with int JD D015 with JD D095 JD JW Coolls wi	and D' D7 with D5 D5 - 24 egral = BD n integ BD BD BW th buil	150 ccd E7 "conn E5 E5 E6 36 Suppr CD CD CD CD	F7 Rectior F5 F6 48 ression ED ED ED ED ED EW Uppres	th bui FE7 n for lu FE5 - 60 n dev ND Sssion ND - Sssion	Ilt-in s M7 M2 SD M5 M6 72 ice fitti SD SD SD SW devic	P7 r bars' P5 - 110 ted as FD e fitted FD FD FD FW ce fitted	U7 U7 U5 U5 U6 125 stanc GD GD GD - d as s	devic Q7 Q5 Q6 220 dard, l MD tanda MD MW	v5 - 250 UD UD UD - ard, by	stand. N7 - 440 direct RD / bi-di RD -	R7 R7 R5 R6	S7 S5 –
50/60 Hz LC1 D09D65 (not av 50 Hz LC1 D80D150 50 Hz 60 Hz d.c. supply Volts LC1 D09D38 (coils of limiting diode) U 0.71.25 Uc LC1 D40AD65A (co peak limiting diode) U 0.751.25 Uc LC1 or LP1 D80 and I U 0.8511 Uc U 0.751.2 Uc LC1 D115 and D150 (co U 0.751.2 Uc	D115 a B7 vailable B5 B5 B6 12 with int JD D015 with JD D095 JD JW Coolls wi	and D' D7 with D5 D5 - 24 egral = BD n integ BD BD BW th buil	150 ccd E7 "conn E5 E5 E6 36 Suppr CD CD CD CD	F7 Rectior F5 F6 48 ression ED ED ED ED ED EW Uppres	th bui FE7 n for lu FE5 - 60 n dev ND Sssion ND - Sssion	Ilt-in s M7 ugs of M5 M6 72 ice fitt SD devic SD SW devic SD	P7 r bars' P5 P5 P5 r P5 r P5 r P5 r P5 r P5 r P5	U7 ') U5 U6 125 stanc GD GD - GD GD - GD GD	devic Q7 Q5 Q6 220 dard, l MD tanda MD MW	v5 - 250 UD UD UD - ard, by	stand. N7 - 440 direct RD / bi-di RD -	R7 R7 R5 R6	S7 S5 –
50/60 Hz LC1 D09D65 (not av 50 Hz LC1 D80D150 50 Hz 60 Hz d.c. supply Volts LC1 D09D38 (coils of limiting diode) U 0.71.25 Uc LC1 D40AD65A (co peak limiting diode) U 0.751.25 Uc LC1 or LP1 D80 and I U 0.8511 Uc U 0.751.2 Uc LC1 D115 and D150 (c) U 0.751.2 Uc LC1 D115 and D150 (c) U 0.751.2 Uc	D115 a B7 vailable B5 B5 B6 12 with int JD JD UD S095 JD JW Coils wit JW S	and D' D7 e with D5 D5 - 24 egral : BD n integ BD BD BD BD BD BD BD 12	150 cc E7 "conn E5 E5 E6 36 suppr CD CD CD CD CD CD CD CD CD CD CD CD CD	F7 F7 F5 F6 48 eession ED ED ED ED ED ED ED ED ED ED ED ED ED	th bui FE7 for lu FE5 - 60 n dev ND ssion ND - ssion ND - 48	Ilt-in s M7 ugs of M5 M6 72 ice fitt SD devic SD SW devic SD SD SU	P7 r bars' P5 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5	Ssion U7 ') U5 U6 Stanc GD GD GD GD - C GD GD 250	devic Q7 Q5 Q6 dard, l MD tanda MD MW standa MD	e as V7 V5 - 250 0y bi- rd, by UD UD - ard) UD	stand N7 N5 - 440 direct RD (bi-di RD - RD RD RD	R7 R7 R6 onal p	S7 S5 - Deak
50/60 Hz LC1 D09D65 (not av 50 Hz LC1 D80D150 50 Hz 60 Hz d.c. supply Volts LC1 D09D38 (coils of limiting diode) U 0.71.25 Uc LC1 D40AD65A (co peak limiting diode) U 0.751.25 Uc LC1 D40AD65A (co peak limiting diode) U 0.751.25 Uc LC1 D115 and D150 (co U 0.751.2 Uc LC1 D115 and D150 (co U 0.751.2 Uc LC1 D09D38 (coils of Volts	D115 a B7 vailable B5 B5 B6 12 with int JD JD UD S095 JD JW Coils wit JW S	and D' D7 e with D5 D5 - 24 egral : BD n integ BD BD BD BD BD BD BD 12	150 cc E7 "conn E5 E5 E6 36 suppr CD CD CD CD CD CD CD CD CD CD CD CD CD	F7 F7 F5 F6 48 eession ED ED ED ED ED ED ED ED ED ED ED ED ED	th bui FE7 for lu FE5 - 60 n dev ND ssion ND - ssion ND - 48	Ilt-in s M7 ugs of M5 M6 72 ice fitt SD devic SD SW devic SD SD SU	P7 r bars' P5 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5	Ssion U7 ') U5 U6 Stanc GD GD GD GD - C GD GD 250	devic Q7 Q5 Q6 dard, l MD tanda MD MW standa MD	e as V7 V5 - 250 0y bi- rd, by UD UD - ard) UD	stand N7 N5 - 440 direct RD (bi-di RD - RD RD RD	R7 R7 R6 onal p	S7 S5 - Deak
50/60 Hz LC1 D09D65 (not av 50 Hz LC1 D80D150 50 Hz 60 Hz d.c. supply Volts LC1 D09D38 (coils of limiting diode) U 0.71.25 Uc LC1 D40AD65A (co peak limiting diode) U 0.751.25 Uc LC1 or LP1 D80 and I U 0.8511 Uc U 0.751.2 Uc LC1 D115 and D150 (c) U 0.751.2 Uc LC1 D115 and D150 (c) U 0.751.2 Uc	D115 a B7 vailable B5 B5 B6 12 with int JD JD UD S095 JD JW Coils wit JW S	and D' D7 e with D5 D5 - 24 egral : BD n integ BD BD BD BD BD BD BD 12	150 cc E7 "conn E5 E5 E6 36 suppr CD CD CD CD CD CD CD CD CD CD CD CD CD	F7 F7 F5 F6 48 eession ED ED ED ED ED ED ED ED ED ED ED ED ED	th bui FE7 for lu FE5 - 60 n dev ND ssion ND - ssion ND - 48	Ilt-in s M7 ugs of M5 M6 72 ice fitt SD devic SD SW devic SD SD SU	P7 r bars' P5 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5	Ssion U7 ') U5 U6 Stanc GD GD GD GD - C GD GD 250	devic Q7 Q5 Q6 dard, l MD tanda MD MW standa MD	e as V7 V5 - 250 0y bi- rd, by UD UD - ard) UD	stand N7 N5 - 440 direct RD (bi-di RD - RD RD RD	R7 R7 R6 onal p	S7 S5 - Deak
50/60 Hz LC1 D09D65 (not av 50 Hz LC1 D80D150 50 Hz 60 Hz d.c. supply Volts LC1 D09D38 (coils of limiting diode) U 0.71.25 Uc LC1 D40AD65A (co peak limiting diode) U 0.751.25 Uc LC1 or LP1 D80 and E U 0.8511 Uc U 0.751.2 Uc LC1 D115 and D150 (co U 0.751.2 Uc LC1 D09D38 (coils of Volts LC1 D09D38 (coils of limiting diode)	D115 a B7 vailable B5 B5 B6 12 with int JD D95 JD JW coils wit JD JW coils wit s thin thin thin thin thin thin thin thin	and D' D7 e with D5 D5 24 egral = BD n integ BD BD BD BD BD BD BD BD BD BD BD BD BD	150 cc E7 "conn E5 E6 36 suppr CD Tral su CD CD CD CD CD CD CD CD CD CD CD CD CD	F7 F7 F7 F6 F6 F6 F6 F6 F6 F6 F0 ED ED ED ED ED ED ED ED ED ED ED ED ED	th bui FE7 a for lu FE5 - 60 n dev ND - ssion ND - Ssion ND - 48 n dev EL	Ilt-in s M7 Ugs of M5 M6 72 ice fitt SD devic SD SW devic SD SW devic SD	P7 r bars' P5 P5 P5 P5 r r ted as FD FD FD FD FD FD FD FD FD FD FD FD FD	UT UT UT UT UT UT UT UT UT UT	devic Q7 Q5 Q6 dard, l MD tanda MD MW standa MD	e as V7 V5 - 250 0y bi- rd, by UD UD - ard) UD	stand N7 N5 - 440 direct RD (bi-di RD - RD RD RD	R7 R7 R6 onal p	S7 S5 - Deak
50/60 Hz LC1 D09D65 (not av 50 Hz LC1 D80D150 50 Hz 60 Hz d.c. supply Volts LC1 D09D38 (coils v limiting diode) U 0.71.25 Uc LC1 D40AD65A (co peak limiting diode) U 0.751.25 Uc LC1 or LP1 D80 and I U 0.851.1 Uc U 0.751.2 Uc LC1 D115 and D150 (c) U 0.751.2 Uc LC1 D09D38 (coils v) limiting diode) U 0.751.2 Uc LC1 D09D38 (coils v) limiting diode) U 0.851.1 Uc U 0.751.2 Uc LC1 D09D38 (coils v) limiting diode) U 0.81.25 Uc For other voltages bett (2) LC1 D09 to D80A:	D115 a B7 vailable B5 B5 B6 12 with int JD JD JD S95 JD JD JD S95 JD S095 JD With int S with int AL	and D' D7 e with D5 D5 - 24 egral : BD n integ BD BD BD BD BD BD BD BD BD BD BD BD BD	150 cc E7 "conn E5 E5 E6 36 suppr CD CD CD CD CD CD CD CD CD CD	F7 F5 F6 48 eession ED ED ED ED ED ED ED ED ED ED	th bui FE7 for lu FE5 - 60 n dev ND Ssion ND ND - Ssion ND - 48 n dev EL Daages	Ilt-in s M7 M5 M6 72 ice fitt SD devic SD SW devic SD SW devic SD SW ferric SD SW ferric SD SD SW ferric SD SD SD SD SD SD SD SD SD SD SD SD SD	P7 r bars' P5 P5 F0 ted as FD FD FD FD FD FD FD 220 ted as ML 2 to BA	ssion U7 ') U5 U6 125 stanc GD d as s GD GD - - C GD - 250 stanc UL 8/35. DP or	devic Q7 Q5 Q6 220 dard, l MD tanda MD MD MD MD dard, l	V7 V7 250 V7 250 V7 V7 250 V7 V7 V7 V7 V7 V7 V7 V7 V7 V7 V7 V7 V7	stand N7 N5 - 440 direct RD - RD RD - RD - RD - RD - RD	R7 R7 R6 onal p	S7 - Deak mal
50/60 Hz LC1 D09D65 (not av 50 Hz LC1 D80D150 50 Hz 60 Hz d.c. supply Volts LC1 D09D38 (coils of limiting diode) U 0.71.25 Uc LC1 D40AD65A (co peak limiting diode) U 0.751.25 Uc LC1 D115 and D150 (co U 0.751.2 Uc LC1 D115 and D150 (co U 0.751.2 Uc LC1 D09D38 (coils of limiting diode) U 0.751.25 Uc For other voltages bett (2) LC1 D09 to D80A: LC1 D09 to D80A: LC1 D09 and D95	D115 a B7 vailable B5 B5 B6 12 with int JD JD JD S95 JD JD JD S95 JD S095 JD With int S with int AL	and D' D7 e with D5 D5 - 24 egral : BD n integ BD BD BD BD BD BD BD BD BD BD BD BD BD	150 cc E7 "conn E5 E5 E6 36 suppr CD CD CD CD CD CD CD CD CD CD	F7 F5 F6 48 eession ED ED ED ED ED ED ED ED ED ED	th bui FE7 for lu FE5 - 60 n dev ND Ssion ND ND - Ssion ND - 48 n dev EL Daages	Ilt-in s M7 M5 M6 72 ice fitt SD devic SD SW devic SD SW devic SD SW ferric SD SW ferric SD SD SW ferric SD SD SD SD SD SD SD SD SD SD SD SD SD	P7 r bars' P5 P5 F0 ted as FD FD FD FD FD FD FD 220 ted as ML 2 to BA	ssion U7 ') U5 U6 125 stanc GD d as s GD GD - - C GD - 250 stanc UL 8/35. DP or	devic Q7 Q5 Q6 220 dard, l MD tanda MD MD MD MD dard, l	V7 V7 250 V7 250 V7 V7 250 V7 V7 V7 V7 V7 V7 V7 V7 V7 V7 V7 V7 V7	stand N7 N5 - 440 direct RD - RD RD - RD - RD - RD - RD	R7 R7 R6 onal p	S7 - Deak mal
50/60 Hz LC1 D09D65 (not av 50 Hz C1 D80D150 50 Hz 60 Hz d.c. supply Volts LC1 D09D38 (coils villamiting diode) U 0.71.25 Uc LC1 D40AD65A (cc peak limiting diode) U 0.751.25 Uc LC1 or LP1 D80 and D U 0.851.1 Uc U 0.751.2 Uc LC1 D115 and D150 (c) Volts LC1 D09D38 (coils villamiting diode) U 0.851.2 Uc LC1 D09D38 (coils villamiting diode) U 0.81.25 Uc For other voltages bett (2) LC1 D09 to D80A: LC1 D09 to D80A:	D115 a B7 vailable B5 B5 B6 12 with int JD D15 S S S S S S S S S S S S S S S S S S S	and D' D7 a with D5 D5 - 24 egral : BD a integ BD BD BD BD BD BD BD BD BD BD BD BD BD	150 cc E7 "conn E5 E5 E6 36 suppr CD Tral su CD CD CD CD CD CD CD CD CD CD CD CD CD	F7 F5 F6 48 reession ED ED ED ED ED ED ED ED ED ED ED ED ED	th bui FE7 for lu FE5 - 60 n dev ND Ssion ND ND - 48 n dev EL pages mm L 235 mr	Ilt-in s M7 M2 M5 M6 72 ice fitt SD devic SD SD SD SD SD SD SD SD SD SD SD SD SD	P7 P7 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5	UT UT UT UT UT UT UT UT UT UT	Q5 Q6 220 dard, l MD MD MW MD MW dard, l MD MW C Scret Por 75	V5 - 250 Oy bi- UD UD UD UD UD UD UD UD VD VD VD VD VD VD VD VD VD VD VD VD VD	stand N7 - 440 direct RD RD - RD RD - RD - RD - RD - RD - RD	ard) R7 R5 R6 rection rection	S7 - Deak mal
50/60 Hz LC1 D09D65 (not av 50 Hz LC1 D80D150 50 Hz 60 Hz d.c. supply Volts LC1 D09D38 (coils of limiting diode) U 0.71.25 Uc LC1 D40AD65A (co peak limiting diode) U 0.751.25 Uc LC1 D115 and D150 (co U 0.751.2 Uc LC1 D115 and D150 (co U 0.751.2 Uc LC1 D09D38 (coils of limiting diode) U 0.751.25 Uc For other voltages bett (2) LC1 D09 to D80A: LC1 D09 to D80A: LC1 D09 and D95	D115 a B7 vailablela B5 B5 B6 12 with int JD JD JD JD JD JD JD JD JD JD JD S5 S with int Coils wit S S S S S S S S S S S S S S S S S S S	and D' D7 e with D5 - 24 egral : BD BD BD BD BD BD BD BD BD BD BD BD BD	150 cc E7 "conn E5 E6 Suppr CD CD CD CD CD CD CD CD CD CD CD CD CD	F7 F5 F6 48 eession ED ED ED ED ED ED ED ED ED ED	th bui FE7 for lu FE5 - 60 n dev ND - ssion ND - ND - 48 n dev EL - 	III-in s M7 M5 M6 72 ice fitt SD devic SD SW devic SD SW devic SD SW fer fit s B8/3 sr rail n 1 - 7 75 mr	P7 P7 P5 P5 P5 P5 F0 F0 FD FD FD FD FD FD FD FD FD FD FD FD FD	UT UT UT UT UT UT UT UT UT UT	Q5 Q6 220 dard, l MD tanda MD MD dard, l dard, l	V5 - 250 V7 V7 250 V5 - UD UD UD UD UD UD UD VD VD VD VD VD VD VD VD VD VD VD VD VD	stand N7 N5 - 440 direct RD / bi-dii RD RD - RD - RD - RD - RD - RD - RD -	ard) R7 R5 R6 ional (rection ii AM ixing.	S7 - Deak mal
50/60 Hz LC1 D09D65 (not av 50 Hz LC1 D80D150 50 Hz 60 Hz d.c. supply Volts LC1 D09D38 (coils v limiting diode) U 0.71.25 Uc LC1 D40AD65A (cc peak limiting diode) U 0.751.25 Uc LC1 D115 and D150 (c U 0.751.2 Uc LC1 D115 and D150 (c U 0.751.2 Uc LC1 D09D38 (coils v limiting diode) U 0.751.2 Uc LC1 D09D38 (coils v limiting diode) U 0.851.1 Uc U 0.751.2 Uc LC1 D09D38 (coils v limiting diode) U 0.81.25 Uc For other voltages bett (2) LC1 D09 to D80A: LC1 D80 and D95 or screw fixing. LC1 or LP1 D80 to	D115 a B7 vailable B5 B6 12 with int JD D095 JD JW Coolls wit JD D95 JD JW Coolls wit S with int AL Clip-on C: clip D95 	and D' D7 e with D5 D5 - 24 egral : BD n integ BD BD BD BD BD BD BD BD BD I12 egral : c and C c amour -on mour -on mour - on m	150 cc E7 "conn E5 E5 E6 36 suppr CD CD CD CD CD CD CD CD CD CD CD CD CD	bils wi F7 rection F5 F6 48 ression ED ED ED ED ED ED ED ED ED ED	th bui FE7 for lu FE5 - 60 n dev ND Ssion ND - Ssion ND - Ssion ND - 48 n dev EL Sages 35 mr g on 1 2 x 355	III-in s M7 Jugs of M5 M6 72 ice fitti SD devic SD SW devic SD SW devic SD SW 110 ice fitti FL B8/3 III n L I 75 mm 75 mm	P7 r bars' P5 P5 P5 r bars' P5 r b r b r b r b r b r b r b r b r b r b	Ssion U7 ') U5 U5 U6 125 stanc GD d as s GD GD - - 250 stanc UL 8/35. DP or N1 DF rail AM cuit. F	devic Q7 Q5 Q6 220 dard, I MD tanda MD MW standa MD dard, I ard, I for 75 Cor 7	V7 V7 250 Dy bi- UD UD UD UD UD UD UD UD UD UD UD UD UD	stand N7 N5 - 440 direct RD v bi-dii RD - RD - RD - RD - RD - RD - RD - RD	ard) R7 R5 R6 ional rection ii AM ixing. nsum,	S7 S5 Deak nal Deak

control čircuit, add 0.160 kg from LC1 D09 to D38, 0.075 kg from LC1 D40A to D80A and 1 kg for LC1 D80 and D95.

(4) BTR screws: hexagon socket head. In accordance with local electrical wiring regulations, a size 4 insulated Allen key must be used (reference LAD ALLEN4, see page B8/29).
(5) Selection according to the number of operating cycles, see AC-1 curve, page A6/30.
(6) 32 A with 2 x 4 mm² cables connected in parallel.

Click <u>HERE</u> for access to online contactor selector Selection: Characteristics: Dimensions: Schemes: pages A6/25 to A6/49 pages B8/81 to B8/82 pages B8/74 to B8/77 pages B8/61 to B8/73 B8/4 Schneider Gelectric Life Is On

TeSys contactors

TeSys D, 3-pole contactors For control in category AC-1, from 16 to 80 A

LC1 D123.

LC1 D80A3.

3-pole contactors for connection by Faston connectors

These contactors are fitted with Faston connectors: 2 x 6.35 mm on the power poles and 1 x 6.35 mm on the coil terminals. For contactors LC1 D09 and LC1 D12 only, in the references selected from the previous page, insert a figure 9 before the voltage code. Example: LC1 D09ee becomes LC1 D099ee

vollage code. Ex	ampie.	LOID	0900	Dec	omes LCT D09900.	
3-pole conta	ictors	;				
Non inductive loads maximum current $(\theta \le 60 \ ^{\circ}C)$	Num of po	les ta au	stan- neous ixiliary intacts	/	Basic reference, to be completed by adding the control voltage code ⁽¹⁾	Weight (3)
utilisation category AC-1	$\langle $			7	Fixing ⁽²⁾	
A						kg
Connection by	spring	termi	nals			
16	3	1	1		LC1D093 • (4)	0.320
				or	LC1D123 • (4)	0.325
25	3	1	1		LC1D183•• ⁽⁵⁾	0.335
				or	LC1D253ee (6)	0.325
				or	LC1D323 • ⁽⁶⁾	0.325
Power connect spring terminal		y Ever	Link®	BT	R screw connectors (7) and co	ntrol by
60	3	1	1		LC1D40A3ee	0.850
80	3	1	1		LC1D50A3•• ⁽⁸⁾	0.855
				or	LC1D65A3•• ⁽⁸⁾	0.860
				or		0.860

Separate components

Auxiliary contact blocks and add-on modules: see pages B8/23 to B8/29.

(1) Standard control circuit voltages (for other voltages, please consult your Regional Sales Office):

a.c. supply													
Volts	24	42	48	110	115	220	230	240	380	400	415	440	500
LC1 D09D80A													
50/60 Hz	B7	D7	E7	F7	FE7	M7	P7	U7	Q7	V7	N7	R7	S7
d.c. supply													
Volts	12	24	36	48	60	72	110	125	220	250	440		
LC1 D09D32 (coils limiting diode)	with int	egral	suppr	essio	n devi	ce fitt	ed as	stand	lard, l	oy bi-	directi	onalp	beak
U 0.71.25 Uc	JD	BD	CD	ED	ND	SD	FD	GD	MD	UD	RD		
LC1 D40AD65A (co peak limiting diode)	oils with	integ	ral su	ppres	sion o	levice	e fittec	l as st	anda	rd, by	bi-dir	ectior	nal
U 0.751.25 Uc	JD	BD	CD	ED	ND	SD	FD	GD	MD	UD	RD		
Low consumption	n												
Volts	5	12	20	24	48	110	220	250					
LC1 D09D32 (coils limiting diode)	with in	tegral	supp	ressic	on dev	ice fit	ted as	s stan	dard,	by bi-	direct	ional	peak
U 0.81.25 Uc	AL	JL	ZL	BL	EL	FL	ML	UL					
For other voltages bet (2) LC1 D09 to D80A:									r scre	w fixii	na		

(4) 20 A with 2 x 2.5 mm² cables connected in parallel.

(5) 32 A with 2 x 4 mm² cables connected in parallel.

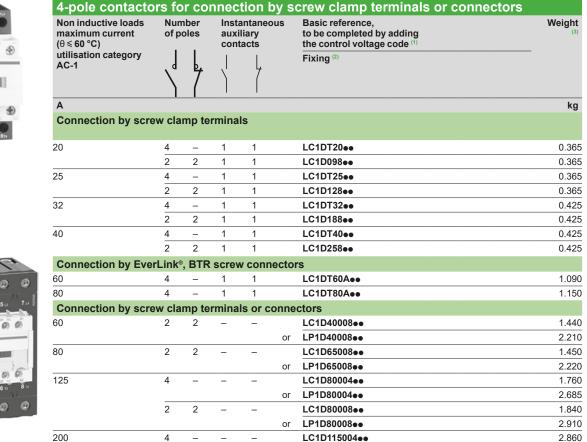
(6) 40 A with 2 x 4 mm² cables connected in parallel.

(7) BTR screws: hexagon socket head. In accordance with local electrical wiring regulations, a size 4 insulated Allen key must be used (reference LAD ALLEN4, see page B8/29). 30

(8) Selection according to the	e number o	f operating cycles,	see AC-1	curve,	page A6/3

Click HERE for access

B8/5


TeSys contactors

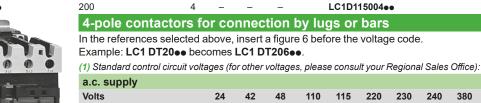
TeSys D, 4-pole contactors

For control in category AC-1, 20 to 200 A

LC1 DT2000

10

Contactors



21	DT80A••	

57

0

0

alor ouppiy													
Volts	24	42	48	110	115	220	230	240	380	400	415	440	500
LC1 D09D150 and LC1 DT2	20DT8	OA (LC1	l D115 a	and D15	0 coils	with bui	ilt-in sup	opressio	on devic	e as sta	andard)		
50/60 Hz	B7	D7	E7	F7	FE7	M7	P7	U7	Q7	V7	N7	R7	-
LC1 D80D115													
50 Hz	B5	D5	E5	F5	FE5	M5	P5	U5	Q5	V5	N5	R5	S5
60 Hz	B6	-	E6	F6	-	M6	-	U6	Q6	-	-	R6	-
d.c. supply													
Volts	12	24	36	48	60	72	110	125	220	250	440		
LC1 D09D25 and LC1 DT20)DT40	(coils wi	th integ	ral supp	ression	device	fitted as	s standa	ird, by b	i-directi	onal pea	ak limitir	ıg diode)
U 0.751.25 Uc	JD	BD	CD	ED	ND	SD	FD	GD	MD	UD	RD		
LC1 DT60A DT80A (coils w	ith integr	al supp	ression	device	fitted as	standa	ard, by b	oi-direct	ional pe	ak limit	ing diod	e)	
U 0.751.25 Uc	JD	BD	CD	ED	ND	SD	FD	GD	MD	UD	RD		
LP1D40D80													
U 0.851.1 Uc	JD	BD	CD	ED	ND	SD	FD	GD	MD	UD	RD		
U 0.751.2 Uc	JW	BW	CW	EW	-	SW	FW	-	MW	-	-		
LC1 D115 (coil with built-in su	ppressio	on devic	e as sta	indard)									
U 0.751.2 Uc	-	BD	-	ED	ND	SD	FD	GD	MD	UD	RD		
Low consumption													
Volts	5	12	20	24	48	110	220	250					
LC1 D09D25 and LC1 DT20	DT40 (coils wi	th integr	al supp	ression	device	fitted as	standa	rd, by bi	-directio	onal pea	k limitin	g diode)
U 0.81.25 Uc	AL	JL	ZL	BL	EL	FL	ML	UL					
For other voltages between 5	and 600	V see r	ages B	8/22 to	D0/25								

For other voltages between 5 and 690 V, see pages B8/32 to B8/35.

(2) LC1 D09 to D38 and LC1 DT20 to DT80A: clip-on mounting on 35 mm ⊥r rail AM1 DP or screw fixing. LC1 D80 ∼: clip-on mounting on 35 mm ⊥r rail AM1 DP or 75 mm ⊥r rail AM1 DL or screw fixing. LC1 or LP1 D80 ----: clip-on mounting on 75 mm ⊥r rail AM1 DL or screw fixing.

LC1 D15 and D150: clip-on mounting on 2 x 35 mm ⊥ rails AM1 DP or screw fixing. (3) The weights indicated are for contactors with a.c. control circuit. For d.c. or low consumption control circuit, add 0.160 kg from LC1 D09 to D38, 0.075 kg from LC1 DT60A and D80A and 1 kg for LC1 D80.

Characteristics:	Dimensions:	Schemes:	Click HERE for access
pages B8/61 to B8/73	pages B8/74 to B8/77	pages B8/81 to B8/82	to online contactor selector

Selection: pages A6/25 to A6/49 **B8/6**

TeSys contactors

TeSys D, 4-pole contactors For control in category AC-1, 20 to 80 A

Non inductive loads maximum current $(\theta \leq 60 \ ^{\circ}C)$ utilisation category AC-1	Num of po		Insta tane auxi cont	ous		to b add	e con		ce, ed by Itage		(1)	-	eight ⑶
A													kg
Connection by	sprin	q teri	minals	;									
20	4	_	1	1		LC1	DT20	3					0.38
	2	2	1	1		LC1	D098	3					0.38
25	4	-	1	1		LC1	DT25	i3 ee					0.38
	2	2	1	1		LC1	D128	3					0.38
32	4	-	1	1		LC1	DT32	23••					0.42
	2	2	1	1		LC1	D188	3					0.42
40	4	-	1	1			DT40						0.42
	2	2	1	1			D258						0.42
Connection by		_ink [®] ,	, BTR :	screv	v cor	nec	tors	and	cont	rol c	ircui	t by	
spring terminal			4	4		1.04	DTC		_				1 00
60	4	_	1	1		LCI	0100)A3•					1.09
80	1		1	1		1.01	חדפת	142.					1 1 5
Separate co	_			1)A3•0	-			/0.0	1.15
Separate co Auxiliary contac (1) Standard contro Office):	mpo ct bloc	cks a	ts nd ado	d-on i		ules:	see	page	es B8				-
Separate co Auxiliary contac (1) Standard contro	mpo ct bloc	cks a voltag	ts nd add ges (for	d-on i other	voltag	u les : les, pl	see lease	page cons	es B8	ur Reg	gional	Sale	s
Separate co Auxiliary contac (1) Standard contro Office): a.c. supply Volts LC1 D09D25 and	mpo ct bloc l circuit 24 I LC1 D	cks a voltag 4 42	ts nd add ges (for 2 48 .DT80A	d-on i other 110 (coils	voltag 115	ules: es, pl	see lease 230	page cons 240	es B8 ult you 380	ur Reg 400	gionai 415	Sale: 440	s
Separate co Auxiliary contac (1) Standard contro Office): a.c. supply Volts LC1 D09D25 and standard, by bi-dire	mpo ct bloc l circuit 24 I LC1 D	cks a <i>voltag</i> 4 42 T20 peak l	ts nd add ges (for 2 48 .DT80A limiting	d-on i other 110 (coils	voltag 115	ules: bes, pl 220 ntegra	see lease 230	page cons 240	es B8 ult you 380	ur Reg 400	gionai 415	Sale: 440	s
Separate co Auxiliary contac (1) Standard contro Office): a.c. supply Volts LC1 D09D25 and standard, by bi-dire	mpo ct bloc l circuit 2 I LC1 D ctional	cks a <i>voltag</i> 4 42 T20 peak l	ts nd add ges (for 2 48 .DT80A limiting	d-on i other 110 (coils diode)	voltag 115 with in	ules: bes, pl 220 ntegra	see lease 230 al sup	page consi 240 press	es B8 ult you 380 sion de	ur Reg 400 evice	gional 415 fitted	440 as	s
Separate co Auxiliary contac (1) Standard contro Office): a.c. supply Volts LC1 D09D25 and standard, by bi-dire 50/60 Hz	mpo ct bloc l circuit 2 I LC1 D ctional	ks a voltag 4 42 T20 peak l	ts nd add ges (for 2 48 DT80A imiting 0 7 E7	d-on i other 110 (coils diode)	voltag 115 with in	ules: bes, pl 220 ntegra	see lease 230 al sup P7	page cons 240 press U7	es B8 ult you 380 sion de	400 evice	415 fitted	440 as	s
Separate co Auxiliary contac (1) Standard contro Office): a.c. supply Volts LC1 D09D25 and standard, by bi-dire 50/60 Hz d.c. supply Volts LC1 D09D25 and	mpo ct bloc l circuit LC1 D ctional B 12 12 12 12 12 12	cks a voltag 4 42 T20 peak l 7 D 2 24 DT20	ts nd add ges (for 2 48 DT80A iimiting 7 E7 4 36 . DT40	110 (coils diode) F7 48 (coils v	115 with in FE7 60 vith in	220 mtegra M7	see lease 230 al sup P7 110	page <i>cons</i> 240 press U7 125	es B8 ult you 380 sion de Q7 220	ur Reg 400 evice V7 250	415 fitted N7 440	440 as R7	s
Separate co Auxiliary contac (1) Standard contro Office): a.c. supply Volts LC1 D09D25 and standard, by bi-dire 50/60 Hz d.c. supply Volts LC1 D09D25 and standard, by bi-dire	mpo ct bloc l circuit LC1 D ctional B 12 12 12 12 12 12	 cks a voltag 4 42 T20 peak I 7 D² 2 24 DT20 peak I 	ts nd add ges (for 2 48 DT80A imiting of 7 E7 4 36 . DT40 imiting of	110 (coils diode) F7 48 (coils v	115 with in FE7 60 vith in	220 mtegra M7	see lease 230 al sup P7 110	page <i>cons</i> 240 press U7 125	es B8 ult you 380 sion de Q7 220	ur Reg 400 evice V7 250	415 fitted N7 440	440 as R7	s
Separate co Auxiliary contac (1) Standard contro Office): a.c. supply Volts LC1 D09D25 and standard, by bi-dire 50/60 Hz d.c. supply Volts LC1 D09D25 and standard, by bi-dire U 0.71.25 Uc LC1 DT60A80A (mpo ct bloc l circuit 24 LC1 D ctional 12 LC1 E ctional JI coils w	cks a voltag 4 42 0120 peak I 7 D 2 24 0120 peak I D BI D BI	ts nd add ges (for 2 48 DT80A imiting (7 E7 4 36 . DT40 imiting (0 CD	d-on I other 1 (coils diode) F7 48 (coils v diode) ED	115 with in FE7 60 with in ND	ules: places, pl 220 ntegra M7 72 tegra SD	see lease 230 Al sup P7 110 I supp FD	page const 240 press U7 125 GD	380 380 Q7 220 on de	400 evice V7 250 vice f	415 fitted N7 440 itted a RD	440 as R7 as	s 500 –
Separate co Auxiliary contac (1) Standard contro Office): a.c. supply Volts LC1 D09D25 and standard, by bi-dire 50/60 Hz d.c. supply Volts LC1 D09D25 and standard, by bi-dire U 0.71.25 Uc LC1 DT60A80A (peak limiting diode)	mpo ct bloc l circuit 24 LC1 D ctional 12 LC1 E ctional JI coils w	cks a voltag 4 42 7 D 7 D 2 24 0T20 peak I peak I D D BI ith inter Interview	ts nd add ges (for 2 48 DT80A imiting of 7 E7 4 36 . DT40 imiting of D CD egral su	d-on I other 1 (coils diode) F7 48 (coils v diode) ED	115 with in FE7 60 with in ND	ules: places, pl 220 ntegra M7 72 tegra SD	see lease 230 Al sup P7 110 I supp FD	page const 240 press U7 125 GD	380 380 Q7 220 on de	400 evice V7 250 vice f	415 fitted N7 440 itted a RD	440 as R7 as	500 -
Separate co Auxiliary contac (1) Standard contro Office): a.c. supply Volts LC1 D09D25 and standard, by bi-dire 50/60 Hz d.c. supply Volts LC1 D09D25 and standard, by bi-dire U 0.71.25 Uc LC1 DT60A80A (peak limiting diode)	mpo ct bloc l circuit 2 LC1 D ctional B 1: d LC1 E ctional Ji coils w	cks a voltag 4 42 7 D 7 D 2 24 0T20 peak I peak I D D BI ith inter Interview	ts nd add ges (for 2 48 DT80A imiting of 7 E7 4 36 . DT40 imiting of D CD egral su	110 (coils diode) F7 48 (coils v diode) ED ppress	voltag 115 with in FE7 60 with in ND sion do	ules: es, pl 220 ntegra M7 72 tegra SD SD	see dease 230 Al sup P7 110 I supp FD fitted	240 press U7 125 GD as sta	380 alt you 380 alt you 220 and de MD and an	400 evice V7 250 vice f	415 fitted N7 440 itted a RD bi-dire	440 as R7 as	500 -
Separate co Auxiliary contac (1) Standard contro Office): a.c. supply Volts LC1 D09D25 and standard, by bi-dire 50/60 Hz d.c. supply Volts LC1 D09D25 and standard, by bi-dire U 0.71.25 Uc LC1 DT60A80A (peak limiting diode) U 0.751.25 Uc	mpo ct bloc l circuit 2 LC1 D ctional B 1: d LC1 E ctional Ji coils w	cks a voltag 4 42 7 D 7 D 2 24 0T20 peak I peak I D D BI ith inter Interview	ts nd add ges (for 2 48 DT80A imiting 0 7 E7 4 36 . DT40 imiting 0 D CD egral sup D CD	110 (coils diode) F7 48 (coils v diode) ED ppress	voltag 115 with in FE7 60 with in ND sion do	ules: es, pl 220 mtegra M7 72 tegra SD SD	see dease 230 Al sup P7 110 I supp FD fitted	240 press U7 125 GD as sta	380 alt you 380 alt you 220 and de MD and an	400 evice V7 250 vice f	415 fitted N7 440 itted a RD bi-dire	440 as R7 as	s 500 –
Auxiliary contact (1) Standard contro Office): a.c. supply Volts LC1 D09D25 and standard, by bi-dire 50/60 Hz d.c. supply Volts LC1 D09D25 and standard, by bi-dire U 0.71.25 Uc LC1 DT60A80A (peak limiting diode) U 0.751.25 Uc Low consumpt	mpo ct bloc l circuit ctional d LC1 D ctional 31 d LC1 D ctional JI coils w JI ion 5 LC1 D	4 42 TT20 peak I T20 peak I T20 peak I DT20 peak I DT20 12 T120	ts nd add ges (for 2 48 DT80A imiting 0 7 E7 4 36 . DT40 (imiting 0 D CD egral sup 2 20 . DT40 (1-on i other i (coils i (coils v diode) ED ED ED ED	115 with in FE7 60 with in ND ND	ules: es, pl 220 ntegra 72 tegra SD evice SD 110	see 230 230 al sup P7 110 I supp FD fitted FD	240 press U7 125 GD as sta GD	es B8 ult you sion de Q7 220 on de MD MD	400 evice V7 250 d, by l	415 fiftted N7 440 atto k RD RD	440 as R7 as	s 500 –

(a) Sore of the second secon

Click HERE for access

to online contactor selector

B8/7

TeSys contactors

For the North American market, Conforming to UL and CSA standards 25 to 160 A

LC1 D25...

LC1 D80A.

LC1 D95••

Standa	ard power	ratings o	of motors	50/60 Hz	2	Associated cable	UL	Type of contactor required		
Single 1 Ø	-phase	3-phas 3 Ø	e			type 75 °C-Cu	continuous current	Basic reference, to be completed ⁽¹⁾		
120 V	240 V	208 V	240 V	480 V	600 V			Fixing, connection (2)		
HP	HP	HP	HP	HP	HP		Α			
Conn	ection b	y screw	clamp t	erminal	s					
1/3	1	2	2	5	7.5	AWG 18 - 10	25	LC1D09ee		
0.5	2	3	3	7.5	10	AWG 18 - 10	25	LC1D12ee		
1	3	5	5	10	15	AWG 18 - 8	32	LC1D18ee		
2	3	7.5	7.5	15	20	AWG 14 - 6	40	LC1D25ee		
2	5	10	10	20	25	AWG 14 - 6	50	LC1D32ee		
2	5	10	10	20	25	AWG 14 - 6	50	LC1D38ee		
Powe	r connec	ctions by	y EverLi	ink® BT	R screw c	onnectors and cont	rol by spring	terminals		
3	5	10	10	30	30	AWG 16 - 2	60	LC1D40Aee		
3	7.5	15	15	40	40	AWG 16 - 2	70	LC1D50Aee		
5	10	20	20	40	50	AWG 16 - 2	80	LC1D65Aee		
5	10	20	20	40	50	AWG 16 - 2	80	LC1D80Aee		
Conn	ection b	y screw	clamp t	erminal	s or conn	ectors				
7.5	15	25	30	60	60	AWG 10 - 2	110	LC1D80ee		
7.5	15	25	30	60	60	AWG 10 - 2	110	LC1D95ee		
_	_	30	40	75	100	AWG 8-1/0	160	LC1D11500		
_	-	40	50	100	125	AWG 8-1/0	160	LC1D150.		

Applications with High-Fault Short-Circuit ratings

High-fault short-circuit current ratings are: 100 kA (D09-80, D115-150) at 600 V with Class J fuses and 85 kA (D09-38), 100 kA (D40A-80, D115-150) at 480 V and 50 kA (D09-80, D115-150) at 600 V with circuit breakers.

Application example

For a 15 HP-230 V motor

Select a contactor type LC1 D50A.

Information: the contractor rating selected corresponds to "size 2", the associated cable is type AWG3 75 °C-Cu. (1) Standard control circuit voltages (for other voltages, please consult your Regional Sales Office): a c supply

a.c. supply																
Volts	24	42	48	110	115	120	208	220	230	240	380	400	415	440	480	500
LC1 D09D150	(D115	and D	150 coi	ls with	built-in	suppre	ession o	device	as stan	dard)						
50/60 Hz	B7	D7	E7	F7	FE7	G7	LE7	M7	P7	U7	Q7	V7	N7	R7	T7	S7
LC1 D09D65 (I	not ava	ailable v	vith "co	nnectio	on for lu	igs or b	ars")									
50 Hz	B5	D5	E5						P5							
LC1 D80D115																
50 Hz	B5	D5	E5	F5	FE5	G5	-	M5	P5	U5	Q5	V5	N5	R5	-	S5
60 Hz	B6	-	E6	F6	-	G6	L6	M6	-	U6	Q6	-	-	R6	T6	-
d.c. supply																
Volts	12	24	36	48	60	72	110	125	220	250	440					
LC1 D09D32 (coils w	ith inte	gral su	ppressi	ion dev	ice fitte	ed as st	tandard	l, by bi-	direction	onal pe	ak limit	ing dio	de)		
U 0.71.25 Uc	JD	BD	CD	ED	ND	SD	FD	GD	MD	UD	RD					
LC1 D40AD65	5A (coil	s with i	ntegral	suppre	ession	device	fitted a	s stanc	lard, by	/ bi-dire	ectional	peak l	imiting	diode)		
U 0.751.25 Uc	JD	BD	CD	ED	ND	SD	FD	GD	MD	UD	RD					
LC1 D80 and D9	95															
U 0.851.1 Uc	JD	BD	CD	ED	ND	SD	FD	GD	MD	UD	RD					
U 0.751.2 Uc	JW	BW	CW	EW	-	SW	FW	-	MW	-	-					
LC1 D115 and D	150 (c	oils wit	h built-i	n supp	ressior	device	e as sta	andard)								
U 0.751.2 Uc	-	BD	_	ED	ND	SD	FD	GD	MD	UD	RD					
Low consum	ption															
Volts	5	12	20	24	48	72	110	220	250							
LC1 D09D38 (coils w	ith inte	gral su	ppressi	on dev	ice fitte	ed as st	tandard	l, by bi-	directio	onal pe	ak limit	ing dio	de)		
U 0.81.25 Uc	AL	JL	ZL	BL	EL	SL	FL	ML	UL							
(2) LC1 D09 to D	65A: cl	lip-on n	nountin	a on 35	i mm 1	[rail A	M1 DP	or scre	w fixing	7.						

LC1 D80 and LC1 D95: clip-on mounting on 35 mm 🗋 rail AM1 DP or 75 mm 🗋 rail AM1 DL or screw fixing.

LC1 D115 and D150: clip-on mounting on 2 x 35 mm L rails AM1 DP or screw fixing.

TeSys D Green

The dark grey body identifies the new generation of contactors. TeSys D Green belongs to it, bringing valuable advantages:

- 80 % less consumption than TeSys D with standard coil, reducted heating
- suitable for direct control by PLC output up to 37 kW (80 A)
- coil embedded electronic control accepting both AC and DC supply in a wide voltage band (except BBE-24 V DC).

TeSys D Green dimensions similar to TeSys D AC coil, making it fully compatible with all TeSys D auxiliaries and accessories.

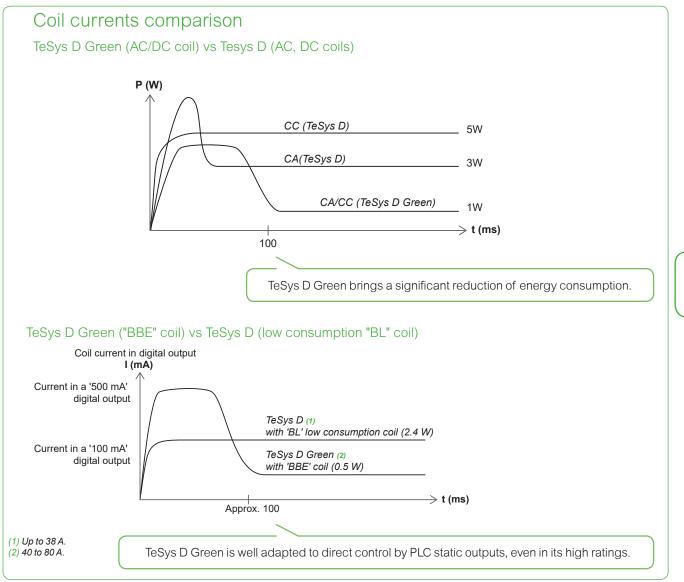
TeSys D Green is specifically designed for activation by its dedicated wide band coils.

When implemented with other Schneider Electric products^{*}, TeSys D Green contactors are part of a comprehensive solution that is ideal for all types of industrial machines and processes.

TeSys Solink + PLC

SoLink ensures the compatibility of circuit breaker and contactor assemblies with screw clamp terminals to the RJ45 connection system. It also can be used with the TeSys D Green BBE offer.

With SoLink, we provide prewired motor starters ready to be connected to PLC I/O, which saves you time and labor.


TeSys LR9D

By combining a TeSys D Green contactor with our new TeSys LR9D electronic overload relay, you will have less heat generation, and further reduce energy consumption.

* such as PLC I/O type M580, M340, M221 or M241 or extended I/O type Advantys STB range, or in association with electronic overload relays LR9D or TeSys T.

References

TeSys contactors TeSys D Green

Coordination with PLC DC and relay output modules

Laboratory tests have been carried out in order to validate trouble free contactor closings and openings with different PLC output modules.

The coil must be defined according to the contactor rating range and output module. See selection table below.

The PLC	your are using				Compatible	Coil code
PLC type	Output type	Output I (A)	Output module commercial reference	>>>	contactors ⁽¹⁾	
M221 /	Static output:	0.5	TM3DQ8 • • • and Q16 • •		LC1D09ee to LC1D38ee,	BL, BNE
M241 / M251	24 V DC		(T, TG, U, UG)	>>>	LC1D40A••• to LC1D80A, LC1DT60A••• to LC1DT80A•••	BBE
		0.3 (sealed) 0.8 (inrush)	TM3XTYS4	>>>	LC1D40A eee to LC1D80A, LC1DT60A eee to LC1DT80A eee	BBE, BD, BNE
		0.1	TM3DQ16●● and Q32●● (TK, UK)	>>>	LC1D09ee to LC1D38ee	BL
	Relay output: 24 V DC / 230 V AC	2	TM3DQ8 and DQ16 (R,RG), TM3DM8 and DM24 (R,RG)	>>>	LC1D09ee to LC1D38ee, LC1D40Aeee to LC1D80A, LC1DT60Aeee to LC1DT80Aeee	Code of any DC coil up to 24 V or any AC coil up to 230 V
M340 /	Static output:	0.5	BMXDDO1602 and DM16022		LC1D09ee to LC1D38ee	BL, BNE
M580	24 V DC			>>>	LC1D40A••• to LC1D80A, LC1DT60A••• to LC1DT80A•••	BBE
		0.1	BMXDDO3202, BMXDDM3202K, BMXDDO6402K	>>>	LC1D09ee to LC1D38ee	BL
	Relay output: 24 V DC / 230 V AC	2	BMXDRA0805 and DM16025	>>>	LC1D09•• to LC1D38••, LC1D40A••• to LC1D80A, LC1DT60A••• to LC1DT80A•••	Code of any DC coil up to 24 V or any AC coil up to 230 V
	Triac output: 230 V AC	0.6	BMXDAO1605	>>>	LC1D09•• to LC1D38••, LC1D40••• to LC1D80A•••, LC1DT60A••• to LC1DT80A•••	Code of any AC coil up to 230 V (P7 code = 230 V)
ADVANTYS	Static output: 24 V DC	0.5	STBDDO3200		LC1D09ee to LC1D38ee	BL, BNE
				>>>	LC1D40Aeee to LC1D80A, LC1DT60Aeee to LC1DT80Aeee	BBE
	Triac output: 230 V AC	2	STBDAO8210	>>>	LC1D09ee to LC1D38ee, LC1D40Aeee to LC1D80A, LC1DT60Aeee to LC1DT80Aeee	Code of any AC coil up to 230 V (P7 code = 230 V AC

Coils consumption characteristics

Coil type	Uc DC - min -max	Average consumption	n at UC DC / 20 °C
		Inrush	Sealed
BL	24 V - 0.8 Uc to 1.1 Uc	2.4 W - 2.4 VA	2.4 W - 2.4 VA
BNE		14 W - 14 VA	0.7 W - 0.7 VA
BBE		11 W - 11 VA	0.5 W - 0.5 VA

(1) Replace dot by coil code. Ex LC1D09•• becomes LC1D09BL.

References TeSys D Green contactors For motor control up to 37 kW / 400 V Category AC-3

LC1 D09

LC1 D40A

3-po	le co	ntacto	ors							
Standa	ard pow Hz in ca		js of 3-p	hase mo	otors	Rated opera- tional current in AC-3	auxi	an- eous iliary tacts	Basic reference, to be completed by adding the control voltage code	Weight
220 V 230 V	380 V 400 V	415 V	440 V	500 V	660 V 690 V	– 440 V up to		7	-	
kW	kW	kW	kW	kW	kW	Α				kg
Conn	ection	by scre	ew clan	n <mark>p term</mark>	inals					
2.2	4	4	4	5.5	5.5	9	1	1	LC1D09•••	0.368
3	5.5	5.5	5.5	7.5	7.5	12	1	1	LC1D12•••	0.373
4	7.5	9	9	10	10	18	1	1	LC1D18	0.378
5.5	11	11	11	15	15	25	1	1	LC1D25•••	0.433
7.5	15	15	15	18.5	18.5	32	1	1	LC1D32	0.438
9	18.5	18.5	18.5	18.5	18.5	38	1	1	LC1D38	0.442
Powe	r conn	ections	by Ev	erLink [®]	BTR (2)	screw co	nne	ctors a	and control by screw clamp termin	al
11	18.5	22	22	22	30	40	1	1	LC1D40A	0.992
15	22	25	30	30	33	50	1	1	LC1D50Aeee	0.997
18.5	30	37	37	37	37	65	1	1	LC1D65Aeee	1.002
22	37	37	37	37	37	66	1	1	LC1D80Aeee	1.002
Conn	ection	for lug	s or ba	rs ⁽⁴⁾						
						the voltage	code			
				omes LC						
Auxi	liary	conta	ct blo	cks a	nd ad	d-on mo	odu 🛛	les		
See pa	ages B8	3/23 to E	38/29.							
	-	oltage		s						
		V DC								
Volts			4 (DC or	ılv)	:	24-60			48-130 100-250	
	9D38, DA D8)						
U 0.85.	1.1 Uc	;			E	BNE			EHE KUE	
LC1D09	9 D38									
U 0.8	. 1.2 Uc	E	BNE						· · · · ·	
LC1D4	0A D8	0A								
U 0.8	1.2 Uc	В	BE							

(1) **LC1 D09** to **D80A**: clip-on mounting on 35 mm **r** rail AM1 DP or screw fixing. (2) BTR screws: hexagon socket head. In accordance with local electrical wiring regulations, a size 4 insulated Allen key must be used (reference LAD ALLEN4, see B8/29). (3) Please consult your Regional Sales Office.

References TeSys D Green contactors For load control from 25 to 80 A Category AC-1

LC1 D40A •••

LC1 DT60A •••

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3-pole co	ntactors	5					
A kg Connection by screw clamp terminals 0.366 25 3 1 1 LC1D09eee 0.366 0 1 1 LC1D12eee 0.373 32 3 1 1 LC1D12eee 0.373 40 3 1 1 LC1D25eee 0.433 50 3 1 1 LC1D32eee 0.433 50 3 1 1 LC1D32eee 0.433 60 3 1 1 LC1D38eee 0.992 80 3 1 1 LC1D40Aeee 0.992 80 3 1 1 LC1D50Aeee 0.997 60 3 1 1 LC1D65Aeee 0.997 <tr< th=""><th>maximum cur (θ ≤ 60 °C) utilisation cat</th><th>rent of p</th><th></th><th>tane</th><th>eous iliary</th><th></th><th>to be completed by adding</th><th>Weight</th></tr<>	maximum cur (θ ≤ 60 °C) utilisation cat	rent of p		tane	eous iliary		to be completed by adding	Weight
Connection by screw clamp terminals 25 3 1 1 LC1D09000 0.368 32 3 1 1 LC1D12000 0.376 40 3 1 1 LC1D18000 0.376 50 3 1 1 LC1D25000 0.436 50 3 1 1 LC1D32000 0.436 60 3 1 1 LC1D38000 0.442 60 3 1 1 LC1D40A000 0.992 80 3 1 1 LC1D50A000 0.997 60 3	AC-1	$\langle \rangle$	7		Ļ		Fixing ⁽¹⁾	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Α							kg
or LC1D12eee 0.373 32 3 1 1 LC1D18eee 0.378 40 3 1 1 LC1D25eee 0.433 50 3 1 1 LC1D32eee 0.433 50 3 1 1 LC1D32eee 0.438 or LC1D32eee 0.442 0.442 Connection by EverLink®, BTR screw connectors (2) 60 3 1 1 LC1D40Aeee 0.992 80 3 1 1 LC1D50Aeee 0.997 60 3 1 1 LC1D50Aeee 0.997 80 3 1 1 LC1D65Aeee (3) 1.002 or LC1D80Aeee (3) 1.002 1.002 1.002 1.002	Connection	by screw	clamp	term	inals			
32 3 1 1 LC1D18eee 0.376 40 3 1 1 LC1D25eee 0.433 50 3 1 1 LC1D25eee 0.433 or LC1D32eee 0.436 0.442 or LC1D38eee 0.442 60 3 1 1 LC1D40Aeee 0.992 80 3 1 1 LC1D50Aeee 0.997 or LC1D65Aeee (3) 1.002 or LC1D80Aeee (3) 1.002	25	3		1	1		LC1D09eee	0.368
40 3 1 1 LC1D25eee 0.433 50 3 1 1 LC1D32eee 0.438 or LC1D38eee 0.442 Connection by EverLink®, BTR screw connectors (2) 60 3 1 1 LC1D40Aeee 0.992 80 3 1 1 LC1D50Aeee 0.997 or LC1D65Aeee (3) 1.002 0.007 LC1D80Aeee (3) 1.002						or	LC1D12eee	0.373
50 3 1 1 LC1D3200 0.438 or LC1D3800 0.442 Connection by EverLink®, BTR screw connectors (2) 0.438 60 3 1 1 LC1D40A000 0.992 80 3 1 1 LC1D50A000 0.997 or LC1D65A000 (3) 1.002 0.002 or LC1D80A000 (3) 1.002	32	3		1	1		LC1D18eee	0.378
Connection by EverLink®, BTR screw connectors (2) 0.442 60 3 1 1 LC1D38eee 0.992 80 3 1 1 LC1D50Aeee 0.997 or LC1D56Aeee 0.997 0.977 0.002 or LC1D65Aeee 0.997 0.002 or LC1D65Aeee 0.997 0.002	40	3		1	1		LC1D25eee	0.433
Connection by EverLink®, BTR screw connectors (2) 60 3 1 1 LC1D40Aeee 0.992 80 3 1 1 LC1D50Aeee 0.997 or LC1D65Aeee 0.997 1.002 or LC1D65Aeee 1.002 0 0.7 LC1D80Aeee 1.002	50	3		1	1		LC1D32eee	0.438
60 3 1 1 LC1D40Aeee 0.992 80 3 1 1 LC1D50Aeee 0.997 or LC1D65Aeee (3) 1.002 or LC1D80Aeee (3) 1.002						or	LC1D38eee	0.442
80 3 1 1 LC1D50Aeee 0.997 or LC1D65Aeee (3) 1.002 or LC1D80Aeee (3) 1.002	Connection	by EverL	ink®, B	TR so	crew c	onn	ectors (2)	
or LC1D65Aeee (3) 1.002 or LC1D80Aeee (3) 1.002	60	3		1	1		LC1D40Aeee	0.992
or LC1D80Aeee (3) 1.002	80	3		1	1		LC1D50Aeee	0.997
						or		1.002
Connection for lugs or bars						or		1.002
	Connection f	or lugs o	r bars					

For LC1D40A to LC1D80A, insert a figure 6 before the voltage code. Example: LC1D40A ... becomes LC1D40A6 ...

4-pole c	4-pole contactors										
Connectio	n by EverLink®	, BTR (2)	screw	connectors							
60	4	1	1	LC1DT60Aeee	1.230						
80	4	1	1	LC1DT80Aeee	1.290						
Connection for lugo or here											

Connection for lugs or bars

For LC1DT60A to LC1DT80A, insert a figure 6 before the voltage code.

Example: LC1DT60A ... becomes LC1DT80A ...

4-pole cha	ngeover co	ntac	tors			
Connection b	oy EverLink®, E	STR (2)	screw	connectors		
60	4	1	1	LC2DT60A •••		2.460
80	4	1	1	LC2DT80A •••		2.580
Control vo	Itage codes	5				
AC/DC 24 V	OC supply					
Volts	24 (DC only)	24	-60	48-130	100-250	
LC1 D09D80A	and LCoDT60A.	DT80	Α			
U 0.85 1.1 Uc	;	BN	١E	EHE	KUE	
LC1D09 D38						
U 0.8 1.2 Uc	BNE					
LC1D40 to LC1D	080A, LC•DT60A	to LC	DT80A			
U 0.81.2 Uc	BBE					
(1) 1 0 1 0 0 1 0						

(1) LC1 D09 to D80A, LC•DT60A and LC•DT80A: clip-on mounting on 35 mm ır rail AM1 DP or screw fixing.
(2) BTR screws: hexagon socket head. In accordance with local electrical wiring regulations,

a size 4 insulated Allen key must be used (reference LAD ALLEN4, see page B8/29).
 (3) Selection according to the number of operation cycles, consult online datasheets for values.

Contactors

References **TeSys D Green contactors** For North American market, conforming to UL and CSA standards 25 to 80 A

2

5

LC1 D09•••

LC1 D40A •••

Con	tactors									
Standa	ard power	ratings o	of motors	50/60 Hz	:	Associated cable	Continuous	Type of contactor required		
Single 1Ø	Single-phase 3-pl 1Ø 3Ø		e			type 75 °C-Cu	current	Partial reference, to be completed by adding the control voltage code		
115 V	230 V 240 V	200 V 208 V	230 V 240 V	460 V 480 V	575 V 600 V			Fixing, connection (1)		
HP	HP	HP	HP	HP	HP		А			
Conn	ection by	screw	clamp t	erminal	s					
1/3	1	2	2	5	7.5	AWG 18 - 10	25	LC1D09eee		
0.5	2	3	3	7.5	10	AWG 18 - 10	25	LC1D12		
1	3	5	5	10	15	AWG 18 - 8	32	LC1D18eee		
2	3	7.5	7.5	15	20	AWG 14 - 6	40	LC1D25•••		

Ρον	ver conne	ections I	by Ever	Link [®] B	TR ⁽²⁾ scr	ew connectors and	control by s	pring terminals
3	5	10	10	30	30	AWG 16 - 2	60	LC1D40Aeee
3	7.5	15	15	40	40	AWG 16 - 2	70	LC1D50Aeee
5	10	20	20	40	50	AWG 16 - 2	80	LC1D65Aeee
5	10	20	20	40	50	AWG 16 - 2	80	LC1D80Aeee

AWG 14 - 6

50

LC1D32000

Connection for lugs or bars

10

For LC1D40A to LC1D80A, insert a figure 6 before the voltage code. Example: LC1D40A••• becomes LC1D40A6•••

10

Applications with High-Fault Short-Circuit Current ratings

25

20

High-fault short-circuit current ratings are: 100 kA at 600 V with Class J fuses and 85 kA (D09-38), 100 kA (D40A-65A) at 480 V and 50 kA at 600 V with circuit breakers.

· · · · ·					
Control volta	age codes				
AC/DC 24 V DC	supply				
Volts	24 (DC only)	24-60	48-130	100-250	
LC1D09 D32, LC1	1D40A D80A				
U 0.85 1.1 Uc		BNE	EHE	KUE	
LC1D09 D38					
U 0.8 1.2 Uc	BNE				
LC1D40A D80A					
U 0.81.2 Uc	BBE				
(4) 1 04 000 (- 000		" AM4 DD	C 1		

(1) LC1 D09 to D80: clip-on mounting on 35 mm ur rail AM1 DP or screw fixing.

(2) BTR screws: hexagon socket head. In accordance with local electrical wiring regulations, a size 4 insulated Allen key must be used (reference LAD ALLEN4, see page B8/29).

TeSys contactors

TeSys D, 3-pole reversing contactors for motor control up to 75 kW at 400 V, in category AC-3 Horizontally mounted, pre-assembled

LC2 D12.

LC2 D65A.

LC2 D11500

Contactors

3-pole reversing contactors for connection by screw clamp terminals Pre-wired nower connections

		ower					_				
	Hz in o	ower rai categoi			ase mo	tors	Rated opera- tional current in AC-3 440 V up to	aux con per	an- eous iliary tacts tactor	Contactors supplied with coil Basic reference, to be completed by adding the control voltage code ⁽²⁾	Weight (3)
	380 V 400 V		440 V	500 V	660 V 690 V	1000 V	_		7		
kW	kW	kW	kW	kW	kW	kW	Α				kg
	mech nnect		inter	lock, v	withou	t electri	ical interl	ocki	ng, for	connection by screw clamp terminals	;
2.2	4	4	4	5.5	5.5	-	9	1	1	LC2D09•• ⁽⁴⁾	0.687
3	5.5	5.5	5.5	7.5	7.5	-	12	1	1	LC2D12•• ⁽⁴⁾	0.697
4	7.5	9	9	10	10	-	18	1	1	LC2D18 • (4)	0.707
5.5	11	11	11	15	15	-	25	1	1	LC2D25•• ⁽⁴⁾	0.787
7.5	15	15	15	18.5	18.5	-	32	1	1	LC2D32•• ⁽⁴⁾	0.797
9	18.5	18.5	18.5	18.5	18.5	-	38	1	1	LC2D38•• ⁽⁴⁾	0.807
11	18.5	22	22	22	30	-	40	1	1	LC2D40Aee	1.870
15	22	25	30	30	33	-	50	1	1	LC2D50Aee	1.880
18.5	30	37	37	37	37	_	65	1	1	LC2D65Aee	1.890
22	37	45	45	55	45	-	80	1	1	LC2D80	3.200
25	45	45	45	55	45	_	95	1	1	LC2D95ee	3.200
With	mech	anical	interlo	ock an	d elec	trical int	erlocking	, for	connec	ction by screw clamp terminals or conn	ectors
30	55	59	59	75	80	65	115	1	1	LC2D115	6.350
40	75	80	80	90	100	75	150	1	1	LC2D150.	6.400
Conr	nectio	n by li	ugs o	r bars							

For reversing contactors LC2 D09 to LC2 D38, LC2 D115 and LC2 D150, in the references selected above, insert a figure 6 before the voltage code. Example: LC2 D09ee becomes LC2 D096ee

To build a 40 to 65 A reversing contactor, for connection by lugs, order 2 contactors LC1 DeeA6 and

mechanical interlock LAD 4CM (see page B8/30).

Component parts

Auxiliary contact blocks and add-on modules: see pages B8/23 to B8/29. (1) LC2 D09 to D65A: clip-on mounting on 35 mm r rail AM1 DP or screw fixing. LC2 D80 and D95: clip-on mounting on 35 mm r rail AM1 DP or 75 mm r rail AM1 DL or screw fixing.

LC2 D115 and D150: clip-on mounting on 35 mm ur rail AM1 DP or screw fixing.

(2) Standard control circuit voltages (for other voltages between 16 and 690 V, please consult your Regional Sales Office):

a.c. supply													
Volts	24	42	48	110	115	220	230	240	380	400	415	440	500
.C2 D09D150 (D115 and D	0150 coils	with bu	uilt-in su	ippressi	on devi	ce as st	andard)					
50/60 Hz	B7	D7	E7	F7	FE7	M7	P7	U7	Q7	V7	N7	R7	S7
_C2 D80D115													
50 Hz	B5	D5	E5	F5	FE5	M5	P5	U5	Q5	V5	N5	R5	S5
60 Hz	B6	_	E6	F6	-	M6	-	U6	Q6	-	-	R6	-
d.c.supply													
Volts	12	24	36	48	60	72	110	125	220	250	440		
C2 D09D38 (coils with inte	egral sup	oressio	n device	e fitted a	s stand	ard, by	bi-direc	tional p	eak limi	ting dio	de)		
J 0.71.25 Uc	JD	BD	CD	ED	ND	SD	FD	GD	MD	UD	RD		
C2 D40AD65A (coils with	integral :	suppres	ssion de	evice fitte	ed as st	andard	, by bi-d	irection	al peak	limiting	diode)		
J 0.751.25 Uc	JD	BD	CD	ED	ND	SD	FD	GD	MD	UD	RD		
Low consumption													
	5	12	20	24	48	110	220	250					
Volts	v												
Volts -C2 D09D38 (coils with int	-	pressio	n device	e fitted a	is stand	ard, by	bi-direc	tional p	eak limi	iting dio	de)		
	-	pressio JL	n device ZL	e fitted a BL	is stand EL	ard, by FL	bi-direc ML	tional p UL	eak limi	iting dio	de)		

(3) The weights indicated are for contactors with a.c. control circuit. For d.c. or low consumption control circuit, add 0.330 kg for LC2 D09 to D38, 0.150 kg for LC1 D40A to D65A.

(4) For reversing contactors with electrical interlocking pre-wired at the factory, add suffix V to the references selected above. Example: LC2 D09P7 becomes LC2 D09P7V.

Schemes

Note: when assembling a reversing contactor, it is good practice to incorporate a 50 ms time delay.

Characteristics pages B8/61 to B8/73 Dimensions: pages B8/83 and B8/84

Click <u>HERE</u> for access pages B8/85 and B8/86 to online contactor selector

TeSys contactors

TeSys D, 3-pole reversing contactors for motor control up to 15 kW at 400 V, in category AC-3 Horizontally mounted, pre-assembled

LC2 D123.

3-pole reversing contactors, for connection by spring terminals

		interlo				l interlocki	ng.			
of 3-µ in ca (θ ≤ 6	ohase r tegory 0 °C)		50-60			Rated opera- tional current in AC-3 440 V up to	Instant tanec auxili conta per conta	ary acts	Contactors supplied with coil Basic reference, to be completed by adding the voltage code ⁽²⁾ Fixing ⁽¹⁾	Weight (3)
	/ 380 V / 400 V	415 V	440 V	500 V	660 V 690 V					
kW	kW	kW	kW	kW	kW	Α				kg
For	conne	ction I	oy spr	ing te	rminal	S				
2.2	4	4	4	5.5	5.5	9	1	1	LC2D093.	0.687
3	5.5	5.5	5.5	7.5	7.5	12	1	1	LC2D123••	0.697
4	7.5	9	9	10	10	18	1	1	LC2D183.	0.707
5.5	11	11	11	15	15	25	1	1	LC2D253••	0.787
7.5	15	15	15	18.5	18.5	32 (4)	1	1	LC2D323.	0.797
Pow	er con	nectio	on by	EverL	ink®, B	TR screw	conne	ctors	⁽⁵⁾ and control by spring terminals	
11	18.5	22	22	22	30	40	1	1	LC2D40A3.	1.870
15	22	25	30	30	33	50	1	1	LC2D50A3.	1.880
18.5	30	37	37	37	37	65	1	1	LC2D65A3.	1.890
-										

For connection by Faston connectors

wired newer connection

All power connections are to be made by the customer.

These contactors are fitted with Faston connectors: 2 x 6.35 mm on the power poles and 1 x 6.35 mm on the coil terminals.

For reversing contactors LC2 D09 and LC2 D12 only, in the references selected above, replace the figure 3 before the voltage code with a figure 9.

Example: LC2 D093 •• becomes LC2 D099 ••

Component parts

Auxiliary contact blocks and add-on modules: see pages B8/23 to B8/29. (1) LC2 D09 to D32: clip-on mounting on 35 mm r rail AM1 DP or screw fixing.

a.c. supply													
Volts	24	42	48	110	115	220	230	240	380	400	415	440	500
LC2 D09D65A													
50/60 Hz	B7	D7	E7	F7	FE7	M7	P7	U7	Q7	V7	N7	R7	S7
d.c. supply													
Volts	12	24	36	48	60	72	110	125	220	250	440		
LC2 D09D32 (coils with int	tegral sup	pressio	n device	e fitted a	is stand	ard, by	bi-direc	tional p	eak limi	ting dio	de)		
U 0.71.25 Uc	JD	BD	CD	ED	ND	SD	FD	GD	MD	UD	RD		
LC2 D40A D65A (coils with	h integral	suppres	ssion de	vice fitt	ed as st	andard	, by bi-d	irection	al peak	limiting	diode)		
U 0.751.25 Uc	JD	BD	CD	ED	ND	SD	FD	GD	MD	UD	RD		
Low consumption													
Volts	5	12	20	24	48	110	220	250					
_C2 D09D32 (coils with integral suppression device fitted as standard, by bi-directional peak limiting diode)													

U 0.8...1.25 Uc AL JL ΖL BL EL FL ML UL

For other voltages between 5 and 690 V, see pages B8/32 to B8/35.

(3) The weights indicated are for reversing contactors with a.c. control circuit. For d.c. or low consumption control circuit, add 0.330 kg for LC2 D09 to D38, 0.150 kg for LC1 D40A to D65A.

(4) Must be wired with 2 x 4 mm² cables in parallel on the upstream side. On the downstream side, outgoing terminal block LAD 331 may be used (Quickfit technology, see page B1/18). When wired with a single cable, the product is limited to 25 A (11 kW/400 V motors).

(5) BTR screws: hexagon socket head. In accordance with local electrical wiring regulations, a size 4 insulated Allen key must be used (reference LAD ALLEN4, see page B8/29).

Click HERE for access

to online contactor selector

References TeSys D Green reversing contactors For motor control up to 37 kW / 400 V Category AC-3

LC2 D09•••

LC2 D40A

3-pol	e revers	sing	cor	ntactors	
Pre-wire	ed power	conn	ecti	ons	

	ard pov s 50-60) °C)				9	Rated opera- tional current in AC-3 440 V up to	Instan taneou auxilia contac per contac	us ary cts	Contactors supplied with coil Partial reference, to be completed by adding the control voltage code	Weight
220 V 230 V	380 V 400 V	415 V	440 V	500 V	660 V 690 V	-		7	·	
kW	kW	kW	kW	kW	kW	A				kg
With	mecha	nical i	nterlo	ck, wit	thout e	lectrical i	nterloc	king, i	or connection by screw clamp terminals	
or Ev	erlink	BTR s	crew o	connec	ctors (2)	(3)				
2.2	4	4	4	5.5	5.5	9	1	1	LC2D09•••	0.783
3	5.5	5.5	5.5	7.5	7.5	12	1	1	LC2D12	0.793
4	7.5	9	9	10	10	18	1	1	LC2D18	0.803
5.5	11	11	11	15	15	25	1	1	LC2D25eee	0.913
7.5	15	15	15	18.5	18.5	32	1	1	LC2D32	0.923
9	18.5	18.5	18.5	18.5	18.5	38	1	1	LC2D38	0.933
11	18.5	22	22	22	30	40	1	1		2.154
15	22	25	30	30	33	50	1	1		2.164
18.5	30	37	37	37	37	65	1	1		2.174
22	37	37	37	37	37	66	1	1		2.174
Aux	iliary	cont	act b	lock	s and	add-on	i mod	ules		
See pa	ages B	8/23 to	B8/29	Э.						
Coil	volta	ige c	odes							
	C 24 V									
Volts			24 (DC	conly)	2	24-60		48-13	0 100-250	
LC2D0	9D32.		•							

LC2D40A ... D80A U 0.85...1.1 Uc BNE EHE KUE LC2D09...D38 U 0.8...1.2 Uc BNE LC2 D40A ... D80A U 0.8...1.2 Uc BBE

(1) LC2 D09 to D80A: clip-on mounting on 35 mm `_r rail AM1 DP or screw fixing. (2) BTR screws: hexagon socket head. In accordance with local electrical wiring regulations, a size 4 insulated Allen key must be used (reference LAD ALLEN4, see page B8/29).

(3) Electrical interlocking is recommended when 2 orders (direct and reverse) could appeared in the same time.

TeSys contactors

TeSys D, 4-pole changeover contactor pairs for control in category AC-1, 20 to 200 A

Pre-assembled. Pre-wired power connections

For connection by screw clamp terminals or connectors LC2 DT20 to LC2 DT40: mechanical interlock without electrical interlocking. LC2 D80004: order separately 2 auxiliary contact blocks LAD Ne1 to obtain electrical interlocking between the 2 contactors (see page B8/23) For electrical interlocking incorporated in the mechanical interlock, please consult

your Regional Sales Office. LC2 D115004: mechanical interlock with integral, pre-wired electrical interlocking.

Utilisation category AC Non-inductive loads		antaneous auxiliary tacts per contactor	Contactors supplied with coil	Weight
Maximum rated operational current (θ ≤ 60 °C)			Basic reference, to be completed by adding the voltage code ⁽¹⁾	
			Fixing ⁽²⁾	
Α				kg
20	1	1	LC2DT20	0.730
25	1	1	LC2DT2500	0.730
32	1	1	LC2DT32.	0.850
40	1	1	LC2DT40	0.850
125	_	_	LC2D80004	3.200
200	_	_	LC2D115004	7.400
For connection by I	ugs or b	bars		
20	1	1	LC2DT2060	0.730
25	1	1	LC2DT256	0.730
32	1	1	LC2DT326	0.850
40	1	1	LC2DT406	0.850

For customer a	asse	embly	
For connection by	scre	ew clamp termi	nals or connectors
60	1	1	LC1DT60A•• (3)
80	1	1	LC1DT80A•• ⁽³⁾
For connection by	lugs	s or bars	
60	1	1	LC1DT60A6•• (3)

Auxiliary contact blocks and add-on modules: see pages B8/23 to B8/29.

Note: when assembling changeover contactor pairs, it is good practice to incorporate a 50 ms time delay.

LC1DT80A6ee (3)

1 1

80

 (1) See note (1) on next page.
 (2) LC2 DT20 to LC2 DT80: clip-on mounting on 35 mm ur rail AM1 DP or screw fixing. LC2 D80: clip-on mounting on 35 mm _rail AM1 DP or 75 mm _rail AM1 DL or screw fixing.

LC2 D115: clip-on mounting on 2 x 35 mm Lr rails AM1 DP or screw fixing.

(3) For these operational currents, order 2 identical contactors and a mechanical interlock LAD 4CM (see page B8/30).

Selection:	
pages A6/25 to	A6/49

Click <u>HERE</u> for access

to online contactor selector

TeSys contactors

TeSys D, 4-pole changeover contactor pairs for control in category AC-1, 20 to 80 A

For connection	by spin	ng te	ermi	nals.								
Utilisation categor Non-inductive load Maximum rated				tanec cts pe				SI	Contactors supplied with coil			
operational curren (θ ≤ 60 °C)	t	١)	ł				be ac Ve	e com dding oltage	efere plete the c e code	d by ontro	
•								Fi	ixing	(2)		
A												
20 For custome		1	-	1				L	C2DT	203.	•	
Power connection by spring termin	on by E			BTR	scre	ew co	onne					bl
60		1		1						60A3		
80		1		1				L	C1DT	80A3	•• (4)	
Office): a.c. supply												
M. H.												
Volts	24	42	48	110	115	220	230	240	380	400	415	440
LC2 DT20DT40, L	C2 DT6	0AI	DT80	Ą								
LC2 DT20DT40, L 50/60 Hz	C2 DT6 B7				115 FE7		230 P7	240 U7	380 Q7	400	415 N7	440 R7
LC2 DT20DT40, L 50/60 Hz LC2 D80004D1156	C2 DT6 B7 D04	0 AI D7	DT80/ E7	4 F7	FE7	M7	P7	U7	Q7	V7	N7	R7
LC2 DT20DT40, L 50/60 Hz LC2 D80004D1150 50 Hz	B7 004 B5	0 AI D7 D5	E5	A F7 F5		M7 M5	P7 P5	U7 U5	Q7 Q5			R7 R5
LC2 DT20DT40, L 50/60 Hz LC2 D80004D115(50 Hz 60 Hz	C2 DT6 B7 D04	0 AI D7	DT80/ E7	4 F7	FE7	M7	P7	U7	Q7	V7	N7	R7
LC2 DT20DT40, L 50/60 Hz LC2 D80004D1150 50 Hz 60 Hz d.c. supply	C2 DT6 B7 D04 B5 B6	0 AI D7 D5 –	E7 E5 E6	4 F7 F5 F6	FE7 FE5	M7 M5 M6	P7 P5 -	U7 U5 U6	Q7 Q5 Q6	V7 V5 –	N7 N5 -	R7 R5
LC2 DT20DT40, L 50/60 Hz LC2 D80004D1150 50 Hz 60 Hz d.c. supply Volts	C2 DT6 B7 004 B5 B6 12	0AI D7 D5 – 24	E7 E5 E6 36	4 F7 F5 F6 48	FE7 FE5 - 60	M7 M5 M6 72	P7 P5 - 110	U7 U5 U6 125	Q7 Q5 Q6 220	V7 V5 – 250	N7 N5 - 440	R7 R5 R6
LC2 DT20DT40, L 50/60 Hz LC2 D80004D1150 50 Hz 60 Hz d.c. supply Volts LC2 DT20DT40, L by bi-directional peak	C2 DT6 B7 D04 B5 B6 12 C1 DT6 c limiting	0AI D7 D5 - 24 0D	DT80/ E7 E5 E6 36 F80 (∋)	A F7 F5 F6 48 coils v	FE7 FE5 - 60 <i>v</i> ith inf	M7 M5 M6 72 tegral	P7 - 110 supp	U7 U5 U6 125 ressio	Q7 Q5 Q6 220 on dev	V7 V5 – 250 vice fit	N7 N5 - 440	R7 R5 R6
LC2 DT20DT40, L 50/60 Hz LC2 D80004D1150 50 Hz 60 Hz d.c. supply Volts LC2 DT20DT40, L by bi-directional peak	C2 DT6 B7 004 B5 B6 12 C1 DT6	0AI D7 D5 - 24 0D	DT80/ E7 E5 E6 36 F80 (4 F7 F5 F6 48	FE7 FE5 - 60	M7 M5 M6 72	P7 P5 - 110	U7 U5 U6 125	Q7 Q5 Q6 220	V7 V5 – 250	N7 N5 - 440	R7 R5 R6
LC2 DT20DT40, L 50/60 Hz LC2 D80004D1150 50 Hz 60 Hz d.c. supply Volts LC2 DT20DT40, L by bi-directional peak U 0.71.25 Uc Low consumption	C2 DT6 B7 004 B5 B6 12 C1 DT6 c limiting JD	0AI D7 D5 - 24 0D diode BD	E7 E5 E6 36 780 ((⇒) CD	4 F7 F5 F6 48 coils v	FE7 FE5 - 60 /ith inf	M7 M5 M6 72 tegral	P7 P5 – 110 supp FD	U7 U5 U6 125 ressid	Q7 Q5 Q6 220 on dev	V7 V5 – 250 vice fit	N7 N5 - 440	R7 R5 R6
LC2 DT20DT40, L 50/60 Hz LC2 D80004D1150 50 Hz 60 Hz d.c. supply Volts LC2 DT20DT40, L by bi-directional peak U 0.71.25 Uc	C2 DT6 B7 004 B5 B6 12 C1 DT6 k limiting JD	0AI D7 D5 - 24 0D	DT80/ E7 E5 E6 36 F80 (∋)	A F7 F5 F6 48 coils v	FE7 FE5 - 60 <i>v</i> ith inf	M7 M5 M6 72 tegral	P7 - 110 supp	U7 U5 U6 125 ressid	Q7 Q5 Q6 220 on dev	V7 V5 – 250 vice fit	N7 N5 - 440	R7 R5 R6
LC2 DT20DT40, L 50/60 Hz LC2 D80004D1150 50 Hz 60 Hz d.c. supply Volts LC2 DT20DT40, L by bi-directional peak U 0.71.25 Uc Low consumptio Volts LC2 DT20DT40 (cc peak limiting diode)	C2 DT6 B7 004 B5 B6 12 C1 DT6 k limiting JD on 5 oills with	001 D7 D5 - 24 0D diode BD 12 integr	E5 E6 36 F80 ((CD 20 ral sup	F7 F5 F6 48 coils w ED 24	FE7 FE5 - 60 /ith inf ND 48 sion do	M7 M5 M6 72 tegral SD 110 evice	P7 P5 - 110 supp FD 220 fitted	U7 U5 U6 125 GD 250 as sta	Q7 Q5 Q6 220 on dev	V7 V5 – 250 vice fit	N7 - 440 tted a: RD	R7 R5 R6 s sta
LC2 DT20DT40, L 50/60 Hz LC2 D80004D1150 50 Hz 60 Hz d.c. supply Volts LC2 DT20DT40, L by bi-directional peak U 0.71.25 Uc Low consumptio Volts LC2 DT20DT40 (cc	C2 DT6 B7 004 B5 B6 12 C1 DT6 climiting JD on 5 oills with AL	0AI D7 D5 - 24 0D diode BD 12 integr JL	E5 E5 E6 36 F80 (℃D 20 ZL	4 F7 F5 F6 48 ccoils w ED 24 ppress BL	FE7 FE5 - 60 vith int ND 48 sion de EL	M7 M5 M6 72 tegral SD 110 evice FL	P7 P5 - 110 supp FD 220 fitted ML	U7 U5 U6 125 GD 250 as sta	Q7 Q5 Q6 220 on dev	V7 V5 – 250 vice fit	N7 - 440 tted a: RD	R7 R5 R6 s sta

Contactors

LAD 4CM (see page B8/30).

Schneider Gelectric

TeSys contactors

For switching 3-phase capacitor banks, used for power factor correction Direct connection without choke inductors

LC1 DGK••, LC1 DLK••, LC1 DMK••

Dimensions, schemes:

page B8/87

Special contactors

Special contactors **LC1 DeK** are designed for switching 3-phase, single or multiple-step capacitor banks (up to 6 steps). Over 6 steps, it is recommanded to use chokes in order to limit the inrush current and thus improve the lifetime of the installation. The contactors are conform to standards IEC 60070 and 60831, UL and CSA.

Contactor applications

Specification

Contactors fitted with a block of early make poles and damping resistors, limiting the value of the current on closing to 60 ln max. This current limitation increases the life of all the components of the installation,

in particular that of the fuses and capacitors.

Operating conditions

Short-circuit protection must be provided by gl type fuses rated at 1.7...2 ln. It will ensure the service continuity of the whole installation in case of a capacitor contactor end of life

Maximum operational power

The power values given in the selection table below are for the following operating conditions:

Prospective peak current at switch-on	LC1 D●K		200 In		
Maximum operating rate	LC1 DFK, DGK, DLK, DMK	LC1 DFK, DGK, DLK, DMK			
	LC1 DPK, DTK, DWK		100 operating cycles/hour		
Electrical durability at	All contactor ratings	400 V	300 000 operating cycles		
nominal load		690 V	200 000 operating cycles		

	tional p 50 Hz ⁽¹⁾ °C ⁽²⁾	ower		Instant auxilia contac		Tightening torque on cable end	Basic reference, to be completed by adding the voltage code ⁽³⁾	Weight
230 V	400 V 415 V	440 V	690 V		(
kVAR	kVAR	kVAR	kVAR	N/O	N/C	N.m		kg
7	12.5	12.5	21	1	2	1.7	LC1DFK.	0.430
9.5	16.7	16.7	28.5	1	2	2.5	LC1DGKee	0.450
11	20	21	33	1	2	2.5	LC1DLK.	0.600
14	25	27	42	1	2	2.5	LC1DMKee	0.630
17	30	32	50	1	2	5	LC1DPK.	1.300
22	40	43	67	1	2	5	LC1DTK.	1.300
35	63	67	104	1	2	9	LC1DWK12ee	1.650

Switching of multiple-step capacitor banks (with equal or different power ratings)

The correct contactor for each step is selected from the above table, according to the power rating of the step to be switched.

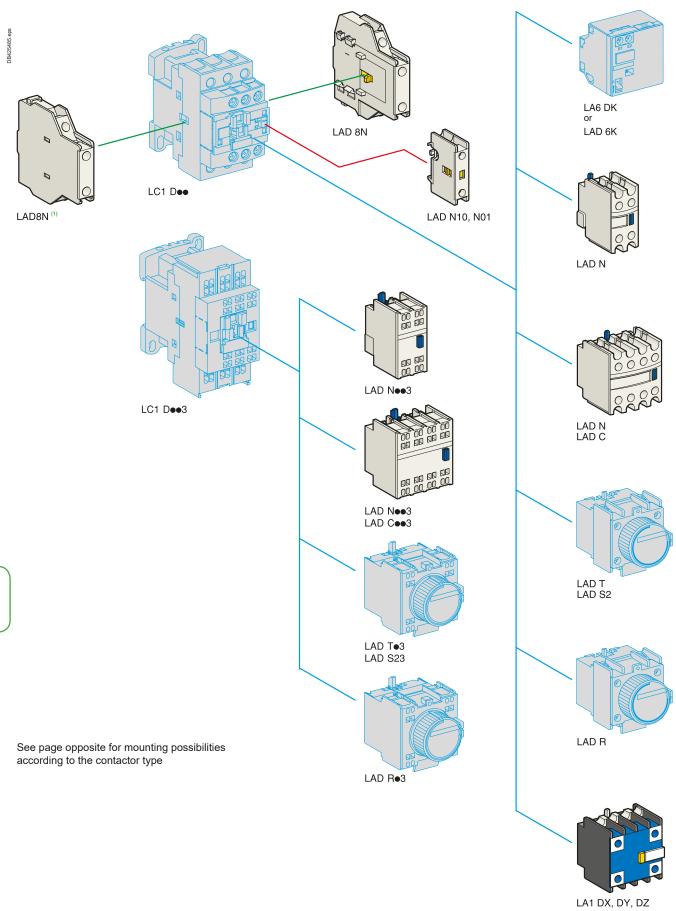
Example: 50 kVAR 3-step capacitor bank. Temperature: 50 °C and U = 400 V or 440 V. One 25 kVAR step: contactor LC1 DMK, one 15 kVAR step: contactor LC1 DGK,

and one 10 kVAR step: contactor LC1 DFK.

(1) Operational power of the contactor according to the scheme on the page opposite.

(2) The average temperature over a 24-hour period, in accordance with standards IEC 60070 and 60831 is 45 °C.

(3) Standard control circuit voltages (the delivery time is variable, please consult your Regional Sales Office):


Volts	24	48	110	120	220	230	240	380	400	415	440
50/60 Hz	B7	E7	F7	G7	M7	P7	U7	Q7	V7	N7	R7

Life Is On Schneider

Click <u>HERE</u> for access to online contactor selector

B8/21

(1) No left side mounting on TeSys D Green contactors.

Contactors

TeSys contactors

TeSys D contactors and reversing contactors

Instantaneous auxiliary contact blocks

For use in normal operatir	ig environmenta							
Clip-on mounting	Number of contacts per block			sitic	on 	Ļ	Reference	
Front	1	_	-	-	1	-	LADN10	
		-	-	-	-	1	LADN01	
	2	_	-	_	1	1	LADN11	
		_	_	_	2	-	LADN20	
		-	-	-	-	2	LADN02	
	4	_	-	-	2	2	LADN22	LADN22S
		_	_	_	1	3	LADN13	
		_	-	-	4	-	LADN40	
		_	-	-	-	4	LADN04	
		-	-	_	3	1	LADN31	
	4 incl. 1 N/O & 1 N/C make before break	-	-	-	2	2	LADC22	
Side	2	_	-	-	1	1	LAD8N11	
(contact blocks compatible with AC coil contactors only)		_	-	-	2	-	LAD8N20	
,,		-	-	-	-	2	LAD8N02	
For terminal referencing	conforming to EN 50012							
Front on 3P contactors and	2	-	_	_	1	1	LADN11G	
4P contactors 20 to 80 A	4	-	_	_	2	2	LADN22G	
Front on 4P contactors	2	-	-	-	1	1	LADN11P	
125 to 200 A	4	-	-	-	2	2	LADN22P	
With dust and damp prote	ected contacts, for use in particu	larly	y ha	rsh	ind	ustria	l environmen	ts
Front	2	-	2	-	-	-	LA1DX20	
		1	1	-	-	-	LA1DX11	
		2	-	-	-	-	LA1DX02	
		-	2	2	_	-	LA1DY20 (2)	
	4	-	2	-	2	-	LA1DZ40	
		_	2	_	1	1	LA1DZ31	

Instantaneous auxiliary contact blocks for connection by lugs

This type of connection is not possible for blocks with 1 contact or blocks with dust and damp protected contacts. For all other instantaneous auxiliary contact blocks, add the figure **6** to the end of the references selected above. Example: **LAD N11** becomes **LAD N116**.

Instantaneous auxiliary contact blocks for connection by spring terminals

This type of connection is not possible for LAD 8, LAD N with 1 contact or blocks with dust and damp protected contacts. For all other contact blocks, add the figure **3** to the end of the references selected above. Example: LAD N11 becomes LAD N113.

Instantaneous auxiliary contact blocks for connection by Faston connectors

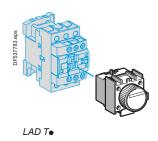
This type of connection is not possible for LAD 8, LAD N with 1 contact or blocks with dust and damp protected contacts. For all other contact blocks, add the figure 9 to the end of the references selected above. Example: LAD N11 becomes LAD N119.

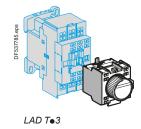
Maximum number of auxiliary contacts that can be fitted:

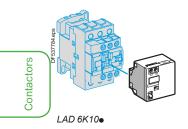
Contac	tors		Instantaneous auxiliar	y cont	acts			Time delay
Туре	Num	nber of poles and size	Side mounted		Front mo	unted		Front
					1 contact	2 contacts	4 contacts	mounted
AC	3P	LC1 D09D38	1 on LH or 1 on RH side	⁽¹⁾ and	-	1	or 1	or 1
AC/DC		LC1 D40AD80A	1 on LH or 1 on RH side	and	-	1	or 1	or 1
		LC1 D80 and D95 (50/60 Hz)	1 on each side	or	2	and 1	or 1	or 1
		LC1 D80 and D95 (50 or 60 Hz)	1 on each side	and	2	and 1	or 1	or 1
		LC1 D115 and D150	1 on LH side	and	-	1	or 1	or 1
	4P	LC1 DT20DT40	1 on LH side	and	-	1	or 1	or 1
		LC1 DT60A and DT80A	1 on LH or 1 on RH side	and	-	1	or 1	or 1
		LC1 D40008, D65008 and D80	1 on each side	or	1	or 1	or 1	or 1
		LC1 D115	1 on each side	and	1	or 1	or 1	or 1
DC	3P	LC1 D09D38	-		-	1	or 1	or 1
		LC1 D40AD80A	-		-	1	or 1	or 1
		LC1 D80 and D95	-		1	or 1	or 1	or 1
		LC1 D115 and D150	1 on LH side	and	-	1	or 1	or 1
	4P	LC1 DT20DT40	-		-	1	or 1	or 1
		LC1 DT60A and DT80A	-		-	1	or 1	or 1
		LC1 D40008, D65008 and D80	-		2	and 1	or 1	or 1
		LC1 D115	1 on each side		-	and 1	or 1	or 1
LC ^{(3) (5)}	3P	LC1 D09D38	-		-	1	-	-
	4P	LC1 DT20DT40	-		-	1	-	-

(2) Device fitted with 4 earth screen continuity terminals.
 (3) LC: low consumption.

(5) LA1Deee dust & damp proof auxiliary contact blocks not allowed.


Contactors


B8/23


TeSys contactors

TeSys D contactors and reversing contactors

Time delay auxiliary contact blocks Mechanical latch blocks

Time delay auxiliary contact blocks for connection by screw clamp terminals

Maximum number of auxiliary contact blocks that can be fitted per contactor, see page B8/23.

Sealing cover to be ordered separately, see page B8/29.

LAD T0 and LAD R0: with extended scale from 0.1 to 0.6 s.

LAD S2: with switching time of 40 ms \pm 15 ms between opening of the N/C contact and closing of the N/O contact.

Clip-on mounting	Number	Time dela	ıy	Reference	
	of contacts	Туре	Setting range		
Front	1 N/O + 1 N/C	On-delay	0.13 s	LADT0	
			0.130 s	LADT2	
			10180 s	LADT4	
			130 s	LADS2	
		Off-delay	0.13 s	LADR0	
			0.130 s	LADR2	
				LADR4	

Time delay auxiliary contact blocks for connection by lugs

Add the figure ${\bf 6}$ to the end of the references selected above. Example: LAD T0 becomes LAD T06.

Time delay auxiliary contact blocks for connection by spring terminals

Add the figure **3** to the end of the references selected above. Example: **LAD T0** becomes **LAD T03**.

Time delay auxiliary contact blocks for connection by Faston connectors

Add the figure **9** to the end of the references selected above. Example: **LAD T0** becomes **LAD T09**.

Mechanical latch blocks (1)

Clip-on mounting	Unlatching control	For use on contactor	Basic reference, to be completed by adding the control voltage code ⁽²⁾
Front	Manual or electric	LC1 D09D38 (~ or) ⁽³⁾ LC1 DT20DT40 (~ or)	LAD6K10●
		LC1 D40AD80A (3 P \sim or) LC1 DT60A and DT80A (4 P \sim or)	LAD6K10●
		LC1 D80D150 (3 P ~) LC1 D80 and D115 (3 P) LC1 D80 (4 P ~) LC1 D80 and D115 (4 P ~) LP1 D80 and LC1 D115 (4 P)	LA6DK20●

 The mechanical latch block must not be powered up at the same time as the contactor. The duration of the control signal for the mechanical latch block and the contactor should be: ≥ 100 ms for a contactor operating on an a.c. supply,
 ≥ 250 ms for a contactor operating on a d.c. supply.

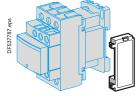
Maximum impulse duration for the LAD 6K10

mechanical latch block: 10 seconds. (2) Standard control circuit voltages (for other voltages, please consult your Regional Sales Office):

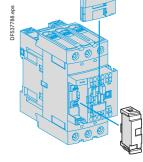
Volts 50/60 Hz,	24	32/36	42/48	60/72	100	110/127	220/240	256/277	380/415
Code	В	С	Е	EN	K	F	М	U	Q

(3) The DC, low consumption contactors (coil code •L) are not compatible with the mechanical latch blocks LAD6K10•.

Characteristics:	
pages B8/68 to I	38/70
B8/24	Life Is On


Dimensions: pages B8/74 to B8/77

Schneider


TeSys contactors

TeSys D contactors and reversing contactors

Suppressor modules

LAD 400

LAD 4RC3., LAD 4V3., LAD 4D3U, LAD 4T3.

RC circuits (Resistor-Capacitor)

Effective protection for circuits highly sensitive to "high frequency" interference. For use only in cases where the voltage is virtually sinusoidal. i.e. less than 5 % total harmonic distortion. Voltage limited to 3 Uc max. and oscillating frequency limited to 400 Hz max. Slight increase in drop-out time (1.2 to 2 times the normal time). Mounting For use with contactor (1 Roforonco

mounting	I OF USE WITH CONTACTOR	Nelelelice	
	Rating	Туре	
		$v \sim v =$	
Clip-on side mounting $^{\scriptscriptstyle (3)(5)}$	D09D38 (3P)	2448 –	LAD4RCE
	DT20DT40	50127 –	LAD4RCG
		110250 –	LAD4RCU
Clip-on front mounting (3) (5)	D40AD65A (3P)	2448 –	LAD4RC3E
	DT60ADT80A (4P)	50127 –	LAD4RC3G
		110240 –	LAD4RC3U
		380415 -	LAD4RC3N
Screw fixing (4)	D80D150 (3P)	2448 –	LA4DA2E
	D40D115 (4P)	50127 –	LA4DA2G
		110240 –	LA4DA2U
		380415 –	LA4DA2N

Varistors (peak limiting)

Protection provided by limiting the transient voltage to 2 Uc max. Maximum reduction of transient voltage peaks. Slight increase in drop-out time (1.1 to 1.5 times the normal time).

Clip-on side mounting (3) (5)	D09D38 (3P)	2448	_	LAD4VE
	DT20DT40	50127	_	LAD4VG
		110250	_	LAD4VU
Clip-on front mounting (3) (5)	D40AD65A (3P)	2448	2448	LAD4V3E
	DT60ADT80A (4P)	50127	50127	LAD4V3G
		110250	110250	LAD4V3U
Screw fixing (4)	D80D115 (3P)	2448	-	LA4DE2E
	D80D115 (4P)	50127	-	LA4DE2G
		110250	-	LA4DE2U
	D80D95 (3P)	-	2448	LA4DE3E
	D80 (4P)	_	50127	LA4DE3G
		_	110250	LA4DE3U

LA4 D ••

LAD 4DDL or LAD 4ToDL

Flywheel diodes

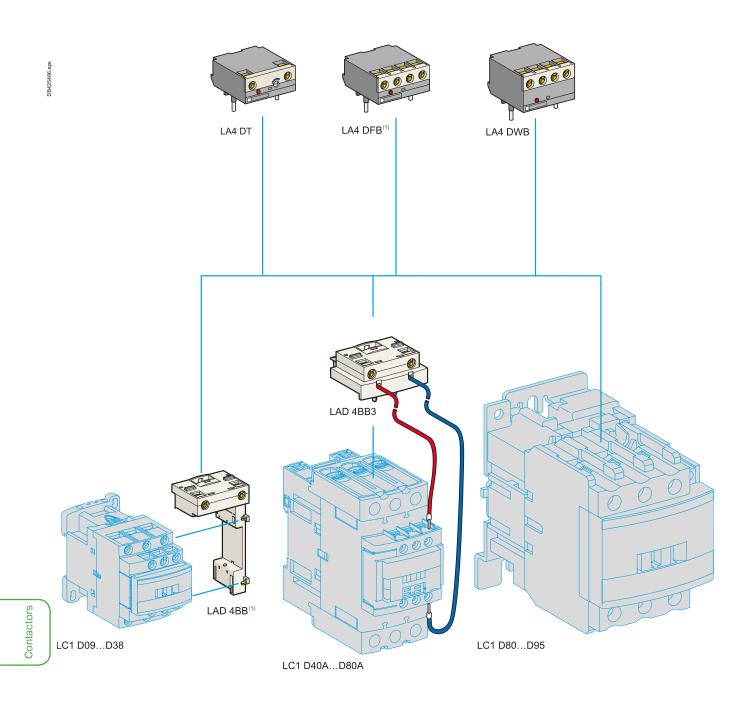
No overvoltage or oscillating frequency. Increase in drop-out time (6 to 10 times the normal time). Polarised component

i olansed component.					
Clip-on side mounting (5)	D09D38 (3P), DT20DT40	-	5600	LAD4DDL	
Clip-on front mounting ⁽⁵⁾	D40AD65A (3P), DT60ADT80A (4P)	-	24250	LAD4D3U	
Screw fixing (4)	D80 and D95 (3P), D40…D80 (4P)	_	24250	LA4DC3U	

Bidirectional peak limiting diodes

Protection provided by limiting the transient voltage to 2 Uc max. Maximum reduction of transient voltage peaks

Clip-on side mounting (3)	side mounting ⁽³⁾ D09D38 (3P) 2	24	_	LAD4TB
	DT20DT40 (4P) (2)	_	24	LAD4TBDL
		72	_	LAD4TS
		_	72	LAD4TSDL
		_	125	LAD4TGDL
		_	250	LAD4TUDL
		_	600	LAD4TXDL
Clip-on front mounting (3)	D40AD65A (3P)	1224	1224	LAD4T3B
	DT60ADT80A (4P) ⁽²⁾	2572	2572	LAD4T3S
		73125	73125	LAD4T3G
		126250	126250	LAD4T3U
		251440	251440	LAD4T3R
Screw fixing (4)	D80D95 (3P)	1224	-	LA4DB2B
	D40D80 (4P)	2572	_	LA4DB2S
		_	24	LA4DB3B
		_	72	LA4DB3S


For satisfactory protection, a suppressor module must be fitted across the coil of each contactor except for TeSys D Green (● E coil), as surge protection is already embedded.

(2) From D09 to D65A and from LC1 DT20 to DT80A, d.c. low consumption or TeSys D Green 3-pole contactors are fitted with a built-in bidirectional peak limiting diode suppressor as standard. This bidirectional peak limiting diode is removable and can therefore be replaced by the user. (See reference above). If a d.c. or low consumption contactor is used without suppression, the standard suppressor should be replaced with a blanking plug (reference LAD 9DL for LC1 D09 to D38 and LC1 DT20 to DT40; reference LAD 9DL3 for LC1 D40A to D65A and LC1 DT60A to DT80A). (3) Clipping-on makes the electrical connection. The overall size of the contactor remains unchanged.

(4) Mounting at the top of the contactor on coil terminals A1 and A2.

(5) In order to install these accessories, the existing suppression device must first be removed.

See page opposite for mounting possibilities according to the contactor type.

(1) For TeSys D with AC coil only.

Life Is On Schneider

TeSys contactors TeSys D contactors and reversing contactors Accessories

Electronic serial timer modules ⁽¹⁾

■ 3-pole contactors LC1 D09 to D38: mounted using adapter LAD 4BB,

- to be ordered separately, see below.
- 3-pole contactors LC1 D40A to D65A: mounted using adapter LAD 4BB3, to be ordered separately, see below.

■ 3-pole contactors LC1 D80 to D150 and 4-pole contactors LC1 D40 to D115: mounted directly across terminals A1 and A2 of the contactor.

On-delay type

Operational voltage \sim		Time delay	Reference
24250 V	100250 V		
LC1 D09D80A (3P)	LC1 D80D150 (3P)	0.12 s	LA4DT0U
		1.530 s	LA4DT2U
		25500 s	LA4DT4U

Interface modules

■ 3-pole contactors LC1 D09 to D38: mounted using adapter LAD 4BB,

to be ordered separately, see below.

■ 3-pole contactors LC1 D40A to D80A: mounted using adapter LAD4 BB3, to be ordered separately, see below.

to be ordered separ	ately, see below.		
Relay interface			
Operational voltage	~	Supply voltage E1-E2 ()	Reference
		• • • •	
LC1 D09D150 (3P)		24 V	LA4DFB
Static relay interfa	ace		
Operational voltage	\sim	Supply	Reference
24250 V	100250 V	voltage E1-E2 ()	
LC1 D09D80A (3P)	LC1 D80D115 (3P)	24 V	LA4DWB
Adapter kit for	low control sign	al	
For use on contactors	Composition		Reference
LC1 D40AD80A (3P) (2)	 1 LAD4BB3 coil wiring 1 LA4DFB relay interf 		LA4DBL
Wiring adapte	rs for coil retrofit	of 3 pole cont	tactors
For adapting exis	ting wiring to a new p	product	
For use on contactors			Reference
LC1 D09D38	Without coil suppression		LAD4BB ⁽³⁾
	With coil suppression	\sim 2448 V	LAD4BBVE
		\sim 50127 V	LAD4BBVG
		\sim 110250 V	LAD4BBVU
LC1 D40A80A	Without coil suppression		LAD4BB3

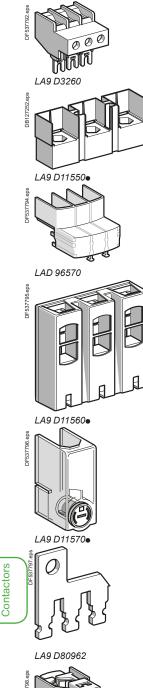
LC1 D40A...80A Without coil suppression

(1) For 24 V operation, the contactor must be fitted with a 21 V coil (code Z). See pages B8/32 to B8/35.

(2) The kit is compatible with a coil voltage of \sim 24 V to \sim 250 V (B7 to U7) and = 24 V to =250 V (BD to UD).
(3) LAD4BB can not be used with 4 poles contactors.

TeSys contactors

TeSys D contactors and reversing contactors


Description

Connectors for cable, size

Accessories for main pole and control connections

4-pole 10 mm²

Accessories

(1 connector) 3-pole 25 mm² D09...D38 D09...D38 LA9D3260 1 EverLink[®] 3-pole D40A...D80A D40A...D80A 1 LAD96560 terminal block Connectors for cables 3-pole 120 mm² D115, D150 D115, D150 1 LA9D115603 (2 connectors) 4-pole 120 mm² D115 D115 1 LA9D115604 D1156, D1506 D1156, D1506 LA9D115503 Connectors for 3-pole 1 lug type terminals D1156 D1156 1 LA9D115504 4-pole (2 connectors) Protective covers 3-pole D40A6...D80A6 D40A6...D80A6 1 LAD96570 for connectors for lug type terminals D1156, D1506 D1156, D1506 LA9D115703 (1) 1 4-pole D60A6...D80A6 D60A6...D80A6 LAD96580 1 D1156, D1506 D1156, D1506 LA9D115704 1 IP 20 covers for lug type D40A6...D80A6 D40A6...D80A6 1 LAD96575 3 poles terminals (for mounting with circuit breakers GV3 Pee6 and GV3 Lee6) Links for 2 poles D09...D38 D09...D38 10 LA9D2561 parallel connection of DT20, DT25 (4P) DT20, DT25 (4P) 10 LA9D1261 DT32, DT40 (4P) DT32, DT40 (4P) 10 LAD96061 D40A...D80A D40A...D80A 1 LAD9P32 D80, D95 D80, D95 2 LA9D80961 3 poles D09...D38 D09...D38 10 LAD9P3 (2) D40A...D80A D40A...D80A LAD9P33 1 D80, D95 D80, D95 LA9D80962 1 4 poles DT20, DT25 DT20, DT25 2 LA9D1263 D80 LA9D80963 D80 2 Staggered coil connection D80 10 LA9D09966 Control circuit take-off D80, D95 D80, D95 10 LA9D8067 from main pole D115, D150 D115, D150 10 LA9D11567

For use with contactors LC1

DT20, DT25

DT20, DT25

Sold in Unit

1

lots of reference

LAD92560

LA9 D11567

for increasing the pole pitch to 45 mm (1) For 3-pole contactors: 1 set of 6 covers, for 4-pole contactors: 1 set of 8 covers.

D115, D150

D115, D150

3

GV7AC03

(2) Separate connecting bar for connecting 2 poles in parallel.

Schneider Electric

Spreaders

TeSys contactors

TeSys D contactors and reversing contactors

Description

Sets of contacts

Arc chambers

Set of S-shape busbars

Sets of contacts and arc chambers

For contactor

3-pole

4-pole

3-pole

Accessories

DF537799_16.eps	GV2 G245)
DF510994_14.eps	100000	DF510895_14.eps
	GV1 G09	GV3 S

LA9 D941

	0
(
L	AD 7X3

		LC1 D150	LA5D15050	
	4-pole	LC1 D115004	LA5D115450	
Power connection	accessories			
Terminal block	For supply to one or more (GV2 G busbar sets	GV1G09	
Set of 63 A busbars	2 contactors LC1 D09D18 or D25D38		GV2G245	5
for parallelling of contactors	4 contactors LC1 D09D18 or D25D38		GV2G445	
Set of 115 A busbars	2 contactors LC1 D40AD80A		GV3G264	
for parallelling of contactors 3 contactors LC1 D40AD	80A	GV3G364 ⁽¹⁾		

For circuit breakers GV3 Pee and GV3 Lee (3)

and contactors LC1 D40A...D73A

LC1 D115

LC1 D150

LC1 D115

LC1 D115004

Protection access	ories		
Description	Use	Sold in lots of	Reference
Miniature control circuit fuse holder	5 x 20 with 4 A-250 V fuse	1	LA9D941
Sealing cover	For LAD T, LAD R	1	LA9D901
Safety cover	LC1 D09D80A and DT20DT80A	1	LAD9ET1
preventing access to	Red cover (for safety chain indication)	1	LAD9ET1S
the moving contact carrier	LC1 D80 and D95	1	LAD9ET3
	Red cover (for safety chain indication)	1	LAD9ET3S
	LC1 D115 and D150	1	LAD9ET4
	Red cover (for safety chain indication)	1	LAD9ET4S

Marking accessorie	S		
Description	Use	Sold in lots of	Unit reference
Sheet of 64 blank legends, self-adhesive, 8 x 33 mm $^{(2)}$	Contactors (except 4P) LC1 D80D115, LAD N (4 contacts), LA6 DK	10	LAD21
Sheet of 112 blank legends, self-adhesive, 8 x 12 mm ⁽²⁾	LAD N (2 contacts), LAD T, LAD R, LRD	10	LAD22
Sheet of 64 blank legends for marking using plotter or 8 x 33 mm engraver	Contactors (except 4P) LC1 D80D115, LAD (4 contacts), LA6 DK	10	LAD23
Sheet of 440 blank legends for marking using plotter or 8 x 12 mm engraver	All products	35	LAD24
Marker holder snap-in, 8 x 22 mm	4-pole contactors, LC1 D80D115, LA6 DK	100	LA9D92
Marker holder snap-in, 8 x 18 mm	LC1 D09D65A, LC1 DT20DT80A, LAD N (4 contacts), LAD T, LAD R	100	LAD90
Bag of 300 blank legends self-adhesive, 7 x 21 mm	On holder LA9 D92	1	LA9D93
Mounting accessori	es		
Retrofit plate for screw fixing	For replacement of LC1 D40 to D80 with LC1 D40A to D80A	1	LAD7X3
Mounting plate	For replacement of LC1 F115 or F150 with LC1 D115 or D150	1	LA9D730
Size 4 Allen key, insulated, 1000 V	For use on contactors LC1 D40A to LC1 D150	5	LADALLEN4

(1) With this set of busbars, any one contactor can be supplied directly by its EverLink® double cage power terminal block. (1) Win this set of basical starts any one contactor can be supplied unced by by its Eventilia double cage power terminal block.
 The other two contactors are supplied by the busbar set. The 115 A limitation is therefore applied to these two contactors. Example: 1 LC1 D65A supplied directly + 1 contactor LC1 D65A and 1 contactor LC1 D50 A supplied via the busbar set = 115 A. This combination is compatible with busbar set GV3 G364.
 (2) These legends are for sticking onto the safety cover of the contactors or add-on block, if fitted.
 (3) With 73 A current limit for GV3L73, GV3P73.

Reference

LA5D1158031

LA5D150803

LA5D115804

LA5D11550

GV3S

TeSys contactors

DF537729.eps

DF537730.eps

DF537731.eps

Contactors

Component parts for assembling reversing contactors for motor control, low-speed/high-speed starters and star-delta starters

1 000	e e maeter e mai e e e e e e e e e e e e e e e e e e e	ctors. Horizontally mounted, a	assembled by	customer.
	Description	For contactors (1) (2 identical contactors)	Reference	
- Barris	Kits for assembly of reversing contactors			
	 Kit comprising: a mechanical interlock LAD 9V2 with electrical interlocking LAD 9V1 a set of power connections LAD 9V5 (parallel) and LAD 9V6 (reversing). 	LC1 D09 to D38	LAD9R1V	
	Kit comprising: ■ a mechanical interlock LAD 9V2 without electrical interlocking ■ a set of power connections LAD 9V5 (parallel) and LAD 9V6 (reversing).	LC1 D09 to D38	LAD9R1	
	Kit comprising: ■ a mechanical interlock LAD 4CM ■ a set of power connections LA9 D65A69.	LC1 D40A to D80A	LAD9R3	
	Mechanical interlocks			
	Mechanical interlock with	LC1 D80 and D95 (\sim)	LA9D4002	
	integral electrical interlocking	LC1 D80 and D95 ()	LA9D8002	
		LC1 D115 and D150	LA9D11502	
	Mechanical interlock without	LC1 D09 to D38	LAD9V2	
	integral electrical interlocking	LC1 D40A to D80A	LAD4CM	
		LC1 D80 and D95 (\sim)	LA9D50978	
		LC1 D80 and D95 ()	LA9D80978	
	Sets of power connections			
	Comprising: a set of parallel bars	LC1 D09 to D38 with screw clamp terminals or connectors	LAD9V5 + LA	
	a set of reverser bars.	LC1 D09D32 with spring terminal connections	LAD9V12 + LAD9V13 ⁽²⁾	
		LC1 D40A to D80A	LA9D65A69	
		LC1 D80 and D95 (~)	LA9D8069	
		LC1 D80 and D95 ()	LA9D8069	
		LC1 D115 and D150	LA9D11569	
	For low-speed/high-speed starter			
	Description	For LC1D09 D38 contactors with connection type	Reference	
	Connection kit enabling	Screw clamps or connectors	LAD9PVGV	
	reversing of low and high speed directions using a reversing contactor and a 2N/O + 2N/C main pole contactor	Spring terminals	LAD3PVGV	
	For star-delta starter	For contractory	Defen	
	Description Mounting kit comprising	For contactors	Reference	Without timer LADS2
	Mounting kit comprising: 1 time delay contact block LAD S2 (LC1 D09D80),	LC1 D09 to D38 ⁽³⁾	LAD91217 LAD93217	LAD91218 LAD93218
	power circuit connections (LC1 D09D80),	LC1 D40A to D65A	LAD9SD3	-
	hardware required for fixing the contactors onto the mounting plate (LC1 D80).	LC1 D80	LA9D8017	
	Equipment mounting plates	LC1 D09 to D38	LA9D12974	
		LC1 D40A and D50A	-	
		20. D 10/ (and D00/)		

Upstream power connection kit LAD 9V10: installed in the Quickfit system with power connection module LAD 34. (If module LAD 34 is not used, replace LAD 9V10 with LAD 9V12). Downstream power connection kit LAD 9V11: installed in the Quickfit system with outgoing terminal block LAD 331.

Downstream power connection kit LAD 9V11: Installed in the Quickrit system with outgoing terminal block LAD 331. (If LAD 331 is not used, replace LAD 9V11 with LAD 9V13).

(3) For assembly of 3 contactors of the same physical size (depth).

(4) For assembly of 3 contactors with star contactor physically smaller (depth).

Schneider Gelectric

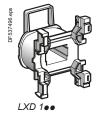
References - TeSys D **TeSys contactors** Component parts for assembling changeover contactor pairs

Name at an and the second state of a model of a second state of the second state of th	(3-phase distribution + neutra	
Contactors with screw clamp terminals or connectors Description	Horizontally mounted, assemb For contactors ⁽¹⁾ (2 identical contactors)	Reference
Kits for assembly of changeover contactor pairs	()	
Kit comprising: ■ a mechanical interlock LAD 9V2 with electrical interlocking LAD 9V1, ■ a set of power connections (changeover) LAD 9V7.	LC1 DT20 to DT40 with screw clamps or connectors	LADT9R1V
 Kit comprising: a mechanical interlock LAD 9V2 without electrical interlocking, a set of power connections (changeover) LAD 9V7. 	LC1 DT20 to DT40 with screw clamps or connectors	LADT9R1
Mechanical interlocks		
With integral	LC1 D80004	LA9D4002
electrical interlocking	LP1 D80004	LA9D8002
	LC1 D115004	LA9D11502
Without integral electrical interlocking	LC1 DT20 to DT40 with screw clamps or connectors	LAD9V2 ⁽²⁾
	LC1 DT203 to DT403 with spring terminals	LAD9V2 ⁽²⁾
	LC1 DT60A and DT80A	LAD4CM
	LC1 D80004	LA9D50978
	LP1 D80004	LA9D80978
Sets of power connections		
Comprising a set of parallel bars	LC1 D80004	LA9D8070
	LP1 D80004	LA9D8070
	LC1 D115004	LA9D11570
	LC1 DT203 to DT403 with spring terminals	LAD9V9
	LC1 D80004	LA9D8070 ⁽²⁾
	LP1 D80004	LA9D8070 ⁽²⁾
For 3-pole changeover contactor pairs		
Contactors with screw clamp terminals or connectors	. Horizontally mounted, assemb	oled by customer.
Description	For contactors ⁽¹⁾ (2 identical contactors)	Reference
Kits for assembly of changeover contactor pairs		
Kit comprising: ■ a mechanical interlock LAD4CM ■ a set of parallel bars LA9D65A6	LC1 D40AD80A	LAD9R3S
Mechanical interlocks		
Without integral electrical interlocking	LC1 D40AD80A	LAD4CM
With integral electrical interlocking	LC1 D115 and D150	LA9D11502
Sets of power connections		
Comprising a set of parallel bars	LC1 D40AD80A	LA9D65A6

To order the 2 contactors: see pages B8/3 and B8/16.
 Order 2 contact blocks LAD N●1 to build the electrical interlock, see page B8/23.

DF537733.eps

LA9 D50978


LA9 D6570

LA9 D8070

537735.ep

TeSys contactors a.c. coils for TeSys D, 3 or 4-pole contactors

For \sim contactors LC1 D09...D38 and LC1 DT20...DT40

Specifications Average consumption at 20 °C: inrush (cos φ = 0.75) 70 VA, ■ sealed (cos \$\$\phi\$ = 0.3) 50 Hz: 7 VA, 60 Hz: 7.5 VA. Operating range ($\theta \le 60$ °C): 50 Hz: 0.8...1.1 Uc, 60 Hz: 0.85...1.1 Uc. Average resistance Inductance of at 20 °C ±10 % closed circuit **Control circuit** Reference (1) voltage Uc ٧ Ω н 50/60 Hz 12 1.33 0.05 LXD1J7 21 (2) LXD1Z7 4.17 0.17 24 5.37 0.22 LXD1B7 32 10.1 0.39 LXD1C7 36 12.8 0.49 LXD1CC7 LXD1D7 42 17 0.67 48 21.7 0.87 LXD1E7 60 LXD1EE7 34.6 1.4 100 100.4 LXD1K7 3.8 110 LXD1F7 124.1 4.6 115 129.8 5 LXD1FE7 120 LXD1G7 150.6 5.4 127 LXD1FC7 158.5 6.1 200 410.7 15 LXD1L7 208 430.4 16 LXD1LE7 220 LXD1M7 (3) 515.4 18 230 538.6 20 LXD1P7 240 LXD1U7 562.3 22 277 800.7 29 LXD1W7 LXD1Q7 (4) 380 1551 55 400 LXD1V7 1633 60 415 1694 65 LXD1N7 440 1993 LXD1R7 73 480 2398 LXD1T7 87

(1) The last 2 digits in the reference represent the voltage code.

2499

3294

3810

4656

5020

500

575

600

660

690

(2) Voltage for special coils fitted in contactors with serial timer modules, with 24 V supply. (2) Voltage for use on 230 V/50 Hz. In this case, apply a coefficient of 0.6 to the mechanical durability of the contactor (see page B8/62 and B8/64).
(4) Suitable for use on 400 V/50 Hz. In this case, apply a coefficient of 0.6 to the mechanical durability of the contactor (see page B8/62 and B8/64).

95

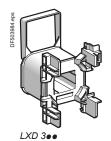
125

136

165

180

LXD1S7


LXD1SC7

LXD1X7

LXD1YC7

LXD1Y7

TeSys contactors a.c. coils for TeSys D, 3 or 4-pole contactors

For \sim contactors LC1 D40A...D80A, LC1 DT60A and LC1 DT80A

Specifications

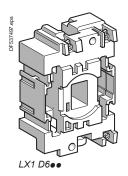
Average consumption at 20 °C:

■ inrush (cos φ = 0.75) 160 VA,

■ sealed (cos φ = 0.3) 50 Hz: 15 VA, 60 Hz: 15 VA.

Operating range ($\theta \le 60$ °C): 50 Hz: 0.8...1.1 Uc, 60 Hz: 0.85...1.1 Uc.

Control circuit voltage Uc	Average resistance at 20 °C ±10%		Reference ⁽¹⁾
V	Ω	Н	
			50/60 Hz
12	0.49	0.03	LXD3J5 ⁽²⁾
24	1.98	0.12	LXD3B7
32	3.76	0.22	LXD3C7
42	6.18	0.37	LXD3D7
48	7.97	0.48	LXD3E7
100	37.63	2.07	LXD3K7
110	42.28	2.50	LXD3F7
115	48.76	2.74	LXD3FE7
120	37.63	2.07	LXD3G7 ⁽⁵⁾
127	60.29	3.34	LXD3FC7
200	149	8.27	LXD3L7
208	105	6.22	LXD3LE7 ⁽⁵⁾
220	182	10	LXD3M7 ⁽³⁾
230	192	10.9	LXD3P7
240	202	11.9	LXD3U7
277	193	11	LXD3W7 ⁽⁵⁾
380	512	29.9	LXD3Q7 (4)
400	607	33.1	LXD3V7
415	635	35.6	LXD3N7
440	682	40.1	LXD3R7
480	607	33.1	LXD3T7 ⁽⁵⁾
500	878	51.7	LXD3S7
575	1238	68.4	LXD3SC7
600	1304	74.5	LXD3X7
660	1593	90.1	LXD3YC7
690	1683	98.5	LXD3Y7


(1) The last 2 digits in the reference represent the voltage code.

(2) This coil can only be used on 50 Hz.

(2) This concern only be used on 50 Hz.
(3) Suitable for use on 230 V / 50 Hz. In this case, apply a coefficient of 0.6 to the mechanical durability of the contactor (see page B8/62 and B8/64).
(4) Suitable for use on 400 V / 50 Hz. In this case, apply a coefficient of 0.6 to the mechanical durability of the contactor (see page B8/62 and B8/64).

(5) This coil can only be used on 60 Hz.

TeSys contactors a.c. coils for TeSys D, 3 or 4-pole contactors

For 3 or 4-pole contactors LC1D40, D50, D65, D80, D95

Specifications

Average consumption at 20 °C:

■ inrush (cos φ = 0.75) 50 Hz: 200 VA, 60 Hz: 220 VA

■ sealed (cos ¢ = 0.3) 50 Hz: 20 VA, 60 Hz: 22 VA.

Operating range ($\theta \le 55$ °C): 0.85...1.1 Uc.

Control circuit voltage Uc	Average resistance at 20°C ±10 %		Reference (1)	Average resistance at 20 °C ±10 %	Inductance of closed circuit	Reference (1)
٧	Ω	Н		Ω	Н	
			50 Hz			60 Hz
24	1.4	0.09	LX1D6B5	1.05	0.06	LX1D6B6
32	2.6	0.16	LX1D6C5	-	-	_
42	4.4	0.27	LX1D6D5	-	-	-
48	5.5	0.35	LX1D6E5	4.2	0.23	LX1D6E6
110	31	1.9	LX1D6F5	22	1.2	LX1D6F6
115	31	1.9	LX1D6FE5	-	-	-
120	_	_	_	28	1.5	LX1D6G6
127	41	2.4	LX1D6G5	_	_	_
208	_	_	_	86	4.3	LX1D6L6
220	_	-	_	98	4.8	LX1D6M6
220/230	127	7.5	LX1D6M5	_	_	_
230	133	8.1	LX1D6P5	_	_	_
240	152	8.7	LX1D6U5	120	5.7	LX1D6U6
256	166	10	LX1D6W5	_	_	_
277	_	_	_	157	8	LX1D6W6
380	_	_	_	300	14	LX1D6Q6
380/400	381	22	LX1D6Q5	_	_	_
400	411	25	LX1D6V5	_	-	_
415	463	26	LX1D6N5	-	-	_
440	513	30	LX1D6R5	392	19	LX1D6R6
480	-	-	-	480	23	LX1D6T6
500	668	38	LX1D6S5	-	-	_
575	-	-	-	675	33	LX1D6S6
600	-	_	-	775	36	LX1D6X6
660	1220	67	LX1D6Y5	-	-	_

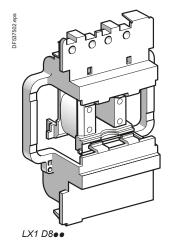
Specifications

Average consumption at 20 °C:

■ inrush (cos ¢ = 0.75) 50/60 Hz: 245 VA at 50 Hz

■ sealed (cos φ= 0.3) 50/60 Hz: 26 VA at 50 Hz.

Operating range ($\theta \le 55$ °C): 0.85...1.1 Uc.


						50/60 Hz
24	-	-	-	1.22	0.08	LX1D6B7
42	-	-	_	3.5	0.25	LX1D6D7
48	-	-	-	5	0.32	LX1D6E7
110	-	-	-	26	1.7	LX1D6F7
115	-	-	-	-	-	LX1D6FE7
120	-	-	_	32	2	LX1D6G7
220/230	(2)	-	-	102	6.7	LX1D6M7
230	_	-	_	115	7.7	LX1D6P7
230/240	(3)	-	_	131	8.3	LX1D6U7
380/400	(4)	-	_	310	20	LX1D6Q7
400	_	-	_	349	23	LX1D6V7
415	_	-	_	390	24	LX1D6N7
440	_	-	_	410	27	LX1D6R7

(1) The last 2 digits in the reference represent the voltage code.

(2) For use on 230 V / 50 Hz, apply a coefficient of 0.6 to the mechanical durability of the

(a) This coil can be used on 220/240 V at 50 Hz and 0.6 to the mechanical durability of the contactor, see page B8/62 and B8/64. This coil can be used on 240 V at 60 Hz.
(3) This coil can be used on 220/240 V at 50 Hz and on 240 V only at 60 Hz.
(4) For use on 400 V / 50 Hz, apply a coefficient of 0.6 to the mechanical durability of the contactor, see page B8/62 and B8/64.

TeSys contactors a.c. coils for TeSys D, 3 or 4-pole contactors

For 3 or 4-pole contactors LC1 D115

Specifications

- Average consumption at 20 °C:
- inrush (cos φ = 0.8) 50 or 60 Hz: 300 VA
- sealed (cos φ = 0.3) 50 or 60 Hz: 22 VA.

Operating range ($\theta \le 55$ °C): 0.85...1.1 Uc.

Control circuit voltage Uc	resistance	Inductance of closed circuit	Reference	Average resistance at 20 °C ±10 %	Inductance of closed circuit	Reference (1)
٧	Ω	Н		Ω	Н	
			50 Hz			60 Hz
24	1.24	0.09	LX1D8B5	0.87	0.07	LX1D8B6
32	2.14	0.17	LX1D8C5	-	-	-
42	3.91	0.28	LX1D8D5	-	-	-
48	4.51	0.36	LX1D8E5	3.91	0.28	LX1D8E6
110	26.53	2.00	LX1D8F5	19.97	1.45	LX1D8F6
115	26.53	2.00	LX1D8FE5	-	-	-
120	-	_	-	24.02	1.70	LX1D8G6
127	32.75	2.44	LX1D8FC5	-	-	-
208	-	_	-	67.92	5.06	LX1D8L6
220	104.77	7.65	LX1D8M5	79.61	5.69	LX1D8M6
230	104.77	8.29	LX1D8P5	-	-	-
240	125.25	8.89	LX1D8U5	97.04	6.75	LX1D8U6
277	-	-	-	125.75	8.89	LX1D8W6
380	338.51	22.26	LX1D8Q5	243.07	17.04	LX1D8Q6
400	368.43	25.55	LX1D8V5	-	-	-
415	368.43	27.65	LX1D8N5	-	_	-
440	441.56	30.34	LX1D8R5	338.51	22.26	LX1D8R6
480	-	_	-	368.43	25.55	LX1D8T6
500	566.62	38.12	LX1D8S5	-	_	-

For 3 or 4-pole contactors LC1 D115, LC1 D150

Specifications

Average consumption at 20 °C:

■ inrush: $\cos \phi = 0.9 - 280$ to 350 VA

■ sealed: cos ϕ = 0.9 - 2 to 18 VA.

Operating range ($\theta \le 55$ °C): 0.8...1.15 Uc.

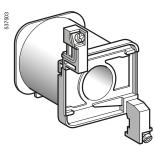
Coils with integral suppression device fitted as standard, class B

Colls with	n integral s	uppression	device titte	d as stand	ard, class E	3.
circuit	Average resistance at 20 °C ±10 %	Inductance of closed circuit	Reference	Average resistance at 20 °C ±10 %	Inductance of closed circuit	Reference (1)
V	Ω	н		Ω	н	
						50/60 Hz
24	-	-	-	147	3.03	LX1D8B7
32	-	-	-	301	8.28	LX1D8C7
42	-	-	-	498	13.32	LX1D8D7
48	-	-	-	1061	24.19	LX1D8E7
110	-	-	-	4377	109.69	LX1D8F7
115	-	_	-	4377	109.69	LX1D8FE7
120	-	-	-	4377	109.69	LX1D8G7
127	-	_	-	6586	152.65	LX1D8FC7
208	_	_	-	10 895	260.15	LX1D8LE7
220	-	_	-	9895	210.72	LX1D8M7
230	-	-	-	9895	210.72	LX1D8P7
240	-	_	-	9895	210.72	LX1D8U7
277	_	_	-	21 988	533.17	LX1D8UE7
380	-	-	-	21 0 1 1	482.42	LX1D8Q7
400	_	_	-	21 011	482.42	LX1D8V7
415	-	-	-	21 011	482.42	LX1D8N7
440	-	_	-	21 501	507.47	LX1D8R7
480	-	-	-	32 249	938.41	LX1D8T7
500	-	_	_	32 249	938.41	LX1D8S7

(1) The last 2 digits in the reference represent the voltage code.

LX1D8S7

Schneider Belectric


Life Is On

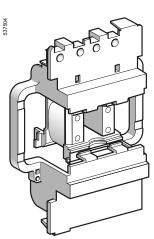
B8/35

For 3-pole contactors LC1 D80 or 4-pole contactors LP1 D80

Specifications Average consumption: 22 W.

Operating range: 0.85...1.1 Uc.

LX4 D7•D


Weight	Reference (1)	Inductance of closed circuit	Average resistance at 20 °C ± 10%	Control circuit voltage Uc
kg		Н	Ω	V
0.680	LX4D7JD	0.46	6.6	12
0.680	LX4D7BD	1.89	27	24
0.680	LX4D7CD	4	57	36
0.680	LX4D7ED	7.5	107	48
0.680	LX4D7ND	11.9	170	60
0.680	LX4D7SD	16.1	230	72
0.680	LX4D7FD	39.5	564	110
0.680	LX4D7GD	50.3	718	125
0.680	LX4D7MD	155	2215	220
0.680	LX4D7UD	200	2850	250
0.680	LX4D7RD	640	9195	440

(1) The last 2 digits in the reference represent the voltage code.

For contactors LC1 D115, D150

Specifications

Consumption: inrush 270 to 365 W, sealed 2.4 to 5.1 W. Operating range: 0.75...1.2 Uc. Coils with integral suppression device fitted as standard, class B.

	Control circuit voltage Uc	Average resistance at 20 °C ± 10 %	Inductance of closed circuit	Reference (1)	Weight
	٧	Ω	Н		kg
	24	147	3.03	LX4D8BD	0.300
	48	1061	24.19	LX4D8ED	0.300
	60	1673	38.44	LX4D8ND	0.300
	72	2500	56.27	LX4D8SD	0.300
)	110	4377	109.69	LX4D8FD	0.300
	125	6586	152.65	LX4D8GD	0.300
	220	9895	210.72	LX4D8MD	0.300
	250	18 022	345.40	LX4D8UD	0.300
	440	21 501	684.66	LX4D8RD	0.300

LX4 D8•D

For 3-pole contactors LC1 D80 or 4-pole contactors LP1 D80

Specifications

Wide range coils for specific applications Average consumption: 23 W. Operating range: 0.75 to 1.2 Uc. Coils with "TH" treatment as standard.

Control circuit voltage Uc	Average resistance at 20 °C ± 10 %	Inductance of closed circuit	Reference (1)	Weight
٧	Ω	Н		kg
12	6.2	0.49	LX4D7JW	0.680
24	23.5	1.75	LX4D7BW	0.680
36	51.9	4.18	LX4D7CW	0.680
48	94.2	7	LX4D7EW	0.680
72	204	15.7	LX4D7SW	0.680
110	483	36	LX4D7FW	0.680
220	1922	144	LX4D7MW	0.680

(1) The last 2 digits in the reference represent the voltage code.

TeSys contactors Mini-contactors TeSys LC1 SK and LP1 SK

LA1 SK10

- Width of contactor 27 mm.
- Mounting on 35 mm rail.
 - Screw clamp terminals.

			minais.				
Mini	-cont	actor	s for moto	or in cate	gory	AC-3	
rating 3-pha 50/60 AC-3 220 V	se moto Hz in ca	ors itegory 660 V	Rated operational voltage in AC-3 up to 400 V	Number of poles	Instan auxilia contae	ary	Basic reference. Complete with code indicating control circuit voltage ⁽²⁾
kW	kW	kW	A				
1.1	2.2	2.2	6	2	-	-	LC1SK0600.
Mini	-cont	actor	s for moto	or in cate	gory	AC-1	
maxin (θ ≤ 55	num cui	rrent	Control circuit supply	Number of poles	Instan auxilia contae	ary	Basic reference. Complete with code indicating control circuit voltage ⁽²⁾
Α							
12			a.c.	2	-	-	LC1SK0600.
			d.c.	2	-	-	LP1SK0600
Add	-on b	lock	with 1 pow	/er pole (†	for 3-p	hase ci	rcuits)
For us	se on co	ntactor	•	Number of poles	Instan auxilia contac	ary	Reference
LC1 Sk clip-on	(06 front mo	ounting		1	1	-	LA1SK10
-		•		-			

Note: Auxiliary contact blocks and coil suppressor module, see next page.

1

(1) For use in AC-3 category and 3-phase circuits, an LA1 SK •• auxiliary contact block should

_

be ordered separately for mounting on the contactor.
 (2) Standard control circuit voltages (variable delivery times, please consult your Regional Sales Office):

Onice).									
Mini-contactors L	.C1 SK								
Volts \sim 50/60 Hz	24	48	110	120	220	230	240	380	400
Code	B7	E7	F7	G7	M7	P7	U7	Q7	V7
Mini-contactors L	.P1 SK								
Volts	12	24	36	48	72				
Code	JD	BD	CD	ED	SD				

Dimensions, schemes: page B8/92

LA1SK01

1

TeSys contactors Mini-contactors TeSys LC1 SK and LP1 SK Instantaneous auxiliary contacts and coil suppressor modules

LA1 SK11

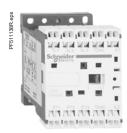
Clip-on front mounting											
For use on contactor	Maximum number of blocks per contactor	Composition	Reference								
1 SK06	1	2 –	LA1SK20								
		- 2	LA1SK02								
		1 1	LA1SK11								

Coil suppressor modules

Clip-on fixing and electrical connection on right-hand side, without use of tools

For use on contactors	Туре	For voltages	Sold in lots of	Unit reference
LC1 SK06 and LP1 SK06	Varistor (1)	\sim and $$ 24 V…48 V	10	LA4SKE1E
		\sim and $\overline{\dots}$ 110 V250 V	10	LA4SKE1U
	Diode (2)	 24 V250 V	10	LA4SKC1U

Protection provided by limiting the transient voltage to 2 Uc max. Maximum reduction of transient voltage peaks. Slight increase in drop-out time (1.1 to 1.5 times the normal time).
 No overvoltage or oscillating frequency. Slight increase in drop-out time (1.1 to 1.5 times the normal time).


TeSys contactors Contactors for motor control, 6 to 16 A in category AC-3

and 6 to 12 A in category AC-4

Control circuit: a.c.

LC1 K0910••

LC1 K09103..

LC1 K09107••

LC1 K09105..

Contactors

LC7 K0910 ••

Contactor selection according to utilisation category, see pages A6/25 to A6/29 and A6/32 to A6/35. Mounting on 35 mm $_$ rail or Ø4 screw fixing.

Screws in the open "ready-to-tighten" position.

Add-on auxiliary contact blocks and accessories, see pages B8/49 to B8/51.

Standard power ratings of 3-phase motors 50-60 Hz in category AC-3			Rated operational current in category AC-3 440 V	Instar taneo auxili conta	us ary	Basic reference, to be completed by adding the voltage code (1) (2)		
220 V 230 V	380 V 415 V	440/500 V 660/690 V	up to					
kW	kW	kW	Α					
Screw	clamp o	connection	S					
1.5	2.2	3	6	1	-	LC1K0610.		
				-	1	LC1K0601.		
2.2	4	4	9	1	-	LC1K0910.		
				-	1	LC1K0901.		
3	5.5	4 (> 440)	12	1	-	LC1K121000		
		5.5 (440)		-	1	LC1K1201.		
1	7.5	4 (> 440)	16	1	-	LC1K1610.		
		5.5 (440)		-	1	LC1K1601.		

Spring terminal connections ⁽³⁾

For 6 to 12 A ratings only, in the references selected above, insert a figure **3** before the voltage code. Example: LC1 K0610ee becomes LC1 K06103ee.

Faston connectors, 1 x 6.35 or 2 x 2.8

For 6 to 16 A ratings, in the references selected above, insert a figure 7 before the voltage code. Example: LC1 K0610•• becomes LC1 K06107••.

Solder pins for printed circuit boards

For 6 to 16 A ratings, in the references selected above, insert a figure **5** before the voltage code. Example: **LC1 K0610**•• becomes **LC1 K0610**5••.

3-pole silent contactors

Recommended for use in areas sensitive to noise, high interference mains supplies, etc. Coil with rectifier incorporated, suppressor fitted as standard.

Scre	w clamp	connection	S			
1.5	2.2	3	6	1	-	LC7K0610ee
				-	1	LC7K0601.
2.2	4	4	9	1	-	LC7K0910.
				-	1	LC7K0901.
3	5.5	4 (> 440)	12	1	-	LC7K121000
		5.5 (440)		-	1	LC7K1201.
Fast	on conn	actors 1 x 6	35 or 2 v 2 8			

In the references selected above, insert a figure **7** before the voltage code.

Example: LC7 K0610 + becomes LC7 K06107 +.

Solder pins for printed circuit boards

In the references selected above, insert a figure **5** before the voltage code. Example: **LC7 K0610**•• becomes **LC7 K06105**••.

(1) Standard control circuit voltages (for other voltages, please consult your Regional Sales Office):

a.c. supply (4)

Contactors	Contactors LC1 K (0.81.15 Uc) (0.851.1 Uc)														
Volts	12	20	24 ⁽²⁾	36	42	48	110	115	120	127	200/208	3	220/230	230	230/240
50 Hz (5)			B5		D5	E5								P5	
50/60 Hz	J7	Z7	B7	C7	D7	E7	F7	FE7	G7	FC7	L7		M7	P7	U7
Volts	256	277	380/40	00	400	400/	415	440	480	500	575	600	660/690		
50/60 Hz	W7	UE7	Q7	-	V7	N7		R7	T7	S7	SC7	X7	Y7	-	-

Up to and including 240 V, coil with integral suppression device available: add 2 to the code required. Example: J72.

Contactor	s LC7 K	(0.85…1.1 Uc)						
Volts	24	42	48	110	115	220	230/240	
50/60 Hz	B7	D7	E7	F7	FE7	M7	U7	

(2) For mains supplies with a high level of interference (voltage surge > 800 V), use a suppressor module LA4 KE1FC (50...129 V) or LA4 KE1UG (130...250 V), see page B8/50.

(3) For LC•K••••3 / LP•K••••3 with spring terminal, Ith max = 10 A.

(4) (0.8...1.15 Uc) for single voltage coil; (0.85...1.1 Uc) for dual voltage coil, exemple 200/208 V AC.

(5) Only available for 'screw clamp terminals' versions.

Selection:	Characteristics:	Dimensions:	Schemes:	Click <u>HERE</u> for access
pages A6/25 and A6/29	pages B8/93 to B8/96	page B8/97	page B8/98	to online contactor selector
B8/40 Life Is On	Schneider Electric			

References - TeSys K **TeSys contactors** Contactors for motor control, 6 to 12 A in categories AC-3 and AC-4 Control circuit: d.c. or low consumption

LP1 K09103 ••

LP1 K09107.

LP1 K09105 •

DB432514

LP4 K0910 ••

Contactor selection according to utilisation category, see pages A6/25 to A6/29 and A6/32 to A6/35. Mounting on 35 mm - rail or Ø4 screw fixing.

Screws in the open "ready-to-tighten" position.

Add-on auxiliary contact blocks and accessories, see pages B8/49 to B8/51

3-pole contactors, d.c. supply

3-phas	rd power e motors gory AC-3		Rated operational current in category AC-3 440 V			Basic reference, to be completed by adding the voltage code (1) (2)		
220 V 230 V	380 V 415 V	440/500 V 660/690 V	up to	Ϋ́				
kW	kW	kW	Α					
Screw	clamp o	connection	s					
1.5	2.2	3	6	1	_	LP1K0610.		
				-	1	LP1K0601.		
2.2	4	4	9	1	_	LP1K0910.		
				_	1	LP1K0901.		
3	5.5	4 (> 440)	12	1	-	LP1K1210.		
		5.5 (440)		-	1	LP1K1201.		
Example Fastor In the re Example Solder In the re Example Solder Sold Sold Sold Sold Sold Sold Sold Sold	le: LP1 k n connec eference le: LP1 k r pins fo eference le: LP1 k le low o tible with	(0610 be ctors, 1 x 6. s selected a (0610 be r printed ci s selected a (0610 be consump programma	above, insert a figure comes LP1 K06103 35 or 2 x 2.8 above, insert a figure comes LP1 K06107 rcuit boards above, insert a figure comes LP1 K06105 otion contactor able controller outpu Uc), suppressor fitte	 8 • • . 8 • 7 be 7 • • . 8 • 5 be 5 • • . 8 • . 8 • . 9 • . 	fore th fore th	e voltage code.		
Screw	clamp o	onnection	S					
1.5	2.2	3	6	1	- 1	LP4K0610		
2.2	4	4	9	1	- 1	LP4K0910		
3	5.5	4 (> 440) 5.5 (440)	12	<u>1</u> -	_ 1	LP4K1210ee LP4K1201ee		

Spring terminal connections

In the references selected above, insert a figure 3 before the voltage code.
Example: LP4 K0610ee becomes LP4 K06103ee.

Faston connectors, 1 x 6.35 or 2 x 2.8

In the references selected above, insert a figure 7 before the voltage code. Example: LP4 K0610 becomes LP4 K06107 becomes LP4 K

Solder pins for printed circuit boards

In the references selected above, insert a figure 5 before the voltage code.

Example: LP4 K0610 becomes LP4 K06105 ...

(1) Standard control circuit voltages (for other voltages, please consult your Regional Sales Office):

d.c. supply (contactors LP1 K: 0.8...1.15 Uc)

Volts	12	20	24 ⁽²⁾	36	48	60	72	100	110	125	155	174	200	220	230	240	250
Code	JD	ZD	BD	CD	ED	ND	SD	KD	FD	GD	PD	QD	LD	MD	MPD	MUD	UD
Coil with	integra	al sup	pressio	on de	vice a	vailab	le: ad	d 3 to	the co	ode re	quired	l. Exa	mple:	JD3			

Low cons	sumption	(contactors	LP4 K: 0.7	1.3 Uc)			
Volts	12	20	24	48	72	110	120
Code	JW3	ZW3	BW3	EW3	SW3	FW3	GW3

Coil with integral suppression device fitted as standard, by bi-directional peak limiting diode.

(2) For LP1 K only, when connecting an electronic sensor or timer in series with the contactor coil, select a 20 V coil

(2) For LPTK only, when connecting an electronic sensor of time in sensor with the contactor con, select a 20 v con (~ control circuit voltage code Z7, --- control circuit voltage code ZD) so as to compensate for the incurred voltage drop.
 (3) For LCeKeeee3 / LPeKeee3 with spring terminal), Ith max = 10 A.

Dimensions page B8/97

Schemes page B8/98

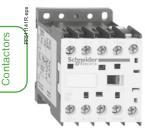
B8/41

TeSys contactors

Contactors for control in category AC-1, 20 A Control circuit: a.c.

Contactor selection according to utilisation category, see pages A6/30 and A6/31. Mounting on 35 mm - rail or Ø4 screw fixing.

Screws in the open "ready-to-tighten" position.



DF51113RR an ULULULULULU

LC1 K09103.

LC1 K09107.

LC1 K09004 ••

Add-on auxiliary conta 3 or 4-pole conta				· ·	5
Non-inductive loads Category AC-1 Maximum current at $\theta \leq 50$ °C	Num of po			antaneous liary contact	Basic reference, s to be completed by adding the voltage code ^{(2) (3)}
Α					
Screw clamp connect	ctions				
20	3	-	1	-	LC1K0910.
					or LC1K1210++
	3	_	_	1	LC1K0901.
					or LC1K1201
	4	-	_	-	LC1K0900400
					or LC1K12004ee
	2	2	_	_	LC1K09008.
Spring terminal con	nection	S ⁽⁴⁾			
In the references select Example: LC1 K0910					the voltage code.

Faston connectors, 1 x 6.35 or 2 x 2.8

In the references selected above, insert a figure 7 before the voltage code.

Example: LC1 K0910 + becomes LC1 K09107 +.

Solder pins for printed circuit boards

In the references selected above, insert a figure 5 before the voltage code.

Example: LC1 K0910 + becomes LC1 K09105 +.

3 or 4-pole silent contactors (1)

Recommended for use in areas sensitive to noise, high interference mains supplies, etc.

Coil with rectifier incorporated, suppressor fitted as standard.

Screw clamp connection 20

Screw clamp com	lections				
20	3	-	1	-	LC7K0910.
					or LC7K1210••
	3	-	_	1	LC7K0901.
					or LC7K120100
	4	-	_	-	LC7K09004
					or LC7K12004ee
	2	2	_	-	LC7K09008.
Faston connector	s, 1 x 6.35	or 2 x 2	2.8		

In the references selected above, insert a figure 7 before the voltage code. Example: LC7 K0910 + becomes LC7 K09107 +.

Solder pins for printed circuit boards

In the references selected above, insert a figure 5 before the voltage code.

Example: LC7 K0910 + becomes LC7 K09105 +.

(1) Selection between 9 and 12 A ratings according to number of operating cycles, see AC-1 curve on page A6/30.

(2) Standard control circuit voltages (for other voltages, please consult your Regional Sales Office): a.c. supply (5) Contactors LC1 K (0.8...1.15 Uc) (0.85...1.1 Uc)

		(0.0													
Volts	12	20	24 ⁽³⁾	36	42	48	110	115	120	127	200/20	8	220/230	230	230/240
50 Hz (6)			B5		D5	E5								P5	
50/60 Hz	J7	Z7	B7	C7	D7	E7	F7	FE7	G7	FC7	L7		M7	P7	U7
Volts	256	277	380/40	0	400	400/	415	440	480	500	575	600	660/690		
50/60 Hz	W7	UE7	Q7		V7	N7		R7	T7	S7	SC7	X7	Y7		

Up to and including 240 V, coil with integral suppression device available: add 2 to the code required. Example: J72.

Contactors I	LC7 K (0.81.1 U	c)
--------------	-----------------	----

Volts	24	42	48	110	115	220	230/240
50/60 Hz	B7	D7	E7	F7	FE7	M7	U7

(3) For mains supplies with a high level of interference (voltage surge > 800 V), use a suppressor module LA4 KE1FC (50...129 V) or LA4 KE1UG (130...250 V), see page B8/50. (4) For LC•K••••3 / LP•K••••3 with spring terminal, Ith max = 10 A.

Schemes

page B8/98

(5) (0.8...1.15 Uc) for single voltage coil; (0.85...1.1 Uc) for dual voltage coil, exemple 200/208 V AC.
 (6) Only available for 'screw clamp terminals' versions.

Characteristics pages B8/93 to B8/96 Dimensions page B8/97

Click HERE for access to online contactor selector

Schneider Gelectric

TeSys contactors Contactors for control in category AC-1, 20 A Control circuit: d.c. or low consumption

Non-inductive loads

Contactor selection according to utilisation category, see pages A6/30 and A6/31. Mounting on 35 mm - rail or Ø4 screw fixing.

Instantaneous

Basic reference,

Screws in the open "ready-to-tighten" position.

3 and 4-pole contactors, d.c. supply (1)

Number

Add-on auxiliary contact blocks and accessories, see pages B8/49 to B8/51.

sda	
PF511143R.eps	STELETICE CELETICE
PF51	
	Schneider
	Instantententent

LC1 K09103.

LC1 K09105 • •

LC1 K09004 ••

Non-inductive loads Category AC-1 Maximum current at θ ≤ 50 °C				Intaneous liary contacts	Basic reference, to be completed by adding the voltage code ^{(2) (3)}
Α					
Screw clamp connect	tions				
20	3	-	1	-	LP1K0910••
					or LP1K121000
	3	-	-	1	LP1K0901.
	4				or LP1K1201••
	4	-	-	-	LP1K09004ee
	2	2			or LP1K12004ee
Spring terminal conr	_	_	_	-	
In the references select Example: LP1 K0910	ted ab beco	ove, ins mes LP	1 K091		e voltage code.
Faston connectors, 7					
In the references select Example: LP1 K0910			0		e voltage code.
Solder pins for printe	ed circ	uit boar	ds		
In the references select Example: LP1 K0910		,	0		e voltage code.
3 or 4-pole low c	onsu	mptio	n con	tactors (1)	
0 (1.30 Uo				rd, consumption 1.8 W.
Screw clamp connect	tions				
20	3	-	1	-	LP4K0910
					or LP4K121000
	3	-	-	1	
	4				or LP4K1201000
	4	-	-	-	LP4K09004000
	2	2			or LP4K12004eee LP4K09008eee
Spring terminal conr	-	_	_		
			ort o fire	ira 2 hafara th	a valtara anda
In the references select Example: LP4 K0910					
Faston connectors, 7	l x 6.35	5 or 2 x 2	2.8		

In the references selected above, insert a figure 7 before the voltage code.

Example: LP4 K0910 becomes LP4 K09107 e.

Solder pins for printed circuit boards

In the references selected above, insert a figure 5 before the voltage code.

Example: LP4 K0910 becomes LP4 K09105 .

(1) Selection between 9 and 12 A ratings according to number of operating cycles, see AC-1 curve on page A6/30. (2) Standard control circuit voltages (for other voltages, please consult your Regional Sales Office):

d c sunnl	v (contactors	IP1K.08	1 15 Uc)

Volts	12	20	24 ⁽³⁾	36	48	60	72	100	110	125	155	174	200	220	230	240	250
Code	JD	ZD	BD	CD	ED	ND	SD	KD	FD	GD	PD	QD	LD	MD	MPD	MUD	UD

Low cor	sumptio	n (contactor	s LP4 K: 0.7	7 1.3 Uc)			
Volts	12	20	24	48	72	110	120
Code	JW3	ZW3	BW3	EW3	SW3	FW3	GW3
0 - 11	4 1		- 64			I. Baskin and the	-l -

Coil with integral suppression device fitted as standard, by bi-directional peak limiting diode.

(3) For LP1 K only, when connecting an electronic sensor or timer in series with the contactor coil, select a 20 V coil (~ control circuit voltage code Z7, ... control circuit voltage code ZD) so as to compensate for the incurred voltage drop. (4) For LCeKeee3 / LPeKeee3 with spring terminal, Ith max = 10 A.

Dimensions page B8/97

Schemes page B8/98 Click <u>HERE</u> for access to online contactor selector

B8/43

TeSys contactors Reversing contactors for motor control, 6 to 16 A in category AC-3 and 6 to 12 A in category AC-4

Control circuit: a.c.

a 0 a a

×.

00

Reversing contactor selection according to utilisation category, see pages A6/25 to A6/29 and A6/32 to A6/35. Integral mechanical interlock.

It is essential to link the contacts of the electrical interlock.

up to

Pre-wired power circuit connections as standard on screw clamp versions. Mounting on 35 mm - rail or Ø4 screw fixing. Screws in the open "ready-to-tighten" position.

Add-on auxiliary contact blocks and accessories, see pages B8/49 to B8/51.

	3-pole reversing cont	actors for sta	ndard app	olications	
	Standard power ratings of 3-phase motors 50/60 Hz	Rated operational	Instan- taneous	Basic reference, to be completed by adding	
	in category AC-3	current in category AC-3	auxiliary contacts per	the voltage code (1) (2)	
1		440 V	contactor		

LC2 K0910

12 10

PF511147R.ep

380 V 440/500 V 220 V 0 230 V 115 V 1 009/039

LC2 K09105 ••

Contactors

	200 0	410 4	000/000 4			1	
	kW	kW	kW	Α			
	Screw	clamp	connections				
	1.5	2.2	3	6	1	-	LC2K0610.
b.					_	1	LC2K0601.
	2.2	4	4	9	1	-	LC2K0910.
					-	1	LC2K0901.
	3	5.5	4 (> 440)	12	1	-	LC2K121000
			5.5 (440)		_	1	LC2K1201.
	4	7.5	4 (> 440)	16	1	-	LC2K1610.
			5.5 (440)		_	1	LC2K1601.
				(0)			

Spring terminal connections (3)

For 6 to 12 A ratings only, in the references selected above, insert a figure 3 before the voltage code. Example: LC2 K0610 becomes LC2 K06103 e.

Faston connectors, 1 x 6.35 or 2 x 2.8

For 6 to 16 A ratings, in the references selected above, insert a figure 7 before the voltage code.

Example: LC2 K0610 + becomes LC2 K06107 +.

Solder pins for printed circuit boards

For 6 to 16 A ratings, in the references selected above, insert a figure 5 before the voltage code. Example: LC2 K0610 becomes LC2 K06105 e.

3-pole silent reversing contactors

Recommended for use in areas sensitive to noise, high interference mains supplies, etc. Coil with rectifier incorporated, suppressor fitted as standard.

Screw clamp connections

1.5	2.2	3	6	1	-	LC8K0610.
				_	1	LC8K0601.
2.2	4	4	9	1	-	LC8K0910.
				_	1	LC8K0901.
3	5.5	4 (> 440)	12	1	-	LC8K1210.
		5.5 (440)		_	1	LC8K1201.

Faston connectors, 1 x 6.35 or 2 x 2.8

In the references selected above, insert a figure 7 before the voltage code. Example: LC8 K0610 + becomes LC8 K06107 +

Solder pins for printed circuit boards

In the references selected above, insert a figure 5 before the voltage code.

Example: LC8 K0610 + becomes LC8 K06105 +.

(1) Standard control circuit voltages (for other voltages, please consult your Regional Sales Office):

a.c. supply (4)

Reversing contactors LC2 K (0.81.15 Uc) (0.851.1 Uc)
--

rtoronomg	0011111010			1.100	(0.00		00)								
Volts	12	20	24 ⁽²⁾	36	42	48	110	115	120	127	200/2	08	220/23	30 230	230/240
50/60 Hz	J7	Z7	B7	C7	D7	E7	F7	FE7	G7	FC7	L7		M7	P7	U7
Volts	256	277	380/4	00	400	400/	415	440	480	500	575	600	660/6	90	
50/60 Hz	W7	UE7	Q7		V7	N7		R7	T7	S7	SC7	X7	Y7		
11 1 11	1 11 0	10.14					1 1			101		1			170

Up to and including 240 V, coil with integral suppression device available: add 2 to the code required. Example: J72.

Reversing contactors LC8 K (0.8...1.1 Uc)

Volts	24	42	48	110	115	220	230/240
50/60 Hz	B7	D7	E7	F7	FE7	M7	U7

(2) For mains supplies with a high level of interference (voltage surge > 800 V), use a suppressor module LA4 KE1FC (50...129 V) or LA4 KE1UG (130...250 V), see page B8/50.

(3) For LCoKooo3 / LPoKooo3 with spring terminal, Ith max = 10 A.

(4) (0.8...1.15 Uc) for single voltage coil; (0.85...1.1 Uc) for dual voltage coil, exemple 200/208 V AC.

TeSys contactors

Reversing contactors for motor control, 6 to 12 A in categories AC-3 and AC-4

Control circuit: d.c. or low consumption

Reversing contactor selection according to utilisation category, see pages A6/25 to A6/29 and A6/32 to A6/35. Integral mechanical interlock.

It is essential to link the contacts of the electrical interlock.

Pre-wired power circuit connections as standard on screw clamp versions.

Mounting on 35 mm - rail or Ø4 screw fixing.

Screws in the open "ready-to-tighten" position. Add-on auxiliary contact blocks and accessories, see pages B8/49 to B8/51.

3-pole reversing contactors, d.c. supply

of 3-ph	rd power ase moto gory AC-	ors 50-60 Hz	Rated operational current in category AC-3 440 V		ous	Basic reference, to be completed by adding the voltage code ^{(1) (2)}
220 V	380 V	440/500 V	up to		Ļ	
230 V	415 V	660/690 V			(
kW	kW	kW	Α			
Screw	clamp	connections				
1.5	2.2	3	6	1	-	LP2K0610.
				_	1	LP2K0601.
2.2	4	4	9	1	-	LP2K0910.
				_	1	LP2K0901.
3	5.5	4 (> 440)	12	1	-	LP2K121000
		5.5 (440)		_	1	LP2K1201.
		()		1	- 1	LP2K1210.

Spring terminal connections (3)

In the references selected above, insert a figure 3 before the voltage code.

Example: LP2 K0610 becomes LP2 K06103 .

Faston connectors, 1 x 6.35 or 2 x 2.8

In the references selected above, insert a figure 7 before the voltage code.

Example: LC2 K0610 + becomes LC2 K06107 +

Solder pins for printed circuit boards

For 6 to 16 A ratings, in the references selected above, insert a figure 5 before the voltage code. Example: LC2 K0610 + becomes LC2 K06105 +.

3-pole low consumption reversing contactors

Compatible with programmable controller outputs.

Wide range coil (0.7...1.30 Uc), suppressor fitted as standard, consumption 1.8 W.

Screw c	lamp	conn	ections
---------	------	------	---------

1.5	2.2	3	6	1	-	LP5K0610ee
				_	1	LP5K0601.
2.2	4	4	9	1	-	LP5K0910.
				_	1	LP5K0901ee
3	5.5	4 (> 440)	12	1	-	LP5K1210.
		5.5 (440)		_	1	LP5K1201.

Spring terminal connections

In the references selected above, insert a figure 3 before the voltage code. Example: LP5 K0610 + becomes LP5 K06103 +

Faston connectors, 1 x 6.35 or 2 x 2.8

In the references selected above, insert a figure 7 before the voltage code. Example: LP5 K0610 + becomes LP5 K06107 +

Solder pins for printed circuit boards

In the references selected above, insert a figure 5 before the voltage code.

Example: LP5 K0610 + becomes LP5 K06105 +.

(1) Standard control circuit voltages (for other voltages, please consult your Regional Sales Office):

d.c. supply

Reversing contactors LP2 K (0.8...1.15 Uc)

			(/												
Volts	12	20	24 ⁽²⁾	36	48	60	72	100	110	125	155	174	200	220	230	240	250
Code	JD	ZD	BD	CD	ED	ND	SD	KD	FD	GD	PD	QD	LD	MD	MPD	MUD	UD
Coil with integ	gral su	ppress	ion dev	vice av	ailable	: add 3	to the	e code	require	ed. Exa	ample:	JD3.					

Low consumption

Reversing	g contactors	LP5 K (0.7	1.3 Uc)					
Volts	12	20	24	48	72	110	120	
Code	JW3	ZW3	BW3	EW3	SW3	FW3	GW3	
	staaral aunor	analan daviaa	Cut al a a ata	adard by big	line etienel ne	al limitima dia	da	

Coil with integral suppression device fitted as standard, by bi-directional peak limiting diode.

(2) For LP2 K only, when connecting an electronic sensor or timer in series with the contactor coil, select a 20 V coil (~ control circuit voltage code Z7, ... control circuit voltage code ZD) so as to compensate for the incurred voltage drop.
 (3) For LCeKeeee3 / LPeKeee3 with spring terminal, Ith max = 10 A.

5

Life Is On Schneider

Selection:	Characteristics:	Dimensions:	Schemes:	Click HERE for access
pages A6/25 and A6/35	pages B8/93 to B8/96	page B8/97	page B8/98	to online contactor selector
				Lifels On Schneider B8/45

TeSys contactors

Reversing contactors for control in category AC-1, 20 A

Control circuit: a.c.

PF511150R.

SDS

PE11151R.

PF511152R

Contactors

Warning: reversing contactors LC2 K0910. and LC2 K0901. are pre-wired for reverse motor operation as standard. Reversing contactor selection according to utilisation category, see pages A6/30 and A6/31. Integral mechanical interlock. It is essential to link the contacts of the electrical interlock. Mounting on 35 mm - rail or Ø4 screw fixing. Screws in the open "ready-to-tighten" position. Add-on auxiliary contact blocks and accessories, see pages B8/49 to B8/51. 0 0 0 00 0 1 0 3 or 4-pole reversing contactors for standard applications (1) Non-inductive loads Instantaneous Number Basic reference, to be completed by adding Category AC-1 of poles auxiliary . . -. the voltage code .90009 Maximum current contacts per 22 1 at θ ≤ 50 °C contactor LC2 K0910. Α Screw clamp connections 20 3 LC2K0910. 1 LC2K1210 •• or 3 LC2K0901 1 LC2K1201 or 4 LC2K09004ee 2 1 00=00 0 0 1 0 LC2K12004. or Spring terminal connections (4) -In the references selected above, insert a figure 3 before the voltage code. . . ×. Example: LC2 K0910 becomes LC2 K09103 •• Ø 00 00000 10 Faston connectors, 1 x 6.35 or 2 x 2.8 In the references selected above, insert a figure 7 before the voltage code. LC2 K09105.. Example: LC2 K0910 + becomes LC2 K09107 + Solder pins for printed circuit boards In the references selected above, insert a figure 5 before the voltage code. Example: LC2 K0910 becomes LC2 K09105 . 3 or 4-pole silent reversing contactors (1) Recommended for use in areas sensitive to noise, high interference mains supplies, etc. Coil with rectifier incorporated, suppressor fitted as standard. Screw clamp connections LC8K0910. 20 3 1 LC8K1210. or 10 3 LC8K0901 1 _ . . . LC8K1201 ... or 9999=999999 Δ LC8K09004 LC8K12004 •• or I C2 K09004 Faston connectors, 1 x 6.35 or 2 x 2.8 In the references selected above, insert a figure 7 before the voltage code. Example: LC8 K0910 becomes LC8 K09107 . Solder pins for printed circuit boards In the references selected above, insert a figure 5 before the voltage code. Example: LC8 K0910 becomes LC8 K09105 e. (1) Selection between 9 and 12 A ratings according to number of operating cycles, see AC-1 curve on page A6/30. (2) Standard control circuit voltages (for other voltages, please consult your Regional Sales Office): a.c. supply (5) Reversing contactors LC2 K (0.8...1.15 Uc) (0.85...1.1 Uc) Volts 12 20 24 36 42 48 110 115 120 127 200/208 220/230 230 230/240 50/60 Hz J7 Z7 B7 C7 D7 E7 F7 FE7 G7 FC7 L7 Μ7 P7 U7 Volts 256 277 380/400 400 400/415 440 480 500 575 660/690 600 V7 50/60 Hz W7 UE7 Q7 N7 R7 T7 S7 SC7 X7 Y7 Up to and including 240 V, coil with integral suppression device available: add 2 to the code required. Example: J72. Reversing contactors LC8 K (0.8...1.1 Uc) Volts 48 110 220 230/240 24 42 115 50/60 Hz B7 D7 E7 F7 FE7 M7 U7 (3) For mains supplies with a high level of interference (voltage surge > 800 V), use a suppressor module LA4 KE1FC (50...129 V) or LA4 KE1UG (130...250 V), see page B8/50. (4) For LCoKooo3 / LPoKooo3 with spring terminal, Ith max = 10 A (5) (0.8...1.15 Uc) for single voltage coil; (0.85...1.1 Uc) for dual voltage coil, exemple 200/208 V AC.

Click HERE for access Selection: Characteristics: Dimensions: Schemes pages A6/30 and A6/31 pages B8/93 to B8/96 page B8/97 page B8/98 to online contactor selector Life Is On

References - TeSys K **TeSys contactors** Reversing contactors for control in category AC-1, 20 A Control circuit: d.c. or low consumption

Warning: reversing contactors LP2 K0910... and LP2 K0901... are pre-wired for reverse motor operation as standard.

Reversing contactor selection according to utilisation category, see pages A6/30 and A6/31. Integral mechanical interlock.

It is essential to link the contacts of the electrical interlock.

Mounting on 35 mm - rail or Ø4 screw fixing.

Screws in the open "ready-to-tighten" position.

Add-on auxiliary contact blocks and accessories, see pages B8/49 to B8/51.

-			
3 or 4-pole reversing co	ntactors, d	.c. supply 🗥	
Non-inductive loads Category AC-1 Maximum current at θ ≤ 50 °C	Number of poles	Instantaneous auxiliary contacts per contactor	Basic reference, to be completed by adding the voltage code ^{(2) (3)}

20

Screw clamp connectio

mechons						
	3	-	1	-		LP2K0910.
					or	LP2K1210
	3	-	-	1		LP2K0901.
					or	LP2K1201
	4	-	_	-		LP2K09004ee
					or	LP2K12004ee
aannaationa	(4)					

Spring terminal connections (

In the references selected above, insert a figure 3 before the voltage code.

Example: LP2 K0910 + becomes LP2 K09103 +.

Faston connectors, 1 x 6.35 or 2 x 2.8

In the references selected above, insert a figure 7 before the voltage code. Example: LP2 K0910 + becomes LP2 K09107 +.

Solder pins for printed circuit boards

In the references selected above, insert a figure 5 before the voltage code. Example: LP2 K0910 + becomes LP2 K09105 +.

3 or 4-pole low consumption reversing contactors ⁽¹⁾

Compatible with programmable controller outputs.

Wide range coil (0.7...1.30 Uc), suppressor fitted as standard, consumption 1.8 W. Screw clamp connections

20

3	-	1	-		LP5K0910
				or	LP5K1210
3	-	-	1		LP5K0901
				or	LP5K1201
4	-	-	-		LP5K09004
				or	LP5K12004

Spring terminal connections

In the references selected above, insert a figure 3 before the voltage code.

Example: LP5 K0910 + becomes LP5 K09103 +.

Faston connectors, 1 x 6.35 or 2 x 2.8

In the references selected above, insert a figure 7 before the voltage code.

Example: LP5 K0910 + becomes LP5 K09107 +.

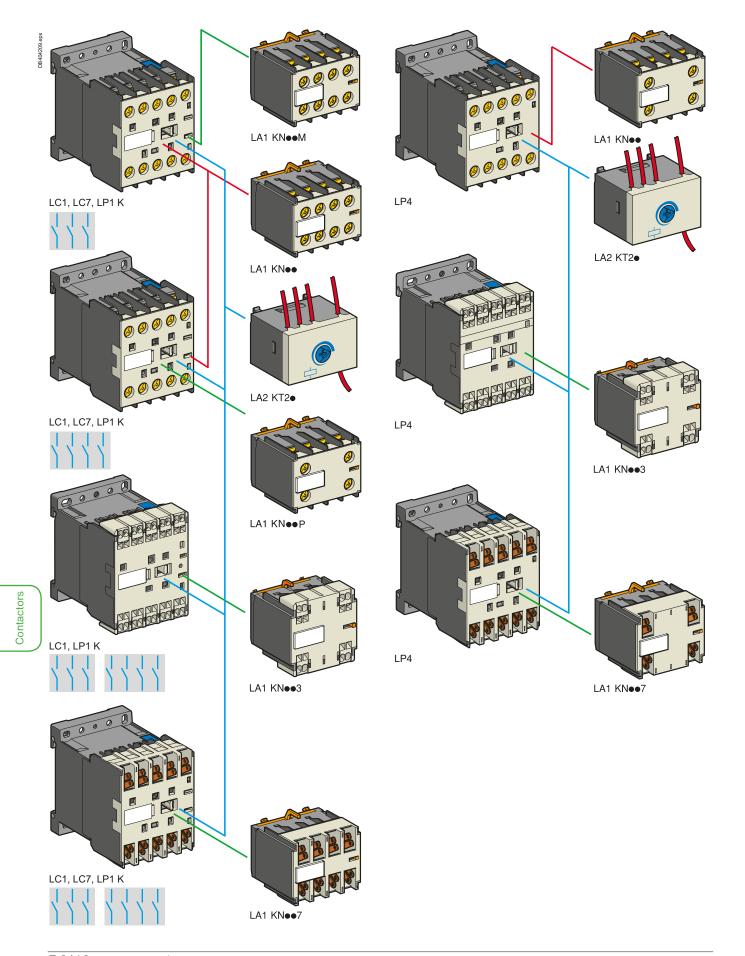
Solder pins for printed circuit boards

In the references selected above, insert a figure 5 before the voltage code.

Example: LP5 K0910 becomes LP5 K09105 .

(1) Selection between 9 and 12 A ratings according to number of operating cycles, see AC-1 curve on page A6/30.

(2) Standard control circuit voltages (for other voltages, please consult your Regional Sales Office): **d.c. supply** (reversing contactors LP2 K: 0.8...1.15 Uc)


alorouppij	(1010)	i onig c	onicao			0.0		,0,									
Volts	12	20	24 ⁽³⁾	36	48	60	72	100	110	125	155	174	200	220	230	240	250
Code	JD	ZD	BD	CD	ED	ND	SD	KD	FD	GD	PD	QD	LD	MD	MPD	MUD	UD
Coil with integ	Coil with integral suppression device available: add 3 to the code required. Example: JD3.																

Low consumption (roversing contactors | P5 K: 0.7 1316)

Low consumption (reversing contactors Er 517, 0.71.500)									
Volts	12	20	24	48	72	110	120		
Code	JW3	ZW3	BW3	EW3	SW3	FW3	GW3		
Coil with inte	earal suppres	sion device fi	tted as stand	ard, by bi-dire	ctional peak	limitina diode			

(3) For LP2 K only, when connecting an electronic sensor or timer in series with the contactor coil, select a 20 V coil (~ control circuit voltage code Z7, --- control circuit voltage code ZD) so as to compensate for the incurred voltage drop. (4) For LCeKeeee3 / LPeKeeee3 with spring terminal, Ith max = 10 A.

Selection:	Characteristics:	Dimensions:	Schemes:	→ Click HERE for acc	
pages A6/30 and A6/31	pages B8/93 to B8/96	page B8/97	page B8/98	to online contactor	selector
				Life Is On Schneider	B8/47

B8/48 Life Is On Schneider

TeSys contactors

TeSys K contactors and reversing contactors

Auxiliary contact blocks

contactor	for standard applications.	Clip-o	n front m	ounting, 1 block pe
Connection	For use on contactors	Comp	osition	Reference
Screw clamp terminals	All products with screw clamp terminals	2	-	LA1KN20
		1	2	LA1KN02 LA1KN11
	All products with screw clamp	4	-	LA1KN40
	terminals except low consumption	3	1	LA1KN31
	oonoumption	2	2	LA1KN22
		1	3 4	LA1KN13 LA1KN04
Spring terminals	All products with spring	2	4	LA1KN203
opring terminals	terminals		2	LA1KN023
		1	1	LA1KN113
	All products with spring	4	_	LA1KN403
	terminals except low	3	1	LA1KN313
	consumption	2	2	LA1KN223
		1	3	LA1KN133
		-	4	LA1KN043
Faston connectors, 1 x 6.35 or 2 x 2.8	All products with Faston connectors	2	-	LA1KN207
1 X 0.35 01 2 X 2.0	connectors	-	2	LA1KN027
	All products with Easter	1	1	LA1KN117 LA1KN407
	All products with Faston connectors except low	4 3	1	LA1KN317
	consumption	2	2	LA1KN227
		1	3	LA1KN137
		_	4	LA1KN047
With terminal ref 1 block per cont	ferencing to standard EN 5 actor	0012.	Clip-on f	ront mounting,
Screw clamp	All 3-pole + N/O products with	-	2	LA1KN02M
terminals with referencing	screw clamp terminals except LP4 and LP5 K12	1	1	LA1KN11M
conforming to standard EN 50012	All 3-pole + N/O products with	3	1	LA1KN31M
	screw clamp terminals except LP4 or LP5 K06, K09 and K12	2	2	LA1KN22M
	LF4 01 LF3 100, 109 and 112	1	3	LA1KN13M
	All 4-pole products with screw clamp terminals except LP4 or		1	LA1KN11P
	LP5 K12			LA1KN22P
	LP5 K12 All 4-pole products with screw clamp terminals except LP4 or LP5 K09 and K12	2	2	
Electronic tir	All 4-pole products with screw clamp terminals except LP4			
Relay output with maximum. Control voltage 0.4 Maximum switchir Operating tempera	All 4-pole products with screw clamp terminals except LP4 or LP5 K09 and K12 ne delay auxiliary co common point changeover of 851.1 Uc. ng capacity 250 VA or 150 W ature -10+60 °C.	ntact contac	t blocks st, \sim or $=$	240 V, 2 A
Relay output with maximum. Control voltage 0. Maximum switchir Operating tempera Reset time: 1.5 s	All 4-pole products with screw clamp terminals except LP4 or LP5 K09 and K12 ne delay auxiliary co common point changeover of 851.1 Uc. ng capacity 250 VA or 150 W	ntact contac /. , 0.5 s	t blocks st, \sim or $=$	240 V, 2 A

1

1

 \sim 110...240 On-delay

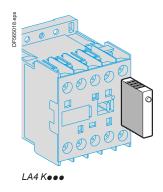
s

On-delay

1...30

1...30

۷


∼ or ... 24…48

LA2KT2E

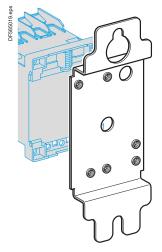
LA2KT2U

TeSys contactors

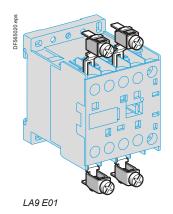
TeSys K contactors and reversing contactors Suppressor modules incorporating LED indicator

References				
Mounting and connection	Туре	For voltages	Sold in lots of	Unit reference
Clip-on fixing on the front of contactors LC1 and LP1, with locating device. No tools required.	Varistor (1)	\sim and $=$ 1224 V	5	LA4KE1B
		\sim and $= 3248$ V	5	LA4KE1E
		\sim and $=$ 50129 V	5	LA4KE1FC
		\sim and $=$ 130250 V	5	LA4KE1UG
	Diode + Zener diode (2)	1224 V	5	LA4KC1B
		3248 V	5	LA4KC1E
	RC ⁽³⁾	\sim 110250 V	5	LA4KA1U

(1) Protection provided by limiting the transient voltage to 2 Uc max. (1) Protection provided by limiting the transient voltage by 20 cmax. Maximum reduction of transient voltage peaks. Slight increase in drop-out time (1.1 to 1.5 times the normal time).
 (2) No overvoltage or oscillating frequency. Polarised component.


Slight increase in drop-out time (1.1 to 1.5 times the normal time). (3) Protection by limiting the transient voltage to 3 Uc max. and limitation of the oscillating frequency.

Slight increase in drop-out time (1.2 to 2 times the normal time).


Life Is On

TeSys contactors

TeSys K contactors and reversing contactors Accessories

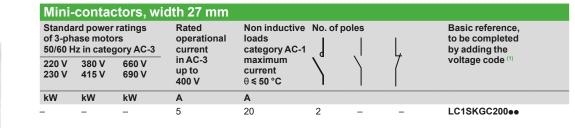
DX1 AP25

Description	Application		Sold in lots of	Unit reference
Mounting plates ⁽¹⁾	For fixing on 1 ∟ rail	Clip-on	1	LA9D973
	For fixing on 2 La rails	110/120 mm fixing centres	10	DX1AP25
Marker holder	Clip-on	Onto front of contactor	100	LA9D90
Clip-in markers	4 maximum per contactor	Strips of 10 identical numbers 09	25	AB1R • ⁽²⁾
		Strips of 10 identical letters AZ	25	AB1G ● ⁽²⁾

Connection a	accessories			
Description	Application		Sold in lots of	Unit preference
Paralleling links	For 2 poles	With screw clamps	4	LA9E01
	For 4 poles	With screw clamps	2	LA9E02
Set of 6 power connections	For 3-pole reversing contactors for motor control	For contactors with screw clamp terminals	100	LA9K0969
Set of 4 power connections	For 4-pole changeover contactor pairs	For contactors with screw clamp terminals	100	LA9K0970

(1) Order 1 mounting plate for fixing a contactor and 2 mounting plates for fixing a reversing contactor

(2) Complete the reference by replacing the dot with the required character.


Characteristics:	
page B8/96	

References - TeSys SKGC **TeSys contactors** Mini-contactors TeSys LC1 SKGC, for use in modular panels

■ Mounting on 35 mm — rail or fixing by four Ø4 screws, except for LC1 SKGC200.

Connection by connectors.

Mini-contactor fitted with transparent, sealable protective cover to prevent front face access.

LC1 SKGC200

LC1 SKGC400

PF511135R.ept

Standard power ratings of 3-phase motors 50/60 Hz in category AC-3		Rated operational current	Non inductive loads category AC-1	No. of	poles		Basic reference, to be completed by adding the	
220 V 230 V	380 V 415 V	660 V 690 V	in AC-3 up to 400 V	maximum current θ ≤ 50 °C	1	Ì	7	voltage code ⁽¹⁾
kW	kW	kW	A	Α				
1.1	4	4	9	20	3	1	-	LC1SKGC310.
					3	_	1	LC1SKGC301.
					4	_	_	LC1SKGC400

Volts \sim 50/60 Hz	24	48	110	120	220	230	240	380	400		
Code	B7	E7	F7	G7	M7	P7	U7	Q7	V7		

Contactors

Dimensions, schemes: page B8/105

Click <u>HERE</u> for access to online contactor selector

TeSys contactors Mini-contactors TeSys LC1 SKGC, for use in modular panels Suppressor modules

Connection w	ithout need for	tools by clipping or	nto right-	hand side of contacto
For use on contactors	Туре	For voltages	Sold in lots of	Unit reference
LC1SKGC	Varistor (1)	\sim and $=$ 24…48 V	10	LA4SKE1E
		∼ and 110…250 V	10	LA4SKE1U
	Diode (2)		10	LA4SKC1U

Protection provided by limiting the transient voltage to 2 Uc max. Maximum reduction of transient voltage peaks. Slight increase in drop-out time (1.1 to 1.5 times the normal time).

(2) No overvoltage or oscillating frequency. Slight increase in drop-out time (1.1 to 1.5 times the normal time).

References - TeSys GC **Modular equipment** Standard contactors TeSys GC

GC 10020

No. of poles	L	Number of 17.5 mm modules	Commercial 50 Hz coil - d	reference ifferent voltages	;			Sold in lots of
<u>ر</u>	7		12	24	48	110	220/240	
	(v	v	v	v	V	
Maximu	n current i	rating category A	C-7a - 16 A					
1	-	1	GC1610J5	GC1610B5	GC1610E5	GC1610F5	GC1610M5 *	12
1	1	1	GC1611J5	GC1611B5	-	GC1611F5	GC1611M5 *	12
2	-	1	GC1620J5	GC1620B5	GC1620E5	GC1620F5 *	GC1620M5 *	12
2	2	2	-	GC1622B5	GC1622E5	GC1622F5 *	GC1622M5	6
3	-	2	-	-	-	-	GC1630B5 GC1630M5 ★	6
1	-	2	_	GC1640B5	_	GC1640F5	GC1640M5 *	6
Maximu	n current i	rating category A	C-7a - 25 A					
-	2	1	-	GC2502B5	GC2502E5	*	GC2502M5 *	12
-	4	2	-	GC2504B5	GC2504E5	*	GC2504M5 *	6
	_	1	-	GC2510B5	-	-	GC2510M5 *	12
1	1	1	-	GC2511B5	-	GC2511F5	GC2511M5 *	12
2	-	1	GC2520J5	GC2520B5	GC2520E5	GC2520F5 *	GC2520M5 *	12
2	2	2	-	GC2522B5	GC2522E5	GC2522F5	GC2522M5 *	6
3	-	2	-	GC2530B5	_	GC2530F5	GC2530M5 *	6
3	1	2	_	_	_	_	GC2531M5	6
1	-	2	GC2540J5	GC2540B5	GC2540E5	GC2540F5 *	GC2540M5 *	6
Maximu	n current i	rating category A	C-7a - 40 A					
-	2	2	-	GC4002B5	-	-	GC4002M5 *	6
-	4	3	-	GC4004B5	-	GC4004F5 *	GC4004M5	4
1	1	2	-	GC4011B5	_	_	GC4011M5 *	6
2	-	2	_	GC4020B5	_	GC4020F5 *	GC4020M5 *	6
2	2	3	-	_	-	-	GC4022M5	4
3	-	3	-	GC4030B5	-	GC4030F5	GC4030M5 *	4
1	-	3	-	GC4040B5	GC4040E5	GC4040F5 *	GC4040M5 *	4
Maximu	n current i	rating category A	C-7a - 63 A					
-	2	2	-	-	-	-	GC6302M5	6
-	4	3	-	GC6304B5	-	-	GC6304M5	4
1	1	2	-	-	-	-	GC6311M5	6
2	-	2	-	-	-	_	GC6320M5	6
2	2	3	-	-	-	GC6322F5	GC6322M5	4
3	-	3	-	GC6330B5	-	GC6330F5	GC6330M5 *	4
1	-	3		GC6340B5	GC6340E5	GC6340F5 *	GC6340M5 *	4
Maximu	n current i	rating category A	C-7a - 100 A					
2	-	3	-	-	-	_	GC10020M5	4
1	_	6	-	GC10040B5	_	_	GC10040M5 *	2

 $\frac{4}{\text{ for 60 Hz coil replace last figure 5 by 6.}}$

Characteristics: pages B8/114 and B8/115 Dimensions, schemes: pages B8/116 and B8/117

Schneider Gelectric

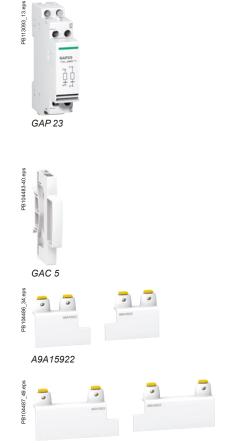
Modular equipment TeSys GY "dual tariff" contactors

No. of poles	þ,	Number o 17.5 mm modules		cial reference I - different voltage	S			Sold in lots of
\backslash			12	24	48	110	220/240	
1	1		V	V	V	V	V	
Maximu	m current i	rating category	AC-7a - 16	4				
2	-	1	-	GY1620B5		-	GY1620M5	12
1	-	2	_	-	_	-	GY1640M5	6
Maximu	m current i	rating category	AC-7a - 25 A	4				
2	-	1	-	GY2520B5	-	_	GY2520M5 ★	12
3	-	2	_		_		GY2530M5	6
1	-	2	_	GY2540B5	_	-	GY2540M5	6
Maximu	m current i	rating category	AC-7a - 40 A	4				
2	-	2	-	-	-	-	GY4020M5	6
3	_	3	_		_		GY4030M5	4
1	-	3	-	GY4040B5	-	_	GY4040M5	4
Maximu	m current i	rating category	AC-7a - 63 A	4				
2	-	2	-	_	-	-	GY6320M5	6
1	-	3	-	GY6340B5	-	_	GY6340M5	4

GY 6340M5

References - TeSys GF Modular equipment TeSys GF impulse relays

GF 1611M7


TeSys GF im	pulse	relay	S			
Maximum current	Compo	sition	Coil volta	iges	Sold in	Unit
rating category AC-1	$\sum_{i=1}^{n}$	7	\sim 50/60 Hz		lots of	reference
Α			v	V		
16	1	-	12	6	12	GF1610J7
			24	12	12	GF1610B7
			48	24	12	GF1610E7
			110	48	12	GF1610F7
			220	-	12	GF1610M7
			230/240	110	12	GF1610U7
	2	-	12	6	12	GF1620J7
			24	12	12	GF1620B7
			48	24	12	GF1620E7
			110	48	12	GF1620F7
			220	-	12	GF1620M7
			230/240	110	12	GF1620U7
	1	1	12	6	12	GF1611J7
			24	12	12	GF1611B7
			48	24	12	GF1611E7
			110	48	12	GF1611F7
			220	-	12	GF1611M7
			230/240	110	12	GF1611U7

Contactors

Presentation:
page B8/122
B8/56

Dimensions, schemes: page B8/126

References - TeSys GC, GY Modular equipment TeSys GC, GY accessories

A9A15923

Instantaneou	s auxiliary cont	act blocks	
Number of contacts	Number of poles		Reference
2	1 1 –		GAC0521
	- 2 -		GAC0531
	1		GAC0511
Accessories			
Description	For use on Number	Operational Sold in	Unit

Accessories					
Description	For use on contactor		Operational voltage in V	Sold in lots of	Unit reference
Coil suppression blocks comprising	-	1	1248	1	GAP21
2 RC circuits			110240	1	GAP23
Ventilation 1/2 module clips onto பா rail	-	1/2	_	10	GAC5
Set of screw shields (10 top parts	40 or 63 A 2 contacts	2	-	1	A9A15922
+ 10 bottom parts)	40 or 63 A 3 or 4 contacts	3	-	1	A9A15923

Contactors

Technical Data for Designers

Contents

TeSys D, TeSys D Green:

- > characteristics......B8/61 to B8/73
- > dimensions......B8/74 to B8/87

TeSys SK:

- > characteristics......B8/88 to B8/91
- > dimensions......B8/92

TeSys K:

TeSys SKGC:

- > characteristics......B8/101 to B8/104
- > dimensions......B8/105

TeSys GC:

- > characteristics......B8/106 to B8/113
- > dimensions......B8/114 and B8/115

TeSys GY:

- > characteristics......B8/116 to B8/119
- > dimensions......B8/120 and B8/78

TeSys GF:

- > characteristics.....B8/122 to B8/125
- > dimensions.....B8/126

Standard IEC tests - Contactors conforming to UL/CSA......B8/127

Contactors

Characteristics - TeSys D, TeSys D Green **TeSys contactors** TeSys D, TeSys D Green contactors

Contactor type LC1			D09D18	D25D38	D40AD80A	D80D95	D115 and		
			DT20 and DT25	DT32 and DT40	DT60A and DT80A	200200	D150		
Rated insulation voltage (Ui)	Conforming to IEC 60947-4-1, overvoltage category III, degree of pollution: 3	V	690			1000			
	Conforming to UL, CSA	v	600						
Rated impulse withstand voltage (Uimp)	Conforming to IEC 60947	kV	6 8						
Conforming to standards					47-5-1, UL 60947- 7-5-1, GB/T 14048		n° 60947-4-1,		
Product certifications (1)			UL, CSA, CCC CB certification	C, EAC, n, EU-MR-RO by	DNV-GL	UL, CSA, CC CB certificatio RINA, BV, LR	n, DNV-GL,		
Degree of protection ⁽²⁾ (front face)	Conforming to IEC 60529								
	Power circuit connections		Protection aga	inst direct finger	contact IP20				
	Coil connection		Protection aga	inst direct finger					
Climatic withstand			According to I/ IEC 60947-1 A	According to	g to IACS E10				
Ambient air temperature around the device	Storage	°C	-60+80						
	Operation ⁽³⁾	°C	-40+60						
	Allowed with derating ^{(3) (4)}	°C	+60+70 at U	lc to 1.●● x Uc					
Maximum operating altitude	Without derating	m	3000						
Operating positions ⁽⁵⁾	Without derating in the following positions		AC and DC co AC/DC and "B		AC coils AC/DC and "BE	BE" coils	DC coils		
		DF510743.eps		°° ∕*	DF537812.eps	DF537813.eps			
	Positions that are not allowed	ø		ors LC1 D09 to L	C1 D150.				
		DF537814.eps	53	DF 537815.eps					
Flame resistance	Conforming to IEC 60695-2-11	°C	850						
Shock resistance ⁽⁶⁾ 1/2 sine wave = 11 ms	Contactor open		10 gn	8 gn	10 gn	8 gn	6 gn		
	Contactor closed		15 gn	15 gn	15 gn	10 gn	15 gn		
Vibration resistance ⁽⁶⁾ 5300 Hz	Contactor open		2 gn						
	Contactor closed	1	4 gn	4 gn	4 gn	3 gn	4 gn		

(1) Contactor LC1 D95 with d.c. coil is not UL/CSA certified.

(1) Contactor Der Des with d.c. colors for Decay Certified.
(2) Protection provided for the cabling c.s.a.'s indicated on the next page and for connection by cable. For lug type: add a protective cover.
(3) As per IEC60947-4-1, operating time and drop out voltage given and tested for -5...+40 °C.
(4) Refer to operational current in AC1 (page A6/30).
(5) When mounting on a vertical rail, use a stop.
(6) Without modifying the power contact states, in the most unfavourable direction (coil energised at Ue).

In case of vibration, it is recommended to mount the devices separately by screws on metal plate.

Characteristics - TeSys D, TeSys D Green **TeSys contactors** TeSys D, TeSys D Green contactors

Pole characteristics Te	eSvs D	TeSvs D Gre	en										
Contactor type	, c, c,	LC1		D09	DT20	D12	DT25	D18	DT32	D25	DT40		
		201		(3P)	D098	(3P)	D125	(3P)	D188	(3P)	D258		
Rated operational current (le)	In AC-3, θ ≤	≤ 60 °C	Α	9		12		18		25			
(Ue ≤ 440 V)	In AC-1, θ ≤	≤ 60 °C	Α	25 (1)	20	25 (1)	25	32 (1)	32	40 (1)	40		
Rated operational voltage (Ue)	Up to		V	690		690		690		690			
Frequency limits		ational current	Hz	25400		25400		25400	_	25400			
Conventional thermal current (Ith)	θ ≤ 60 °C		A	25 (1)	20	25 (1)	25	32 (1)	32	40 (1)	40		
Rated making capacity (440 V)		g to IEC 60947	Α	250		250		300		450			
Rated breaking capacity (440 V)	Conforming	g to IEC 60947	Α	250		250		300		450	450		
Permissible short time rating	For 1 s		Α	210		210		240		380			
No current flowing for preceding 15 minutes with θ ≤ 40 °C	For 10 s		Α	105		105		145		240			
10 minutes with 0 ≤ 40 U	For 1 min		Α	61		61		84		120			
	For 10 min		Α	30		30		40		50			
Fuse protection	Without the		Α	25		40		50		63			
against short-circuits (U ≤ 690 V)	overload re gG fuse			20		25		35		40			
		al overload relay	A	correspo		e associate	or aM or gG ed thermal o	overload re					
Average impedance per pole	At Ith and 5	50 Hz	mΩ	2.5		2.5		2.5		2			
Power dissipation per pole for the			W	0.20		0.36		0.8		1.25			
above operational currents	AC-1		W	1.56		1.56		2.5		3.2			
Control circuit charact	TeSys	D											
Rated control circuit voltage (Uc)		50/60 Hz	v	12690									
Control voltage limits													
50 or 60 Hz coils	Operation	۱		-									
	Drop-out			-									
50/60 Hz coils	Operation	1		0.81.1 Uc on 50 Hz and 0.851.1 Uc on 60 Hz at 60 °C							_		
	Drop-out	Drop-out		0.30.6	Uc at 60 °C	>							
	Iz Inrush	50 Hz coil	VA	-									
at 20 °C and at Uc		Cos φ		0.75									
	_	50/60 Hz coil	VA	70									
	Sealed	50 Hz coil	VA	-									
		Cos φ		0.3									
	_	50/60 Hz coil	VA	7									
\sim 60 H.	lz Inrush	60 Hz coil	VA	-									
		Cos φ		0.75									
		50/60 Hz coil	VA	70									
	Sealed	60 Hz coil	VA	-									
		Cos φ		0.3									
		50/60 Hz coil	VA	7.5									
Heat dissipation 50/60 H	lz	*	W	23									
Operating time ⁽²⁾	Closing "(C"	ms	1222									
-	Opening '		ms	419									
Mechanical durability	50 or 60 H			-									
in millions of operating cycles		coil on 50 Hz		15									
Maximum operating rate at ambient temperature ≤ 60 °C	In operati	ng cycles per hour		3600									
(1) Versions with spring terminal co	onnections:		·	<u>. </u>									

(1) Versions with spring terminal connections:
 16 A for LC1 D093 and LC1 D123 (20 A possible with 2 x 2.5 mm² in parallel),
 25 A for LC1 D183 to LC1 D323 (32 A possible for LC1 D183 connected with 2 x 4 mm² cables in parallel; 40 A possible for LC1 D253 and LC1 D323 connected

with 2×4 mm² in parallel). (2) The closing time "C" is measured from the moment the coil supply is switched on to closure of the main poles. The opening time "O" is measured from the moment the coil supply is switched off to the moment the main poles separate.

References: pages B8/2 to B8/7 Schneider Gelectric

D32	D38	D40A	DT60A	D50A	D65A	D80A	DT80A	D80	D95	D115	D150
32	38	40	-	50	65	80	-	80	95	115	150
50 (1)	50	60	60	80	80	80	80	125	125	200	200
690	690	690	690	690	690	690	690	1000	1000	1000	1000
25400	25400	25400	25400	25400	25400	25400	25400	25400	25400	25400	25400
50	50	60	60	80	80	80	80	125	125	200	200
550	550	800	800	900	1000	1000	1000	1100	1100	1260	1660
550	550	800	800	900	1000	1000	1000	1100	1100	1100	1400
430	430	720	720	810	900	900	900	990	1100	1100	1400
260	310	320	320	400	640	640	640	640	800	950	1200
138	150	165	165	208	260	260	260	320	400	550	580
60	60	72	72	84	110	110	110	135	135	250	250
63	63	80	80	100	125	125	125	200	200	250	315
63	63	80	80	100	125	125	125	160	160	200	250
See pegee I	211/1 and D1	1/E for oM or	C fue retine		ing to the eas	opiotod thorm					

See pages B11/4 and B11/5 for aM or gG fuse ratings corresponding to the associated thermal overload relay

2	2	1.5	1.6	1.5	1.5	1.5	1.6	0.8	0.8	0.6	0.6
2	3	2.4	-	3.7	6.3	6.3	-	5.1	7.2	7.9	13.5
5	5	5.4	5.8	9.6	9.6	9.6	10.2	12.5	12.5	24	24

12690	12690								24500		
-	-						0.851.1 U	c at 55 °C			
_	_						0.30.6 Uc	at 55 °C	0.30.5 Uc at 55 °C		
0.8…1.1 Uc on 50 and		on 50 Hz an Jc on 60 Hz a					0.81.1 Uc and	on 50 Hz	0.8…1.15 Uc on 50/60 Hz		
0.85…1.1 Uc on 60 at 60 °C) Hz						0.85…1.1 U at 55 °C	c on 60 Hz	at 55 °C		
0.30.6 Uc at 60 °	°C 0.30.6 Uo	at 60 °C					0.30.6 Uc	at 55 °C	0.30.5 Uc	at 55 °C	
_	-						200		300	-	
0.75	0.75						0.75		0.8	0.9	
70	160						245		280350	280350	
-	-						20		22	-	
0.3	0.3						0.3		0.3	0.9	
7	15						26		218	218	
_	-						220		300	-	
0.75	0.75						0.75		0.8	0.9	
70	140						245		280350	280350	
_	_						22		22	-	
0.3	0.3						0.3		0.3	0.9	
7.5	13						26		218	218	
23	45						610		38	34.5	
1222	1226	1226	1226	1226	1226	1226	2035	2035	2050	2035	
419	419	419	419	419	419	419	620	620	620	4075	
-	-	-	-	-	-	-	10	10	8	-	
15	6	6	6	6	6	6	4	4	8	8	
3600	3600	3600	3600	3600	3600	3600	3600	3600	2400	1200	

Characteristics - TeSys D TeSys contactors TeSys D contactors

Contactor type				LC1 D09D38 LC1 DT20DT40	LC1 D40AD80A LC1 DT60A and DT80A	LC1 or LP1 D80 LC1 D95	LC1 D115 and LC1 D150
Rated control circuit voltage (Uc)			v	12440	12440		24440
Rated insulation voltage	Conforming to IE	C 60947-1	v	690	1		1
	Conforming to UI	_, CSA	v	600			
Control voltage limits	Operation	Standard coil		0.7…1.25 Uc at 60 °C	0.75…1.25 Uc at 60 °C	0.85…1.1 Uc at 55 °C	0.751.2 Uc at 55 °C
		Wide range coil		-	-	0.75…1.2 Uc at 55 °C	-
	Drop-out			0.10.25 Uc at 60 °C	0.10.3 Uc at 60 °C	0.1…0.3 Uc at 55 °C	0.15…0.4 Uc at 55 °C
Average consumption		Inrush	w	5.4	19	22	270365
at 20 °C and at Uc		Sealed	w	5.4	7.4	22	2.45.1
Operating time ⁽¹⁾	Closing	"C"	ms	63 ±15 %	50 ±15%	95130	2035
average at Uc	Opening	"O"	ms	20 ±20 %	20 ±20%	2035	4075
Time constant (L/R) Mechanical durability at Uc	In millions of ope	rating cycles	equal to	o the sum of the openin 28 30	ng time and the arcing 34 10	time. 75 10	25
Maximum operating rate at ambient temperature ≤ 60 °C	In operating cycle	es per hour		3600	3600	3600	1200
Low consumption co	ntrol circuit	character	istics	TeSys D			
	Conforming to IE	C 60947-1	v	690	_		
		0 000 11 1		000			
	Conforming to U		V	600	-		
Rated insulation voltage		_, CSA	v v		-		
Rated insulation voltage Maximum voltage Average consumption	Conforming to UI Of the control circ Wide range coil	_, CSA		600	-		
Rated insulation voltage Maximum voltage Average consumption	Conforming to UI Of the control circ	_, CSA cuit on 	v	600 250	-		
Rated insulation voltage Maximum voltage Average consumption d.c. at 20 °C and at Uc Operating time ⁽¹⁾	Conforming to UI Of the control circ Wide range coil	L, CSA cuit on Inrush	v w	600 250 2.4	- -		
Rated insulation voltage Maximum voltage Average consumption d.c. at 20 °C and at Uc Operating time ⁽¹⁾	Conforming to UI Of the control cirr Wide range coil (0.81.25 Uc)	_, CSA cuit on <u>Inrush</u> Sealed	V W W	600 250 2.4 2.4	- - -		
Rated insulation voltage Maximum voltage Average consumption d.c. at 20 °C and at Uc Operating time ⁽¹⁾ at Uc and at 20 °C Voltage limits ($\theta \le 60$ °C)	Conforming to UI Of the control cirr Wide range coil (0.81.25 Uc) Closing	L, CSA cuit on Inrush Sealed "C"	V W W ms	600 250 2.4 2.4 77 ±15 %	- - -		
Rated insulation voltage Maximum voltage Average consumption d.c. at 20 °C and at Uc Operating time ⁽¹⁾ at Uc and at 20 °C Voltage limits ($\theta \le 60$ °C)	Conforming to UI Of the control cirr Wide range coil (0.81.25 Uc) Closing Opening	L, CSA cuit on Inrush Sealed "C"	V W W ms	600 250 2.4 2.4 77 ±15 % 25 ±20 %	- - - -		
Rated insulation voltage Maximum voltage Average consumption d.c. at 20 °C and at Uc Operating time ⁽¹⁾ at Uc and at 20 °C Voltage limits ($\theta \le 60$ °C) of the control circuit	Conforming to UI Of the control cirr Wide range coil (0.81.25 Uc) Closing Opening Operation	L, CSA cuit on Inrush Sealed "C"	V W W ms	600 250 2.4 2.4 77 ±15 % 25 ±20 % 0.8 to 1.25 Uc	- - - -		
Rated insulation voltage Maximum voltage Average consumption d.c. at 20 °C and at Uc Operating time ⁽¹⁾ at Uc and at 20 °C Voltage limits ($\theta \le 60$ °C) of the control circuit Time constant (L/R) Mechanical durability	Conforming to UI Of the control cirr Wide range coil (0.81.25 Uc) Closing Opening Operation	_, CSA cuit on Inrush Sealed "C" "O"	V W W ms ms	600 250 2.4 2.4 2.4 2.5 ±20 % 0.8 to 1.25 Uc 0.10.3 Uc	- - - -		

(1) The operating times depend on the type of contactor electromagnet and its control mode. The closing time "C" is measured from the moment the coil supply is switched on to initial contact of the main poles. The opening time "O" is measured from the moment the coil supply is switched off to the moment the main poles separate.

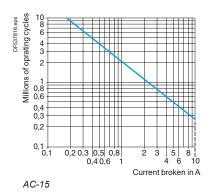
References: pages B8/2 to B8/7 Schneider Gelectric

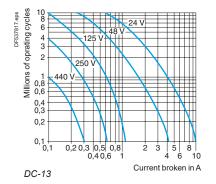
Characteristics TeSys D Green Contactors with AC/DC coil

Rated control circuit voltage (Uc)		v	AC/DC 24	250						
	Operation	v	0.85 Uc m	ini1.1 Uc m	axi at 60 °C in .	AC or DC				
			(BNE coil:	0.8 Uc mini a	t 24 VDC, 0.85	5 Uc mini in A	NC).			
	Drop-out	v	0.1 Uc ma	xi (e.g. 100 to	250 V = 25 V	at 60 °C)				
Contactor type			LC1 D09	.D38		LC1 D40/	AD80A, LC1	DT60A, LC1	DT80A	
Coil code			BNE	EHE	KUE	BBE	BNE	EHE	KUE	
Rated control circuit voltage (Uc)			24-60	48-130	100-250	24 DC	24-60	48-130	100-250	
AC supply at 20°C	Consumption inrush	VA	15	25	25	-	15	23	18	
	Consumption sealed	VA	0.9	1.3	1.6	-	1	1.4	1.8	
	Consumption sealed	mA	28	15	9	-	35	17	9.5	
	Heat dissipation	w	0.6	0.8	1.1	-	0.8	0.9	1.3	
0C supply at 20°C	Consumption inrush	w	14	24	18	11	16	19	14	
	Consumption sealed	mA	23	13	7	20	30	15	7.7	
	Heat dissipation	w	0.6	0.8	1.1	0.5	0.7	0.9	1.2	
lax operating time (2)	Closing "C"	ms	50 ±5 ms			60 ±5 ms				
	Opening "O"	ms	2090 ms			2080 m	S			
MC immunity			Meets IEC	60947-4-1 st	andard, table '	14				
MC emission	IEC 60947-4-1 §9.4.3		Environme	ent A (1)						
laximum operating rate at ambient	temperature ≤ 60°C	cycle/h	/h 3600							
Aechanical durability at Uc In millior	s of operating cycles		15			6				

(1) Use of this product in EMC environment B may require mitigation measures to avoid unwanted disturbance.
 (2) The closing time "C" is measured from the moment the coil supply is switched on to closure of the main poles. The opening time "O" is measured from the moment the coil supply is switched off to the moment the main poles separates.

Characteristics - TeSys D, TeSys D Green TeSys contactors TeSys D, TeSys D Green contactors


Power circuit con	connections TeSys D	ToSve D	Groop								
Contactor type	LC		D09 and D12 DT20 and DT25	D18 (3P)	D25 (3P)	D32	D38	D18 and D25 (4P) DT32 and DT40	D40A to D80A DT60A and DT80A ⁽¹⁾	D80 and D95	D115 and D150
Tightening			Screw clar	mp termi	nals			Connector 2 inputs	Screw clamp terminals	Connector 1 input	Connecto 2 inputs
Flexible cable	1 conductor	mm ²	14	1.56	2.510			2.510	135	450	10120
without cable end	2 conductors	mm²	14	1.56	2.510			2.510	125 and 135	425	10120 + 1050
Flexible cable	1 conductor	mm ²	14	16	110			2.510	135	450	10120
with cable end	2 conductors	mm ²	12.5	14	1.56			2.510	125 and 135	416	10120 + 1050
Solid cable	1 conductor	mm²	14	1.56	1.510			2.516	135	450	10120
without cable end	2 conductors	mm ²	14	1.56	2.510			2.516	125 and 135	625	10120 + 1050
Screwdriver	Philips		N° 2	N° 2	N° 2			N° 2	-	-	-
	Flat screwdriver Ø		Ø6	Ø6	Ø6			Ø6	-	Ø6Ø8	-
Hexagonal key			-	-	-			-	4	4	4
Tightening torque		N.m	1.7	1.7	2.5			1.8	5: ≤ 25 mm² 8: 35 mm²	9	12
Spring terminal conn	ections ⁽²⁾ TeSys D										
Flexible cable without cable end	1 conductor	mm²	2.5 (4: DT25)	4	4	4	-	10	-	-	
	2 conductors	mm²	2.5 (except DT25)	4	4	4	-	-	-	-	
Connection by bars o	r lugs TeSys D										
Bar c.s.a.			-	-	-	-		-	-	3 x 16	5 x 25
Lug external Ø		mm	8	8	10	10		8	16.5	17	25
Ø of screw		mm	M3.5	M3.5	M4	M4		M3.5	M6	M6	M8
Screwdriver	Philips		N° 2	N° 2	N° 2	N° 2		N° 2	-	-	-
	Flat screwdriver Ø		Ø6	Ø6	Ø6	Ø6		Ø6	-	Ø8	-
Key for hexagonal headed	screw		-	-	-	-		-	10	10	13
Tightening torque		N.m	1.7	1.7	2.5	2.5		1.8	6	9	12
Control circuit co	nnections										
Connection by cable	(tightening via screw c	lamps) T	eSys D, T	eSys D	Green						
Flexible cable	1 conductor	mm ²	14	14	14	14		14	14	14	12.5
without cable end	2 conductors	mm ²	14	14	14	14		14	14	14	12.5
Flexible cable	1 conductor	mm ²	14	14	14	14		14	14	12.5	12.5
with cable end	2 conductors	mm ²	12.5	12.5	12.5	12.5	5	12.5	12.5	12.5	12.5
Solid cable	1 conductor	mm ²	14	14	14	14		14	14	14	12.5
without cable end	2 conductors	mm ²	14	14	14	14		14	14	14	12.5
Screwdriver	Philips		N° 2	N° 2	N° 2	N° 2		N° 2	N° 2	N° 2	N° 2
	Flat screwdriver Ø		Ø6	Ø6	Ø6	Ø6		Ø6	Ø6	Ø6	Ø6
Tightening torque		N.m	1.7	1.7	1.7	1.7		1.7	1.7	1.7	1.2
Spring terminal conn	ections ⁽²⁾ TeSys D										
Flexible cable	1 conductor	mm ²	2.5	2.5	2.5	2.5	-	2.5	0.752.5	-	-
without cable end	2 conductors	mm²	2.5	2.5	2.5	2.5	-	2.5	0.752.5	-	-
Connection by bars o	r lugs TeSys D										
Lug external Ø		mm	8	8	8	8		8	8	8	8
Ø of screw		mm	M3.5	M3.5	M3.5	M3.5		M3.5	M3.5	M3.5	M3.5
Screwdriver	Philips		N° 2	N° 2	N° 2	N° 2		N° 2	N° 2	N° 2	N° 2
				~~	. ~ ~	100					0
	Flat screwdriver Ø		Ø6	Ø6	Ø6	Ø6		Ø6	Ø6	Ø6	Ø6


(1) BTR screws: hexagon socket head. In accordance with local electrical wiring regulations, a size 4 insulated Allen key must be used (reference LAD ALLEN4, see page B8/29).
 (2) If cable ends are used, choose the next size down (example: for 2.5 mm², use 1.5 mm²) and square crimp the cable ends using a special tool.

B8/66

Characteristics - TeSys D, TeSys D Green **TeSys contactors** TeSys D, TeSys D Green contactors

Characteristics of au	uxiliary conta	cts incor	porate	ed in the contactor
Mechanically linked contacts	Conforming to IEC	60947-5-1		Each contactor has 2 N/O and N/C contacts mechanically linked on the same movable contact holder
Mirror contact	Conforming to IEC	60947-4-1		The N/C contact on each contactor represents the state of the power contacts and can be connected to a PREVENTA safety module
Rated operational voltage (Ue)	Up to		V	690
Rated insulation voltage (Ui)	Conforming to IEC	60947-1	v	690
	Conforming to UL,	CSA	V	600
Conventional thermal current (Ith)	For ambient tempe ≤ 60 °C	erature	A	10
Frequency of the operational cu	rrent		Hz	25400
Minimum switching capacity	um switching capacity U min		v	17
λ = 10 ⁻⁸	l min		mA	5
Short-circuit protection	Conforming to IEC	60947-5-1		gG fuse: 10 A
Rated making capacity	Conforming to IEC	60947-5-1,	A	∼: 140,: 250
Short-time rating	Permissible for	1 s	Α	100
		500 ms	Α	120
		100 ms	A	140
Insulation resistance			MΩ	> 10
Non-overlap time	Guaranteed betwee N/C and N/O contained		ms	1.5 (on energisation and on de-energisation)
Tightening torque	Philips head n° 2 a	and Ø6	N.m	1.7

Operational power of contacts conforming to IEC 60947-5-1

a.c. supply, categories AC-14 and AC-15

Electrical durability (valid for up to 3600 operating cycles/hour) on an inductive load such as the coil of an electromagnet: making current (cos φ 0.7) = 10 times the power broken (cos φ 0.4).

Operating cycles	V	24	48	115	230	400	440	600
1 million	VA	60	120	280	560	960	1050	1440
3 million	VA	16	32	80	160	280	300	420
10 million	VA	4	8	20	40	70	80	100

d.c. supply, category DC-13

Electrical durability (valid for up to 1200 operating cycles/hour) on an inductive load such as the coil of an electromagnet, without economy resistor, the time constant increasing with the load.

Operating cycles	V	24	48	125	250	440
1 million	w	96	76	76	76	44
3 million	W	48	38	38	32	-
10 million	w	14	12	12	-	-

References: pages B8/2 to B8/7

TeSys contactors

Auxiliary contact blocks without dust and damp protected contacts for TeSys D, TeSys D Green contactors

Environment							
Contact block type				LAD N or LAD C	LAD T and LAD S	S LAD R	LAD 8
Conforming to standards				IEC/EN 60947-5-1,	UL 60947-5-1, CSA	C22.2 n° 60947-5-1,	GB/T 14048.5
Product certifications				UL, CSA, CCC, EA	C, CB certification		
Degree of protection	Conforming to IEC 60	529		Protection against of	direct finger contact	IP 2X	
Ambient air temperature	Storage		°C	-60+80			
around the device	Operation		°C	-5+60			
Maximum operating altitude	Without derating		m	3000			
Connection by cable	Phillips n° 2 and Ø6 n Flexible or solid cable with or without cable		mm²	Min: 1 x 1; max: 2 >	(2.5		
Tightening torque			N.m	1.7			
Spring terminal connections	Flexible or solid cable without cable end	1	mm ²	Max: 2 x 2.5			
Instantaneous and ti	ime delay conta	act cha	racter	ristics			
Number of contacts				1, 2 or 4	2	2	2
Rated operational voltage (Ue)	Up to		v	690			
Rated insulation voltage	Conforming to IEC 60	947-5-1	v	690			
(Ui)	Conforming to UL, CS		v	600			
Conventional thermal current (Ith)				10			
Frequency of the operational current		Hz	25400				
Minimum switching capacity		U min	v	17			
within switching capacity			mA	5			
		1 111111		5			
Short-circuit protection	Conforming to IEC 60 gG fuse	947-5-1	Α	10			
Rated making capacity	Conforming to IEC 60947-5-1	l rms	Α	∼: 140;:: 250			
Short-time rating	Permissible for	1 s	A	100			
5		500 ms	A	120			
		100 ms	A	140			
Insulation resistance			MΩ	> 10			
Non-overlap time	Guaranteed between N/C and N/O contacts	3	ms	1.5 (on energisation	n and on de-energisa	ation)	
Overlap time	Guaranteed between N/O contacts on LAD	N/C and	ms	1.5	-	-	-
Time delay (LADT, R and S contact blocks)	Ambient air temperatu	ure	°C	-	-40+70	-40+70	-
Accuracy only valid for	Repeat accuracy		1	-	±2 %	±2 %	_
setting range indicated on the front face	Drift up to 0.5 million operating cycles			-	+15 %	+15 %	-
	Drift depending on ambient air temperatu	ire		-	0.25 % per °C	0.25 % per °C	-
Mechanical durability	In millions of operatin			30	5	5	30
Operational power		5 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -	1	See page B8/70	1.5	1-	1
of contacts							

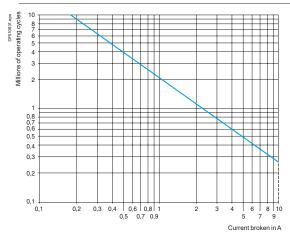
Schneider

TeSys contactors

Auxiliary contact blocks with dust and damp protected contacts for TeSys D, TeSys D Green contactors

Contact block type				LA1 DX	LA1 DZ		LA1 DY			
				Protected	Protected	Non protected	Protected			
Conforming to standards				IEC/EN 60947-5-	1, UL 60947-5-1, CS	A C22.2 n° 60947-5-1,	GB/T 14048.5			
Product certifications				UL, CSA, CCC, E	EAC, CB certification					
Degree of protection	Conforming to IEC	60529		Protection agains	st direct finger contact	t IP 2X				
Ambient air temperature	Storage and operat	ion	°C	-25+70	-25+70					
Cabling	Phillips n° 2 and Ø6 Flexible or solid cor with or without cabl	nductor	mm ²	Min: 1 x 1; max: 2 x 2.5						
Tightening torque			N.m	1.7						
Number of contacts				2	2	2	2			
Contact characteris	stics									
Rated operational voltage	Up to		Vac	125	125	690	125			
(Ue)			Vdc	30	30		30			
Rated insulation voltage	Conforming to IEC	60947-5-1	v	250	250	690	250			
(Ui)	Conforming to UL, CSA		V	-	-	600	-			
Conventional thermal current (Ith)	rent For ambient temperature ≤ 40 °C		A	-	-	10	-			
Maximum operational current (le)			mA	100	100	-	100			
Frequency of the operational c	urrent		Hz	-	-	25400	-			
Minimum switching capacity		U min	v	5	5	17	5			
		l min	mA	1	1	5	1			
Short-circuit protection	Conforming to IEC gG fuse	609475-1	A	-	-	10	-			
Rated making capacity	Conforming to IEC 609475-1	l rms	Α	-	-	∼:140; ==: 250	-			
Short-time rating	Permissible for	1 s	Α	-	-	100	-			
		500 ms	Α	-	-	120	-			
		100 ms	A	-	-	140	-			
nsulation resistance			ΜΩ	> 10	> 10	> 10	> 10			
Mechanical durability	In millions of operat	ing cycles		5	5	30	5			
Materials and technology used for dust and damp protect	ed contacts			Gold alloy - Single break	Gold alloy - Single break	-	Gold alloy - Single break wi crossed bars			

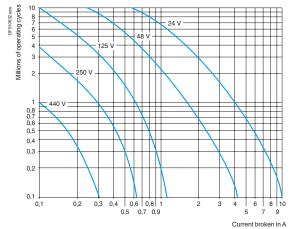
TeSys contactors


Auxiliary contact blocks without dust and damp protected contacts for TeSys D, TeSys D Green contactors

Rated operational power of contacts (conforming to IEC 60947-5-1)

a.c. supply, categories AC-14 and AC-15

Electrical durability (valid for up to 3600 operating cycles/hour) on an inductive load such as the coil of an electromagnet: making current (cos ϕ 0.7) = 10 times the power broken (cos ϕ 0.4).


Operating cycles	V	24	48	115	230	400	440	600
1 million	VA	60	120	280	560	960	1050	1440
3 million	VA	16	32	80	160	280	300	420
10 million	VA	4	8	20	40	70	80	100

d.c. supply, category DC-13

Electrical durability (valid for up to 1200 operating cycles/hour) on an inductive load such as the coil of an electromagnet, without economy resistor, the time constant increasing with the load.

Operating cycles	v	24	48	125	250	440
1 million	w	96	76	76	76	44
3 million	W	48	38	38	32	_
10 million	w	14	12	12	_	_

pages B8/23 ar B8/70		pages B8/74
	Life is On	Schneider

Contactors

es B8/74 and B8/75

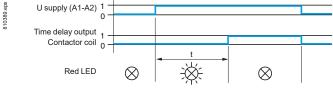
Schemes: pages B8/81 and B8/82

TeSys contactors

Control modules, coil suppressor modules and mechanical latch blocks for TeSys D, TeSys D Green contactors

Environment			
Conforming to standards			IEC/EN 60947-5-1, UL 60947-5-1, CSA C22.2 n° 60947-5-1, GB/T 14048.5
Product certifications			UL, CSA
Degree of protection	Conforming to IEC 60529		Protection against direct finger contact IP 2X
Ambient air temperature around the device	Storage	°C	-40+80
	Operation	°C	-25+55
	Permissible for operation at Uc	°C	-25+70

Suppressor modules TeSys I)					
Module type			LA4 DA, LAD 4RC, LAD 4RC3	LA4 DB, LAD 4T, LAD 4T3	LA4 DC, LAD 4D3	LA4 DE, LAD 4V, LAD 4V3
Type of protection			RC circuit	Bidirectional peak limiting diode	Diode	Varistor
Rated control circuit voltage (Uc)		V	\sim 24415	\sim or $=$ 24440	12250	\sim or $=$ 24250
Maximum peak voltage			3 Uc	2 Uc	Uc	2 Uc
Natural RC frequency 24/48 V		Hz	400	-	-	_
	50/127 V	Hz	200	-	-	-
	110/240 V	Hz	100	-	-	-
	380/415 V	Hz	150	-	-	-


Mechanical latch b	locks (1) TeSys	s D, TeSys	s D Gr	een	
Mechanical latch block type				LAD 6K10	LA6 DK20
For use on contactor				LC1 D09D80A DT20DT80A	LC1 D80D150 LP1 D80 and LC1 D115
Product certifications			UL, CSA	UL, CSA	
Rated insulation voltage	Conforming to IEC 60947-5-1		v	690	690
Rated control circuit voltage	\sim 50/60 Hz and		v	24415	24415
Power required	For unlatching	\sim	VA	25	25
			w	30	30
Maximum operating rate In operating cycles/hour		1200	1200		
On-load factor			_	10 %	10 %
Mechanical durability at Uc	echanical durability at Uc In millions of operating cycles			0.5	0.5

(1) Unlatching can be manually operated or electrically controlled (pulsed). The LA6 DK or LAD 6K latch coil and the LC1 D operating coil must not be energised simultaneously. The duration of the LA6 DK or LAD 6K and LC1 D control signals must be ≥ 100 ms.

TeSys contactors

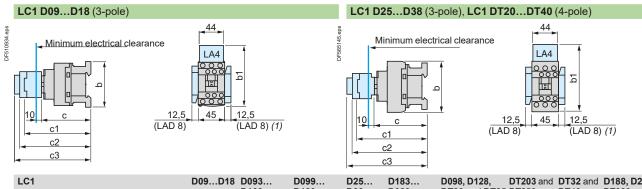
Electronic serial timer module for TeSys D, TeSys D Green contactors

Environment TeSys	s D, TeSys <u>D Green</u>		
Module type	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		LA4 DT (On-delay)
Conforming to standards			IEC 60255-5
Product certifications			UL, CSA
Degree of protection	Conforming to IEC 60529		Protection against direct finger contact IP 2X
Ambient air temperature	Storage	°C	-40+80
around the device	Operation	°C	-25+55
	For operation at Uc	°C	-25+70
Rated insulation voltage (Ui)	Conforming to IEC 60947-1	v	250
Cabling	Phillips n° 2 and Ø6 mm Flexible or solid conductor with or without cable end	mm ²	Min: 1 x 1; max: 2 x 2.5
Tightening torque		N.m	1.7
Control circuit cha	racteristics		
Built-in protection	Of the input		By varistor
	Contactor coil suppression		By varistor
Rated control circuit voltage (L	Jc)	v	∼ or ==: 24250
Permissible variation			0.81.1 Uc
Type of control			By mechanical contact only
Timing characteris	tics		
Timing ranges		s	0.12; 1.530; 25500
Repeat accuracy	040 °C		±3 % (10 ms minimum)
Reset time	During time delay period	ms	150
	After time delay period	ms	50
Immunity to microbreaks	During time delay period	ms	10
	After time delay period	ms	2
Minimum control pulse duratio	n	ms	-
Time delay signalling	By LED		Illuminates during time delay period
Switching characte	ristics (solid state type)		
Maximum power dissipated		w	2
Leakage current		mA	< 5
		v	3.3
Residual voltage			
Residual voltage Overvoltage protection			3 kV; 0.5 joule
	In millions of operating cycles		3 kV; 0.5 joule 30
Overvoltage protection	In millions of operating cycles		
Overvoltage protection			

Life Is On

Characteristics - TeSys D, TeSys D Green

TeSys contactors

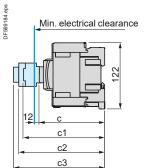

Interface modules for TeSys D, TeSys D Green contactors

Environment TeSys	D TeSvs D	Green					
Conforming to standards	- 			IEC 60255-5			
Product certifications				UL, CSA			
Degree of protection	Conforming to I	EC 60529		Protection against direct	finger contact IP	2X	
A	Otanana			40			
Ambient air temperature around the device	Storage		°C °C	-40+80 -25+55			
	Operation Permissible for	operation at LIC	°C	-25+35			
Other characteristic		oporation at 00		20			
Module type				LA4 DFB for TeSys D With relay		LA4 DWB fo Solid state	r TeSys D, TeSys D Green
Conventional thermal current (Ith)	For ambient ten ≤ 50 °C	nperature	A	8			
Rated insulation voltage	Conforming to I	EC 60947-5-1	v	250			
Rated operational voltage	Conforming to I	EC 60947-5-1	v	250			
Indication of input state				By integral LED which ill	uminates when th	-	il is energised
Input signals	Control voltage		V	24		24	
	Permissible var		V	1730		530	
	Current consum	ption at 20 °C	mA	25		8.5 for 5 V 15 for 24 V	
	State "0" guara	nteed for U	v	< 2.4		< 2.4	
		I	mA	< 2		< 2	
	State "1" guara	nteed for U	v	17		5	
Built-in protection	Against reverse	d polarity		By diode		By diode	
	Of the input			By diode		By diode	
Electrical durability at 220 A/240 V	In millions of op	erating cycles		10		20	
Maximum immunity to microbre	eaks		ms	4		1	
Power dissipated	At 20 °C		w	0.6		0.4	
Direct mounting	With coil	\sim 24250 V		LC1 D80D150		-	
on contactor		\sim 100250 V		-		LC1 D80D	115
		\sim 380415 V		-		-	
Mounting with cabling adapter	With coil	\sim 24250 V		LC1 D09D38, LC1 DT20DT40		LC1 D09D	
LAD 4BB		\sim 380415 V		-		-	
Mounting with cabling adapter	With coil	\sim 24250 V		LC1 D40AD80A		LC1 D40A	D80A
LAD 4BB3		\sim 380415 V		LC1 D40AD80A		LC1 D40A	D80A
Total operating time at Uc (of the contactor)			The clo contact	erating times depend on th sing time "C" is measured of the main poles. The ope shed off to the moment the LC1 D09D38,	from the moment ening time "O" is	t the coil supply measured from rate.	
				LC1 DT20DT40			
	With LA4 DFB	"C"	ms	2030	2834		2843
		"O"	ms	1624	2024		1832
Cabling	Phillips n° 2 and Flexible or solid with or without o	cable	mm²	Min: 1 x 1; max: 2 x 2.5			
Tightening torque			N.m	1.7			

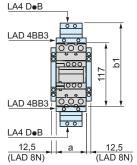
TeSys contactors

TeSys D contactors

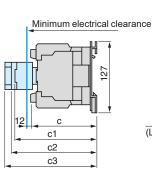
Control circuit: a.c.

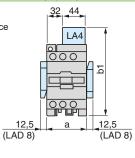


LC	21	D09D18	D093 D123	D099 D129	D25 D38	D183 D323	D098, D128, DT20 and DT25		DT32 and DT40	D188, D258, DT323 and DT403
b	without add-on blocks	77	99	80	85	99	85	99	91	105
b1	with LAD 4BB	94	107	95,5	98	107	98	-	-	-
	with LA4 De2	110 (1)	123 (1)	111.5 ⁽¹⁾	114 ⁽¹⁾	123 ⁽¹⁾	114	-	-	-
	with LA4 DF, DT	119 ⁽¹⁾	132 (1)	120.5 (1)	123 (1)	132 (1)	129	-	-	-
	with LA4 DW, DL	126 (1)	139 (1)	127.5 (1)	130 (1)	139 (1)	190	-	-	-
с	without cover or add-on blocks	84	84	84	90	90	90	90	97	97
	with cover, without add-on blocks	86	86	86	92	92	92	92	99	99
c1	with LAD N or C (2 or 4 contacts)	117	117	117	123	123	123	123	131	131
c2	with LA6 DK10, LAD 6K10	129	129	129	135	135	135	135	143	143
c3	with LAD T, R, S	137	137	137	143	143	143	143	151	151
	with LAD T, R, S and sealing cover	141	141	141	147	147	147	147	155	155


DF565147.eps

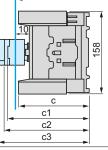
(1) Including LAD 4BB.

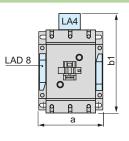

LC1 D40A...D80A (3-pole), LC1 DT60A...DT80A (4-pole)



Contactors

LC1 D80 and D95 (3-pole), LC1 D80004 and D80008 (4-pole), D40008 and D65008 (4-pole)

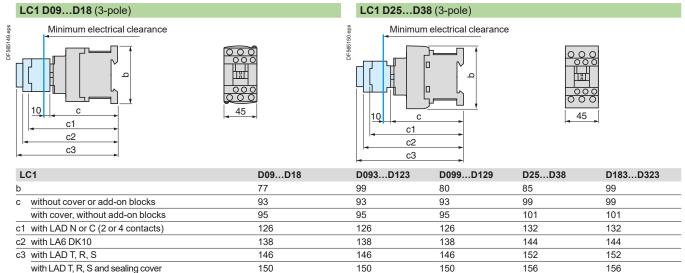



L	C1	D40AD80A	DT60ADT80A	D40008	D80	D95, D65008	D80004	D80008
а		55	70	85	85	85	96	96
b1	with LA4 De2	_	_	135	135	135	135	135
)	with LA4 DB3 or LAD 4BB3	136	-	-	135	-	-	-
	with LA4 DF, DT	157	-	142	142	142	142	142
	with LA4 DM, DW, DL	166	-	150	150	150	150	150
С	without cover or add-on blocks	118	118	125	125	125	125	140
	with cover, without add-on blocks	120	120	-	130	130	-	-
c1	with LAD N (1 contact)	_	-	139	150	150	150	150
	with LAD N or C (2 or 4 contacts)	150	150	147	158	158	158	158
c2	with LAD 6K10 or LA6 DK	163	163	159	170	170	170	170
c3	with LAD T, R, S	171	171	167	178	178	178	178
	with LAD T, R, S and sealing cover	175	175	171	182	182	182	182
1.1	C1 D115 and D150 (3 note) C1 D	115004 (1 po						

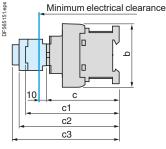
LC1 D115 and D150 (3-pole), LC1 D115004 (4-pole)

L	C1	D115, D150	D115004	D1150046	sd
а		120	150	155	DF569186.eps
b1	with LA4 DA2	174	174	174	DF 569
	with LA4 DF, DT	185	185	185	
	with LA4 DM, DL	188	188	188	-
	with LA4 DW	188	188	188	
с	without cover or add-on blocks	132	132	115	_
	with cover, without add-on blocks	136	-	-	-
c1	with LAD N or C (2 or 4 contacts)	150	150	150	
c2	with LA6 DK20	155	155	155	-
c3	with LAD T, R, S	168	168	168	-
	with LAD T, R, S and sealing cover	172	172	172	_

B8/74


Life Is On Schneider

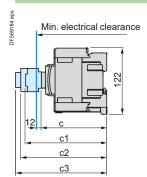
Dimensions - TeSys D

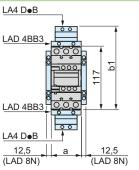

TeSys contactors

TeSys D contactors

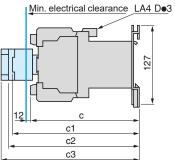
Control circuit: d.c. or low consumption

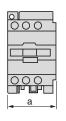
LC1 DT20...DT40 (4-pole)



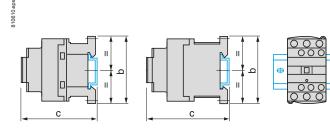


LC1	DT20 and DT25 D098 and D128		53DT32 and DT40B3D188D258	DT323 and DT403 D1883 and D2583
b	85	99	91	105
c with cover	102	102	107	107
c1 with LAD N or C (2 or 4 contacts)	123	123	131	131
c2 with LA6 DK10	135	135	143	143
c3 with LAD T, R, S	143	143	151	151
with LAD T, R, S and sealing cover	147	147	155	155
LC1 D40AD80A (3-pole), LC1 DT60A.	DT80A (4-pole)	LC1 D80 and	D95 (3-pole), LP1	D80004. LP1 D80008 (4-pole).


eps

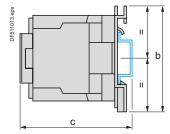

DF510661

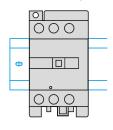
LP1 D40008 and D65008 (4-pole)



Contactors

	LC1 D40A D80A	LC1 DT60ADT80A	LP1 D40008 and D65008	LC1 D80 and D95	LP1 D80004	LP1 D80008
а	55	72	85	85	96	96
b1 with LAD 4BB3	136	136	-	-	-	-
with LA4 DF, DT	157	157	-	-	-	-
c without cover or add-on blocks	118	118	182	181	181	196
with cover, without add-on blocks	120	120	-	186	-	-
c1 with LAD N (1 contact)	-	-	196	204	204	204
with LAD N or C (2 or 4 contacts)	150	150	202	210	210	210
c2 with LA6 DK10	163	163	213	221	221	221
c3 with LAD T, R, S	171	171	221	229	229	229
with LAD T, R, S and sealing cover	175	175	225	233	233	233


LC1 D09...D38, DT20...DT40


On mounting rail AM1 DP200, DR200 or AM1 DE200 (width 35 mm)

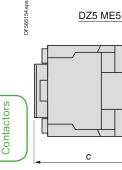
LC1 D40A...D80A, LC1 DT60A and DT80A, LC1 D80 and D95, LC1 D40008 and D65008

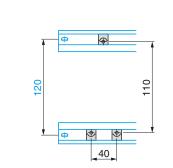
On mounting rail AM1 DL200 or DL201 (width 75 mm) (2) On mounting rail AM1 EDeee or AM1 DE200 (width 35 mm)

С	ontrol circuit: a.c.				
L	C1	D09 D18	D25 D38	DT20 and DT25	DT32 and DT40
b		77	85	85	100
с	(AM1 DP200 or DR200) (1)	88	94	94	109
с	(AM1 DE200) (1)	96	102	102	117

С	Control circuit: d.c.							
L	C1	D09 D18	D25 D38	DT20 and DT25	DT32 and DT40			
b		77	85	94	109			
С	(AM1 DP200 or DR200) (1)	97	103	103	118			
с	(AM1 DE200) (1)	105	110	111	126			
(1)	With safety cover.							

L	C1	D40AD80A DT60ADT80A	D80 and D95	D40008 and D65008
b		122	127	127
с	(AM1 DL200) ⁽¹⁾	-	147	143
с	(AM1 DL201) ⁽¹⁾	-	137	133
с	(AM1 ED or DE200) (1)	128	137	133

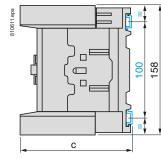

Control circuit: d.c.			
LC1	D40AD80A DT60ADT80A	D80 and D95	D40008 and D65008
c (AM1 DL200) ⁽¹⁾	-	205	200
c (AM1 DL201) ⁽¹⁾	-	195	190
c (AM1 ED or DE200) (1)	128	-	190
(1) With safety cover.			

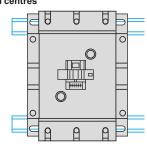

(2) Except for LC1 D40A...D80A, LC1 DT60A and DT80A.

LC1 D80 and D95, LP1 D80

On 2 mounting rails DZ5 MB on 120 mm centres

П

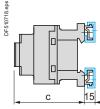


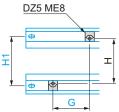

Control circuit: a.c.	
LC1	D80 and D95
c with cover	130
Control circuit: d.c.	
LC1	D80 and D95
c with cover	186
LP1	D80
с	181

LC1 D115, D150

On 2 mounting rails DZ5 MB on 120 mm centres

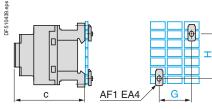
15


Control circuit: a.c. or d.c.						
LC1		D115 and D150	D1156 and D1506			
c (AM1	DP200 or DR200)	134.5	117.5			
c (AM1	DE200 or ED)	142.5	125.5			


Characteristics: pages B8/61 to B8/73

Schneider Gelectric

```
References:
pages B8/2 to B8/5
```


Schemes: pages B8/81 to B8/82

LC1 D09D38 and LC1 DT20DT40
On pro-slotted mounting plate AM1 PA - PB - PC

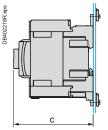
С otted mounting

Control circuit:	a.c		d.c		
LC1	D09D18	D25D38	D09D18	D25D38	
c with cover	86	92	95	101	
G	35	35	35	35	
Н	60/70	60/70	70	70	
LC1	DT20 and DT25	DT32 and DT40	DT20 and DT25	DT32 and DT40	
c with cover	80	93	118	132	
G	35	35	35	35	
Н	60	60	70	70	
LC1 D09D38. LC1	LC1 D09D38, LC1 DT20DT40				

LC1 D09...D18 D25...D38 D09...D18 D25...D38 С with cover 86 92 95 101 G 35 35 35 35 Н 70 60 60 70 H1 70 70 70 70 4-pole contactors LC1 DT20 **DT32** DT20 DT32 and DT40 and DT40 and DT25 and DT25 92 100 101 109 С G 35 35 35 35 Н 60 60 70 70

70

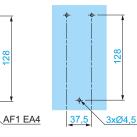
Θ


a.c.

LC1 D40A...D80A, LC1 DT60A...DT80A

70

On pre-slotted mounting plate AM1 PA, PB, PC and panel mounted


6

H1

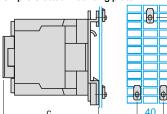
DF511562.eps

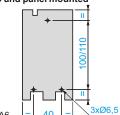
Control circuit:

70

d.c.

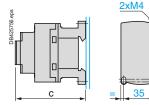
70

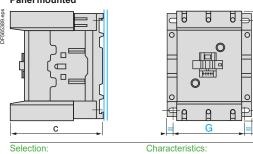

Control circuit:	a.c	d.c.	
LC1	D40AD80A , DT60ADT80A	D40A65A , DT60ADT80A	
c with cover	120	120	


(d)

37,5

LC1 D80 and D95, LC1 D40008 and D65008, LP1 D80


On pre-slotted mounting plate AM1 PA, PB, PC and panel mounted


Panel mounted

Control circuit:	a.c		d.c	
LC1	D09D18	D25D38	D09D18	D25D38
c with cover	86	92	95	101
4-pole contactors	4-pole contactors			
LC1	DT20 and DT25	DT32 and DT40	DT20 and DT25	DT32 and DT40
c with cover	90	98	90	98

LC1 D115, D150

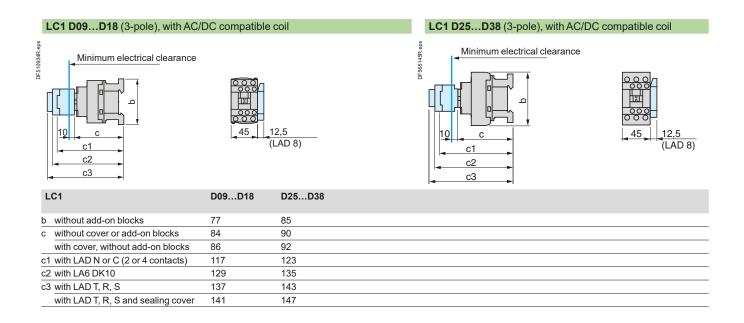
Panel mounted

	U_			
с		40 \AF1 EA6	= 40	=

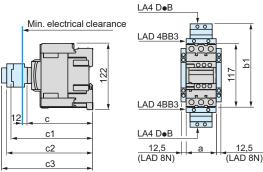
Control circuit: a.c d.c. LC1 D80 and D95, D80 and D95 D40008 and D65008 D40008 and D650	08
c with cover 130 186	
LP1 – – D80	
c without cover – – 181	

110

LC1	D115	D1156	D150	D1506
с	132	115	132	115
G (3-pole)	96/110	96/110	96/110	96/110
G (4-pole)	130/144	130/144	-	-


pages A6/25 to A6/49

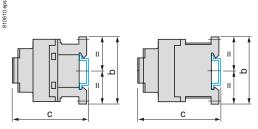
8 158

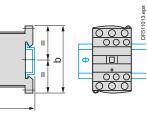

References

pages B8/2 to B8/5

Schemes pages B8/81 to B8/82

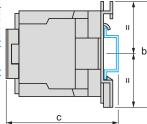
LC1 D40A...D80A (3-pole), LC1 DT60A...DT80A (4-pole), with AC/DC compatible coil

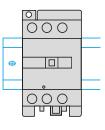

eps DF569184


-			
L	C1	D40AD80A	DT60ADT80A
а		55	70
b1	LAD 4BB3	136	-
	with LAD4DWB	166	-
с	without cover or add-on blocks	118	118
	with cover, without add-on blocks	120	120
c1	with LAD N (1 contact)	-	-
	with LAD N or C (2 or 4 contacts)	150	150
c2	with LAD 6K10	163	163
c3	with LAD T, R, S	171	171
	with LAD T, R, S and sealing cover	175	175

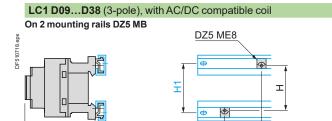
Mounting **TeSys D Green** Contactors with AC/DC coil

LC1 D09...D38 (3-pole), with AC/DC compatible coil


On mounting rail AM1 DP200, DR200 or AM1 DE200 (width 35 mm)



LC1 D40A...D80A (3-pole), LC1 DT60A and DT80A (4-pole), with AC/DC compatible coil


On mounting rail AM1 DL200 or DL201 (width 75 mm)⁽²⁾ On mounting rail AM1 EDeee or AM1 DE200 (width 35 mm)

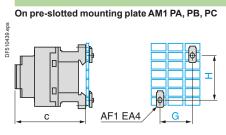
L	C1	D09D18	D25D38	
b		77	85	
с	(AM1 DP200 or DR200)	88	94	
с	(AM1 DE200)	96	102	

LC1	D40AD80A DT60ADT80A
b	122
c (AM1 DL200)	-
c (AM1 DL201)	_
c (AM1 ED ••• or DE200)	128

G

2xM4

Ð ď

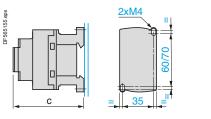

2xØ4,5

LC1	D09D18	D25D38
c with cover	86	92
G	35	35
Н	60	60
H1	70	70

with cover

С

15

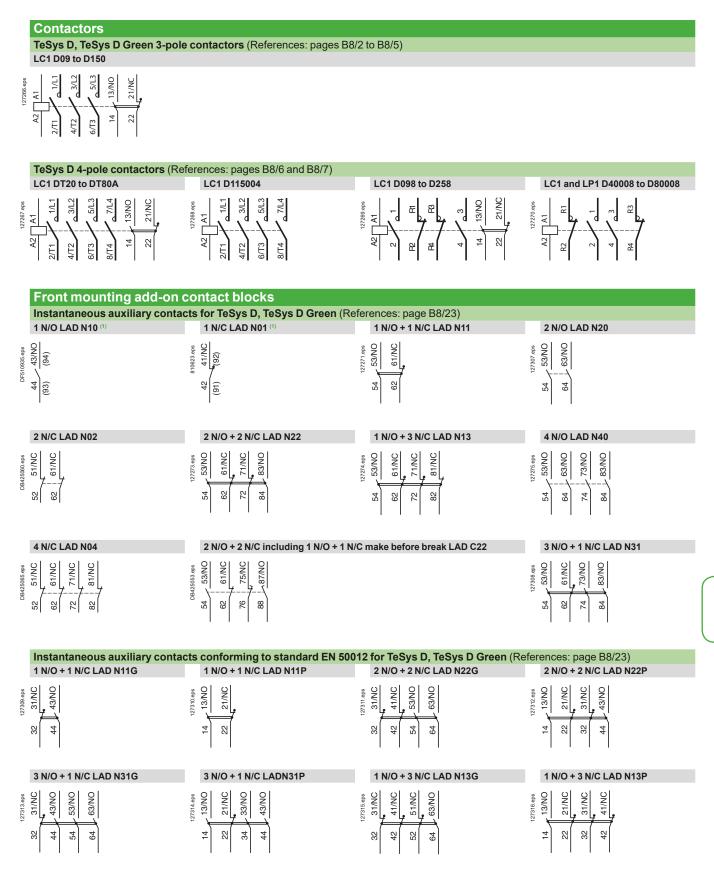

с

LC1 D40AD80A (with AC/DC compati	3-pole) , LC1 DT60A…DT 8 ble coil	30A (4-pole),
On pre-slotted mountin	g plate AM1 PA, PB, PC and	panel mounted
	80 80 37.5 AF1 EA4	₹ 37,5 3xØ6,5
LC1	D40AD80A , DT60ADT80A	

120

LC1	D09D18	D25D38
c with cover	86	92
G	35	35
Н	60/70	60/70

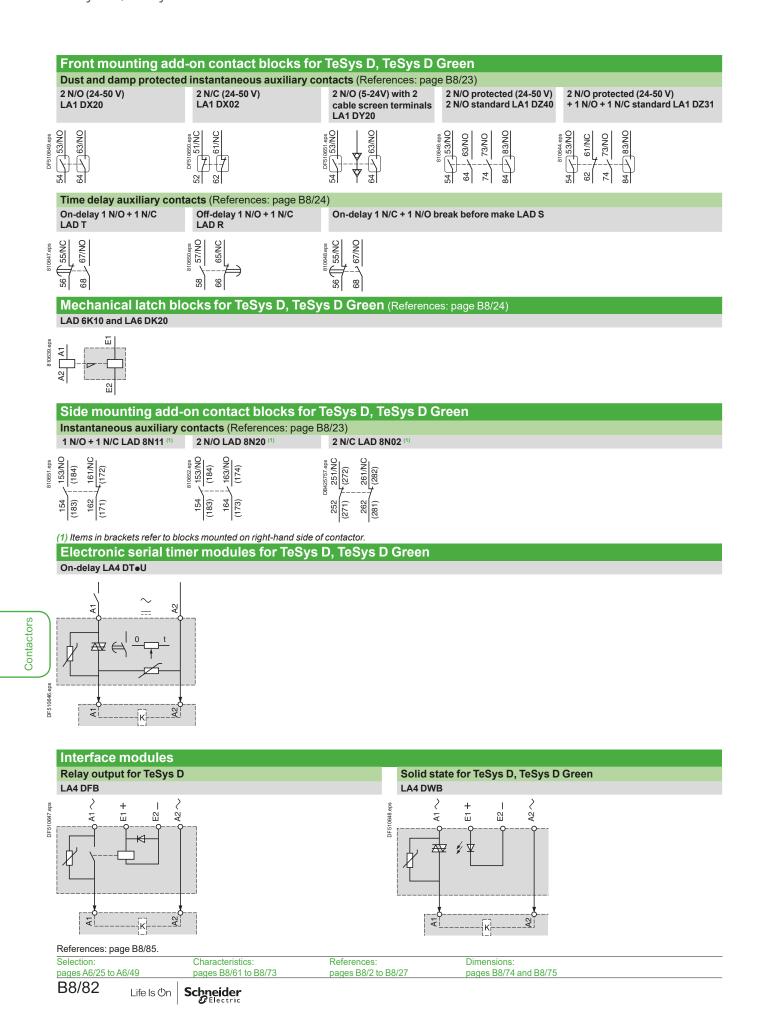
LC1 D09...D38 (3-pole), with AC/DC compatible coil Panel mounted



Contactors

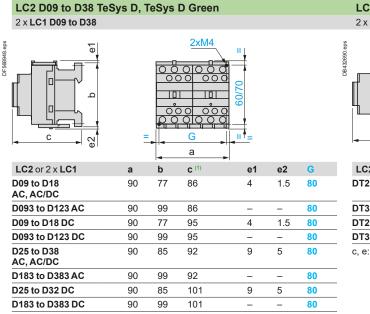
2 Ľ 35

L	C1	D09D18	D25D38
с	with cover	86	92
_			


Schemes - TeSys D, TeSys D Green **TeSys contactors** TeSys D, TeSys D Green contactors

(1) Items in brackets refer to blocks mounted on right-hand side of contactor.

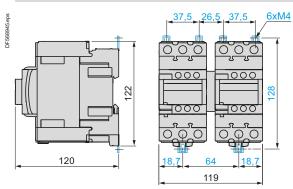
Selection: pages A6/25 to A6/49 References: pages B8/2 to B8/27


Schemes - TeSys D, TeSys D Green **TeSys contactors** TeSys D, TeSys D Green contactors

Dimensions - TeSys D, TeSys D Green

TeSys contactors

TeSys D, TeSys D Green reversing and changeover contactors

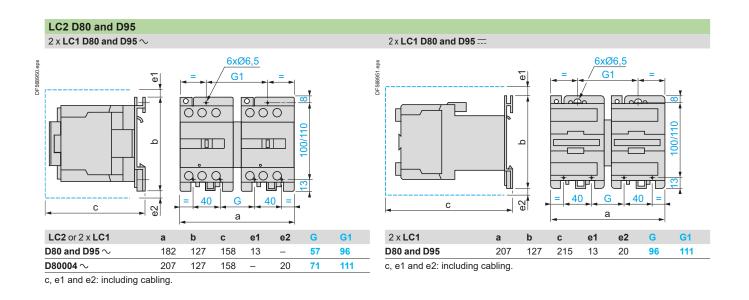

LC2 DT20 to DT4	40 TeSys	D				
2 x LC1 DT20 to DT	40					
	T A A					
LC2 or 2 x LC1	а	b	С	G	e2	
DT20 and DT25 AC	90	85	92	80	20	
DT32 and DT40 AC	90	91	99	80	22	
DT20 and DT25 DC	90	85	102	80	20	
DT32 and DT40 DC	90	91	109	80	22	
a au including achlin	~					

c, e: including cabling.

e1 and e2: including cabling.

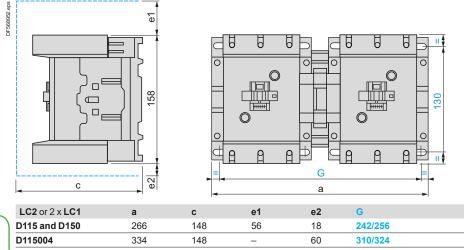
(1) With safety cover, without add-on block.

LC2 D40A to D80A for TeSys D, TeSys D Green 2 x LC1 D40A to D80A



Schemes:

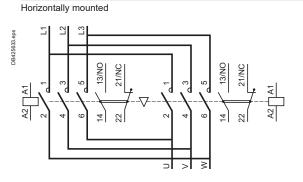
Dimensions - TeSys D


TeSys contactors

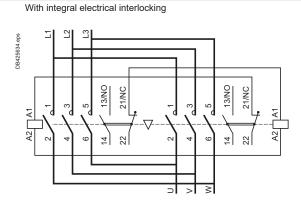
TeSys D reversing and changeover contactors

LC2 D115 and D150

2 x LC1 D115 and D150

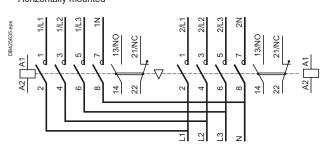


c, e1 and e2: including cabling.

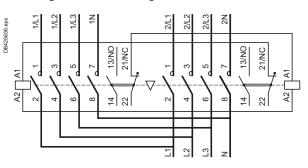

Schneider Electric

Schemes - TeSys D, TeSys D Green **TeSys contactors** TeSys D, TeSys D Green reversing and changeover contactors

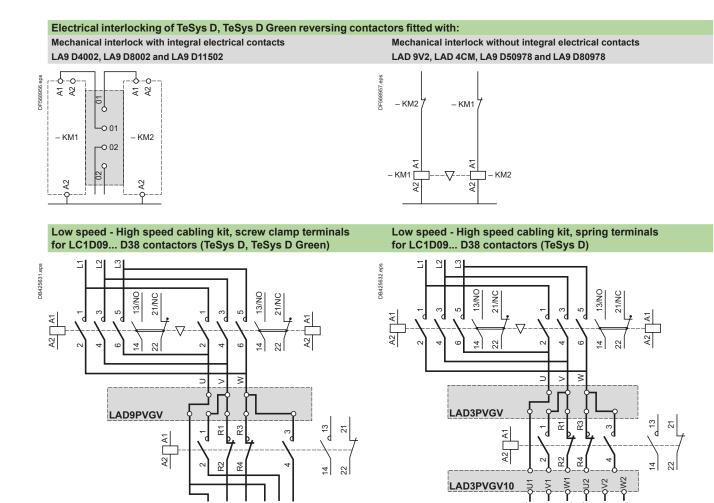
Reversing contactors for motor control LC2 D09...D80A TeSys D , TeSys D Green LC2D80...D150 TeSys D



LAD 9R1V TeSys D, TeSys D Green


Changeover contactor pairs TeSys D LC2 DT20...DT40

Horizontally mounted


LAD T9R1V

With integral electrical interlocking

B8/85

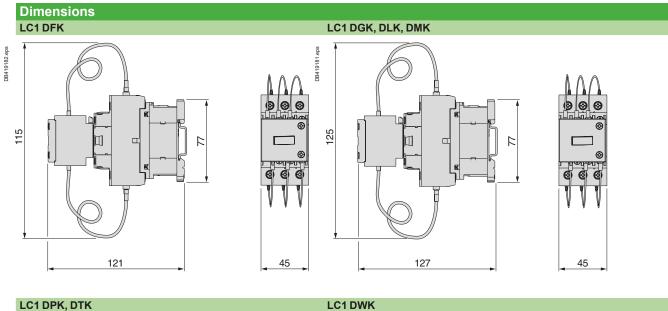
Schemes - TeSys D, TeSys D Green **TeSys contactors** TeSys D, TeSys D Green reversing and changeover contactors

Contactors

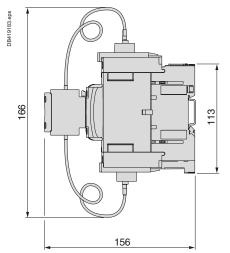
Schneider Belectric

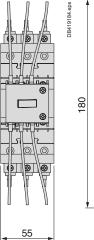
ΡV

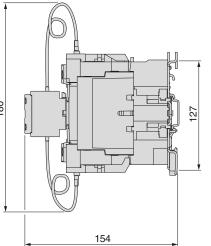
ĞΫ

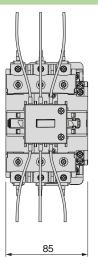

ΡV

ĞΫ

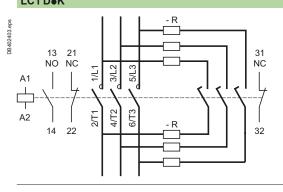

Dimensions, schemes - TeSys D


TeSys contactors


For switching 3-phase capacitor banks, used for power factor correction



LC1 DPK, DTK



Schemes LC1 D•K

R = Pre-wired resistor connections.

Contactors

Characteristics - TeSys SK **TeSys contactors** Mini-contactors TeSys LC1 SK and LP1 SK

Rated insulation voltage	Conforming to 60947	V	690	
Ui)	Conforming to 00947	ľ		
Conforming to standards			IEC/EN 60947-4-1, UL 60947-4-1, CSA C2	22.2 n° 60947-4-1
Approvals			cULus, CCC, EAC, CB certification	
Degree of protection	Conforming to IEC 60529		Protection against direct finger contact IP2	X
Ambient air temperature around the device	Storage	°C	-50+70	
	Operation	°C	-20+50	
Maximum operating altitude	Without derating	m	2000	
Operating position			Vertical axis Horizontal axis	
		DF511520.eps		
			Without derating Without derating	
Cabling, screw clamp terminals			Min	Мах
·	Solid conductor	mm²	1 x 1.5 or 2 x 1.5	1 x 6 or 2 x 4
	Flexible cable without cable end	mm²	1 x 0.5 or 2 x 0.35	1 x 6 or 2 x 2.5
	Flexible cable with cable end	mm²	1 x 0.35 or 2 x 0.35	1 x 6 or 2 x 1.5
Tightening torque	Pozidriv n° 1 head	N.m	0.8	
Terminal referencing			Conforming to standards En 50005	

Characteristics - TeSys SK **TeSys contactors** Mini-contactors TeSys LC1 SK and LP1 SK

Pole characteristics			
Conventional thermal current	For ambient temperature	A	12
(Ith)	≤ 55 °C	^	12
Rated operational frequency		Hz	50/60
Frequency limits of the		Hz	Up to 400
operational current			
Rated operational voltage (Ue)		v	690
Rated making capacity	I rms conforming to IEC 60947-1	A	66
Rated breaking capacity (for Ue ≤ 400 V)	Conforming to IEC 60947-1	A	52
Short time rating	In free air for a time "t" from cold state (θ ≤ 55 °C)	A	50
Short-circuit protection	gl fuse U ≤ 440 V	A	16
Average impedance per pole	At Ith and 50 Hz	mΩ	4
Maximum rated operational cur	rrent		
For a temperature	AC-3 ⁽¹⁾	A	6
≤55 °C	(Ue ≤ 400 V)		
	AC-1	A	12
Utilisation in category AC-1	Increase in operational current	Α	20
resistive circuits, heating, lighting (Ue ≤ 440 V)	by paralleling of poles		
,	naracteristics of add-on	bloc	(S
Rated operational voltage	Up to	V	690
(Ue)	·		
Rated insulation voltage	Conforming to IEC 60947,	v	690
(Ui)	IEC 60947-1		
Conventional thermal current	For ambiant temperature	A	10
(lth)	≤ 55 °C	Î.	
Frequency of operational curre	nt	Hz	Up to 400
Chart circuit protection	Conforming to IEC 60047		40
Short-circuit protection	Conforming to IEC 60947 and IEC 60947-1, gl fuse	A	10

Operational power of contacts conforming to IEC 60947 a.c. supply, category AC-15

Electrical durability (valid up to 3600 operating cycles per hour) on an inductive load such as the coil of an electromagnet: making current (cos ϕ 0.7) = 10 times the breaking current (cos ϕ 0.4).

				110/	220/	380/	
	V	24	48	127	230	400	440
1 million operating cycles	VA	48	96	240	440	800	880
3 million operating cycles	VA	17	34	86	158	288	317
10 million operating cycles	VA	7	14	36	66	120	132
Occasional making capacity	VA	1000	2050	5000	10000	14000	13000

d.c. supply, category DC-13

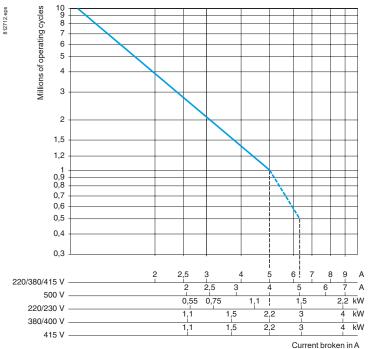
Electrical durability (valid up to 1200 operating cycles per hour) on an inductive load such as the coil of an electromagnet, without economy resistor, the time constant increasing with the load.

	V	24	48	110	220	440	440
1 million operating cycles	w	120	80	60	52	51	880
3 million operating cycles	w	55	38	30	28	26	317
10 million operating cycles	w	15	11	9	8	7	132
Occasional making capacity	w	720	600	400	300	230	13000
(1) For LC1 contactors.							

TeSys contactors Mini-contactors TeSys LC1 SK and LP1 SK

Туре			LC1 SK06	LP1 SK06
Rated control circuit voltage (U	c)	v	\sim 24400	1272
Control voltage limits (q ≤ 50 °C)	For operation		0.851.1 Uc	0.851.1 Uc
	For drop-out		≥ 0.20 Uc	≥ 0.10 Uc
Average coil consumption at 20 °C and at Uc	Inrush		16 VA	2.2 W
	Sealed		4.2 VA	2.2 W
Heat dissipation		w	1.4	2.2
Operating time at 20 °C and at	Uc	-		
Between coil energisation and	opening of the N/C contacts	ms	816	1018
	closing of the N/O contacts	ms	714	812
Between coil de-energisation and	opening of the N/O contacts	ms	68	46
J.	closing of the N/C contacts	ms	810	68
Maximum operating rate	In operating cycles per hour		1200	1200
Mechanical durability at Uc In millions of operating cycles	50/60 Hz coil		10	-
	coil		-	10

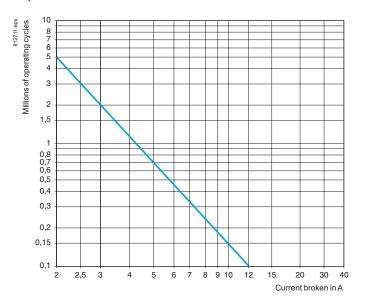
Contactor selection guide according to required electrical durability - TeSys SK


TeSys contactors

Mini-contactors TeSys LC1 SK and LP1 SK

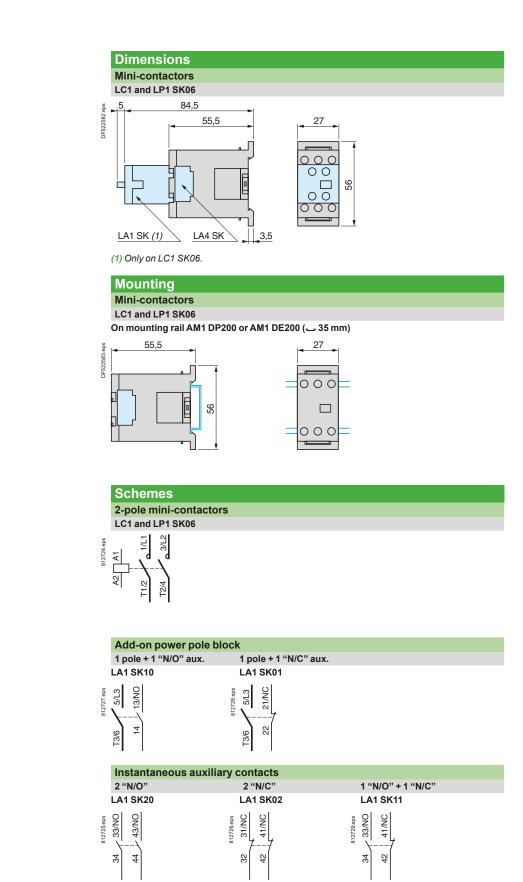
Use in category AC-3 (Ue ≤ 440 V)

Control of 3-phase asynchronous squirrel cage motors with breaking whilst running.


The current broken (Ic) in category AC-3 is equal to the rated operational current (Ie) of the motor.

only up to 415 V

Use in category AC-1 (Ue \leq 440 V)


Control of resistive circuits (cos $\phi \ge 0.95$). The current broken (Ic) in category AC-1 is equal to the current (Ie) normally drawn by the load.

Dimensions, mounting, schemes - TeSys SK

TeSys contactors

Mini-contactors TeSys LC1 SK and LP1 SK

References: pages B8/38 and B8/39

Schneider Gelectric

TeSys contactors

TeSys K contactors and reversing contactors

Conforming to standards			IEC/EN 60947-4-1 IF	C/EN 60947-5-1. UL 6094	7-4-1, CSA C22.2 n° 60947-4-1,			
				2 n° 60947-5-1, GB/T 1404				
Product certifications	LCe and LPe K06 to K12		UL, CSA, CCC, EAC, CB certification					
Operating positions			Vertical axis	Horizontal axis				
		DF511522.eps	Without derating	,	sible positions for LC• K only.			
			Williout derating		ntactor pull-in voltage: 0.85 Uc			
Connection			Min.	Max.	Max. to IEC 60947			
Screw clamp	Solid conductor	mm ²	1 x 1.5	2 x 4	1 x 4 + 1 x 2.5			
terminals	Flexible conductor without cable end	mm²	1 x 0.75	2 x 4	2 x 2.5			
	Flexible conductor with cable end	mm²	1 x 0.34	1 x 1.5 + 1 x 2.5	1 x 1.5 + 1 x 2.5			
Spring terminals	Solid conductor	mm ²	1 x 0.75	1 x 1.5	2 x 1.5			
	Flexible conductor without cable end	mm ²	1 x 0.75	1 x 1.5	2 x 1.5			
Faston connectors	Clip	mm	2 x 2.8 or 1 x 6.35					
Solder pins for printed circuit board			With locating device to Recommended minin track : 4mm x 35 micr		circuits pins length 5 mm yer for power printed circuit boar			
Tightening torque	of screw-clamp terminals only Philips head n° 2 and Ø6	N.m	0.8					
Terminal referencing	Conforming to standards EN 50005 and EN 50012		Up to 5 contacts, dep	ending on model				
Rated insulation voltage	Conforming to IEC 60947-4-1	V	690					
(Ui)	Conforming to CSA 22-2 n° 60947-4-1, UL 60947-4-1	V	600					
Rated impulse withstand voltage	e (Uimp)	kV	8					
Degree of protection	Conforming to IEC 60529		Protection against dir	ect finger contact IP2x				
Ambient air temperature around	Storage	°C	-50+80					
the device	Operation	°C	-25+50 in AC3, -25	+60 in AC1				
Maximum operating altitude	Without derating	m	2000					
Vibration resistance	Contactor open		2 gn					
5 300 Hz	Contactor closed		4 gn					
Flame resistance	according to IEC 60695-2-10	°C	850					
Shock resistance (1/2 sine wave, 11 ms)	Contactor open		On X axis: 6 gn On Y and Z axes: 10 g	gn				
	Contactor closed		On X axis: 10 gn On Y and Z axes: 15 g	מנ				

TeSys contactors

TeSys K contactors and reversing contactors

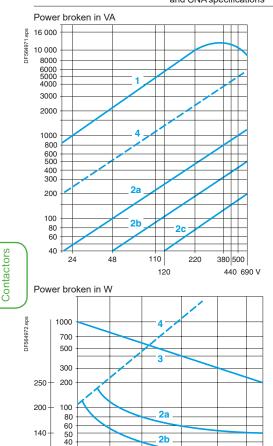
Туре		LC• or LP•		K06	K09	K12		K16		
Conventional thermal current (Ith)	For ambient temp ≤ 60 °C		Α	20 (1)						
		Hz	50/60							
Frequency limits of the operatio	nal current		Hz	Up to 400						
Rated operational voltage (Ue)			v	690						
Rated making capacity	I rms conforming IEC 60947	0	A	110	110	144		160		
Rated breaking capacity	I rms conforming	220/230 V	Α	110	110	-		-		
	to IEC 60947	380/400 V	Α	110	110	-		-		
		415 V	Α	110	110	-		-		
		440 V	Α	110	110	110		110		
		500 V	Α	80	80	80		80		
		660/690 V	Α	70	70	70		70		
time rating time	In free air for a	1 s	Α	90	90	115		115		
	time "t" from cold	5 s	Α	85	85	105		105		
	state (θ ≤ 50 °C)	10 s	Α	80	80	100		100		
		30 s	A	60	60	75		75		
		1 min	Α	45	45	55		55		
		3 min	Α	40	40	50		50		
		≥ 15 min	Α	20	20	25		25		
Short-circuit protection	gG fuse U ≤ 440 V (aM fuse, see page 22009/2)		A	25						
Average impedance per pole	At Ith and 50 Hz	,	mΩ	3						
Jse in category AC-1 Maximum	Maximum rated o current for a tempe		A	20						
ighting (Ue ≤ 440 V)	Maximum rated operational current for a temperature ≤ 70 °C		Α	16 for Ue only						
	Rated operational	current limits		On-load facto	or		90 %	60 %	30 %	
	in relation to the o		Α	300 operating	g cycles/hour		13	15	18	
	and operating free	quency	Α	120 operating cycles/hour1518				18	19	
			Α	30 operating cycles/hour 19 20					20	
	Increase in rated current by paralle				Apply the following coefficients to the above currents; these coefficients take ir account an often unbalanced distribution of current between the poles					
	2.			2 poles in parallel: K = 1.60						
					rallel: K = 2.25					
					rallel: K = 2.80					
Use in category AC-3	Operational	115 V single-ph.	kW	0.37	0.55	-		-		
squirrel cage motors	power according	220 V single-ph.		0.75	1.1	-		-		
	to the voltage.	220/230 V 3-ph.		1.5	2.2	3		4		
	Voltage 50 or 60 Hz	380/415 V 3-ph.		2.2	4	5.5		7.5		
	00 T IZ	440/480 V 3-ph.		3	4	5.5/4 (480)		5.5/4 (48	30)	
		500/600 V 3-ph.		3	4	4		4		
		660/690 V 3-ph.		3	4	4		4		
	Maximum operati	ng rate		Op. cycles/h		1	600	900	1200	
(in operating cycles/hour in relation to % of rated power)				Power			100 %	75 %	50 %	

Schneider Gelectric

TeSys contactors

TeSys K contactors and reversing contactors

Туре			LC1	LC2	LC7	LC8	LP1	LP2	LP4	LP5	
Rated control circuit voltage (Uc)		v	~ 126	\sim 12690 ⁽¹⁾		\sim 24240 ⁽¹⁾		12250 ⁽¹⁾		12120	
Control voltage limits (≤ 50 °C) single voltage coil	Operation		0.81.1	5 Uc ⁽²⁾	0.851.1 Uc		0.81.	15 Uc	0.71	.30 Uc	
	Drop-out		≥ 0.20 U	≥0.20 Uc		Jc	≥0.10 L	Jc	≥0.10	Uc	
Average consumption at 20 °C and at Uc	Inrush		30 VA		3 VA	3 VA			1.8 W		
	Sealed		4.5 VA	4.5 VA		3 VA			1.8 W		
Heat dissipation		w	1.3		3		3		1.8		
Operating time at 20 °C and at Uc											
Between coil energisation and:	- opening of the N/C contacts	ms	515		2535		2535		2535	5	
	- closing of the N/O contacts	ms	1020		3040		3040		3040		
Between coil de-energisation and:	- opening of the N/O contacts	ms	1020		30		10		1020		
	- closing of the N/C contacts	ms	1525		40		15		1525	5	
Maximum immunity to microbreaks		ms	2		2		2		2		
Maximum operating rate	In operating cycles per hour		3600		3600		3600		3600		
Mechanical durability at Uc In millions of operating cycles	50/60 Hz coil		10	5	10	5	-	-	-	-	
	coil		-	-	-	-	10	5	-	-	
	Wide range coil, Low consumption		-	-	-	-	-	-	30	5	


(1) For mains supplies with a high level of interference (voltage surge > 800 V), use a suppressor module LA4 KE1FC (50...129 V) or LA4 KE1UG (130...250 V), see page B8/50.
 (2) LC1K12, LC1K16...: 0.85...1.15 Uc.

TeSys contactors

TeSys K contactors and reversing contactors

Auxiliary contact characteristics of contactors and instantaneous contact blocks

Number of auxiliary contacts	On LC• K or LP• K	3-pole		1
	On LA1 K			2 or 4
Rated operational voltage (Ue)	Up to		v	690
Rated insulation voltage (Ui)	Conforming to IEC	60947	v	690
		Conforming to UL 60947-5-1, CSA C22.2 n° 60947-5-1		600
Conventional thermal current (Ith)	For ambient temperature ≤ 50 °C		A	10
Frequency of the operational current			Hz	Up to 400
Minimum switching			v	17
capacity			mA	5
Short-circuit protection	Conforming to IEC fuse	60947, gG	A	10
Rated making capacity	Conforming to IEC 60947	l rms	A	110
Short-time rating	Permissible for	1 s	A	80
		500 ms	Α	90
		100 ms	Α	110
Insulation resistance			MΩ	> 10
Non-overlap distance	lap distance LA1 K: linked contacts conforming to INRS, BIA and CNA specifications		mm	0.5 (see schemes pages B8/98 and B8/100)

Operational power of contacts conforming to IEC 60947 a.c. supply, category AC-15

Electrical durability (valid for up to 3600 operating cycles/hour) on an inductive load such as the coil of an electromagnet: making current (cos φ 0.7) = 10 times the power broken ($\cos \phi 0.4$).

Operating cycles	v	24	48	110/ 127	220/ 230	380/ 400	440	600/ 690
1 million operating cycles	VA	48	96	240	440	800	880	1200
3 million operating cycles	VA	17	34	86	158	288	317	500
10 million operating cycles	VA	7	14	36	66	120	132	200
Occasional making capacity	VA	1000	2050	5000	10000	14000	13000	9000

d.c. supply, category DC-13

Electrical durability (valid for up to 1200 operating cycles/hour) on an inductive load such as the coil of an electromagnet, without economy resistor, the time constant increasing with the load.

Operating cycles

	V	24	48	110	220	440	600
1 million operating cycles	w	120	80	60	52	51	50
3 million operating cycles	W	55	38	30	28	26	25
10 million operating cycles	W	15	11	9	8	7	6
Occasional making capacity	W	720	600	400	300	230	200

1. Breaking limit of contacts valid for:

maximum of 50 operating cycles at 10 s intervals (power broken = making current x cos φ 0.7).

- 2. Electrical durability of contacts for:
- 1 million operating cycles (2a)
- 3 million operating cycles (2b)
- 10 million operating cycles (2c).
- 3. Breaking limit of contacts valid for:
- maximum of 20 operating cycles at 10 s intervals with current passing for 0.5 s per operating cycle.
- 4. Thermal limit.

24

100

20-

30

20

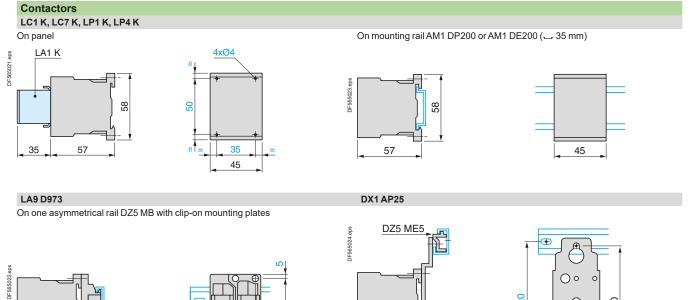
10 50

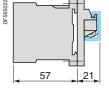
8 6

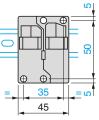
12

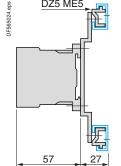
pages B8/97 and B8/99

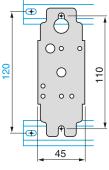
220

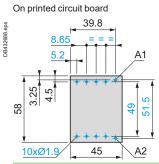

440 600 V

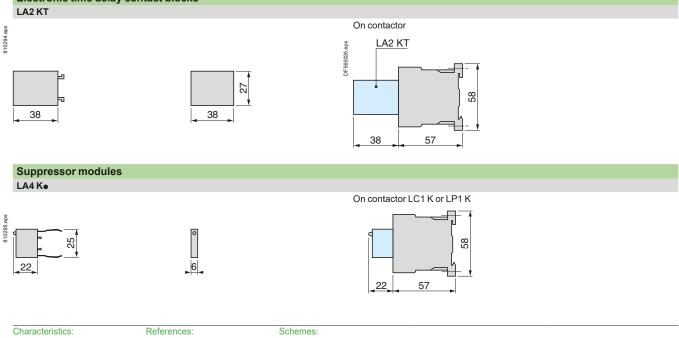

2c

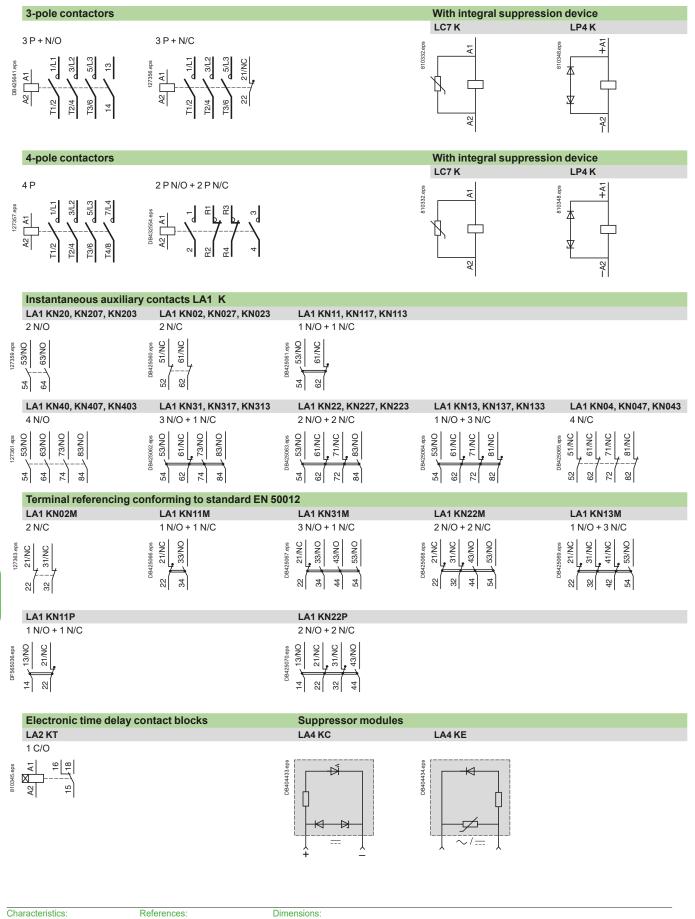

110


48


Dimensions, mounting - TeSys K **TeSys contactors** TeSys K contactors







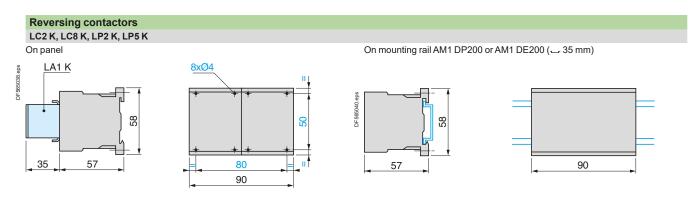
Electronic time delay contact blocks

page B8/98

Contactors

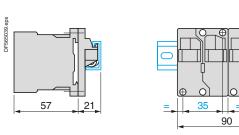
pages B8/93 to B8/96

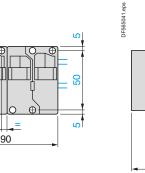
Life Is On

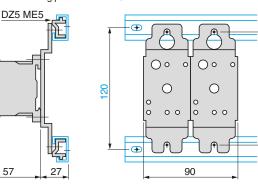

B8/98

pages B8/40 to B8/43

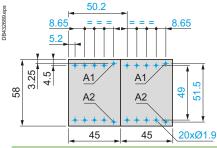
Schneider Belectric page B8/97

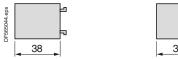

Dimensions, mounting - TeSys K **TeSys contactors**


TeSys K reversing contactors



2 x LA9 D973

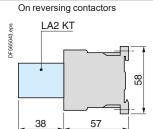

2 x DX1 AP25 On one asymmetrical mounting rail DZ5 MB with 2 clip-on mounting plates LA9 D973 or on 2 mounting plates DX1 AP25.



On printed circuit board for reversing contactors or 2 contactors mounted side by side.

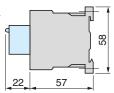
Electronic time delay contact blocks LA2 KT

Suppressor modules


S

LA4 Ke

DF565045

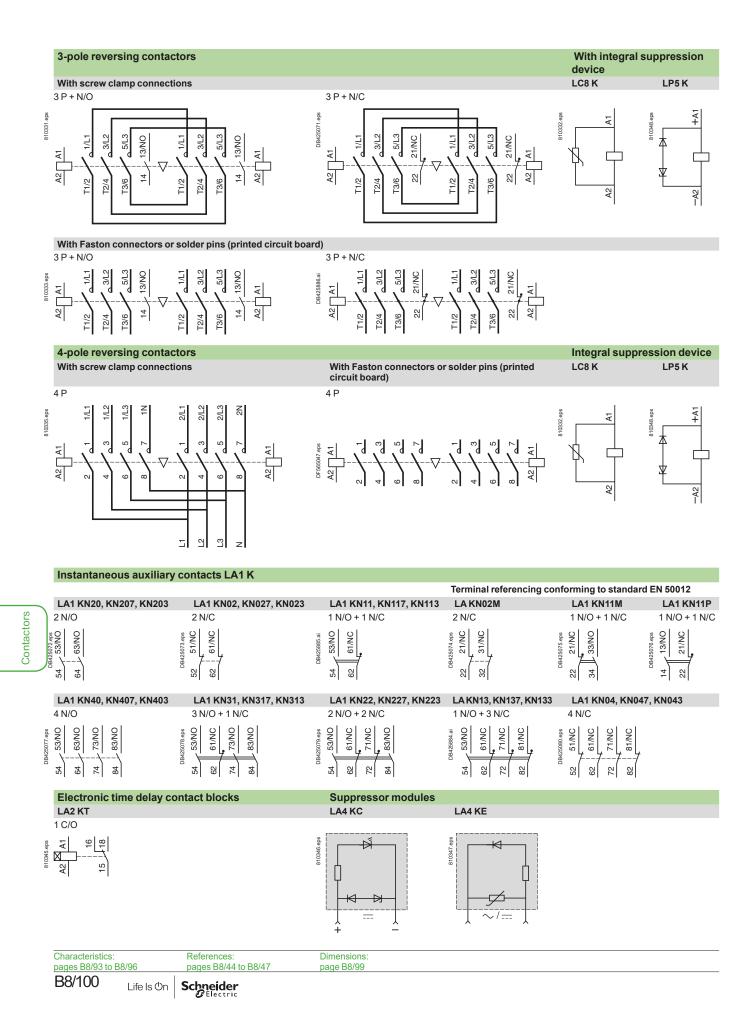

22

57

On reversing contactors LC2 K or LP2 K

Contactors

2


Characteristics: pages B8/93 to B8/96 6

Schemes: page B8/100

SOS JF565046

> B8/99 Life Is On Schneider

Schemes - TeSys K **TeSys contactors** TeSys K reversing contactors

Characteristics - TeSys SKGC **TeSys contactors** Mini-contactors TeSys LC1SKGC, for use in modular panels

Rated insulation	Conforming to IEC 60947	V	690	
voltage (Ui)		ľ		
Conforming to standards			IEC 60947, UL 60947-4-1, CSA C22.2 n° 6	60947-4-1
Approvals			cULus	
Degree of protection	Conforming to IEC 60529		Protection against direct finger contact	
Ambient air temperature aroun	d the device			
	Storage	°C	-50+70	
	Operation	°C	-20+50	
Maximum operating altitude	Without derating	m	2000	
Operating position			Vertical axis Horizontal axis	
		DF532749.eps	22°.5 22°.5	
			Without derating Without derating	3
Cabling, connectors			Min.	Max.
	Solid conductor	mm ²	1 x 1.5 or 2 x 1.5	1 x 6 or 2 x 4
	Flexible cable without cable end	mm ²	1 x 0.5 or 2 x 0.35	1 x 6 or 2 x 2.5
	Flexible cable with cable end	mm ²	1 x 0.35 or 2 x 0.35	1 x 6 or 2 x 1.5
Tightening torque	Pozidriv n° 1 head	N.m	0.8	
Terminal referencing			Conforming to standards EN 50005	

TeSys contactors Mini-contactors TeSys LC1SKGC, for use in modular panels

Mini-contactor type			LC1 SKGC2	LC1 SKGC3 and LC1 SKGC4		
Conventional thermal current (Ith)	For ambient temperature ≤55 °C	A	20	20		
Rated operational frequen	су	Hz	50/60			
Frequency limit of the oper	Hz	up to 400				
Rated operational voltage (Ue)		V	690			
Rated making capacity	I rms conforming to IEC 60947	Α	50	85		
Rated breaking capacity (for Ue ≤ 400 V)	Conforming to IEC 60947 (I rms)	Α	40	68		
Permissible short time rating	In free air for a time "t" from cold state (θ ≤ 55 °C)	Α	40	60		
Short-circuit protection	gl fuse U ≤ 440 V	A	20	20		
Average impedance per pole	At Ith and 50 Hz	mΩ	4	4		
Maximum rated operational current	For temperature AC-3 ≤55 °C (Ue ≤ 400 V)	A	5	9		
	AC-1	A	20	20		
Use in category AC-1 resistive circuits, heating, lighting (Ue ≤ 440 V)	Increase in rated operational current by paralleling of 2 poles	A	32	32		
Auxiliary contact	t characteristics of m	ini-c	ontactors			
Rated operational voltage (Ue)		v	690			
Rated insulation voltage (Ui)	Conforming to IEC 60947	V	690			
Conventional thermal current (Ith)	For ambient temperature ≤ 55 °C	Α	10			
Frequency of the operatior	nal current	Hz	Up to 400			
Short-circuit protection	Conforming to IEC 60947, gl fuse	A	10			

Operational power of contacts conforming to IEC 60947

a.c. supply, category AC-15

Electrical durability (valid for up to 3600 operating cycles/hour) on an inductive load such as the coil of an electromagnet: making current (cos φ 0.7) = 10 times the power broken (cos ϕ 0.4).

	v	24	48	110/ 127	220/ 230	380/ 400	440
1 million operating cycles	VA	48	96	240	440	800	880
3 million operating cycles	VA	17	34	86	158	288	317
10 million operating cycles	VA	7	14	36	66	120	132
Occasional making capacity	VA	1000	2050	5000	10000	14000	13000

d.c. supply, category DC-13

Electrical durability (valid for up to 1200 operating cycles/hour) on an inductive load such as the coil of an electromagnet, without economy resistor, the time constant increasing with the load.

	v	24	48	110	220	440	440
1 million operating cycles	w	120	80	60	52	51	880
3 million operating cycles	W	55	38	30	28	26	317
10 million operating cycles	w	15	11	9	8	7	132
Occasional making capacity	W	720	600	400	300	230	13000

References: pages B8/52 and B8/53 B8/102 Schneider Belectric Life Is On

Dimensions, schemes: page B8/105

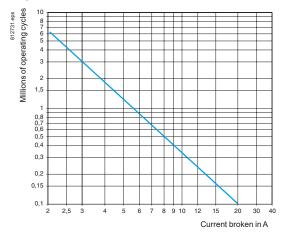
TeSys contactors Mini-contactors TeSys LC1SKGC, for use in modular panels

Cor	ntrol circuit ch	aractoristics						
	contactor type			LC1 SKGC2	LC1 SKGC3 and LC1 SKGC4			
Rated	control circuit voltage	(Uc)	v	~24400				
	ol voltage limits							
(θ≤55	5 °C)	Operation		0.851.1 Uc				
		For drop-out		≥0.20 Uc				
Avera	ge coil consumption a	t 20 °C and at Uc						
		Inrush	VA	16	23			
		Sealed	VA	4.2	4.9			
Heat d	lissipation		w	1.4	1.5			
Opera	ting time at 20 °C and	at Uc			1			
	Between coil	opening of the N/C contacts	ms	816				
	energisation and	closing of the N/O contacts	ms	714				
	Between coil	opening of the N/O contacts	ms	68				
	de-energisation and	closing of the N/C contacts	ms	810				
Maxim	um operating rate	In operating cycles per hour		1200				
	anical durability at Uc ons of operating	50/60 Hz coil		10				

Contactor selection according to required electrical durability - TeSys SKGC **TeSys contactors**

Mini-contactors TeSys LC1SKGC, for use in modular panels

the motor. Millions of operating cycles 10 9 812732.eps 4 З 2 2 1,5 1.2 1 0,9 0,8 0,7 0,6 0,5 0,4 0,3 2,5 220/380/415 V 500 V 0,55 0,75 220/230 V 1,1 kW 380/400 V kΝ 415 V Current broken in A 1. LC1 SKGC2 2. LC1 SKGC3 and SKGC4

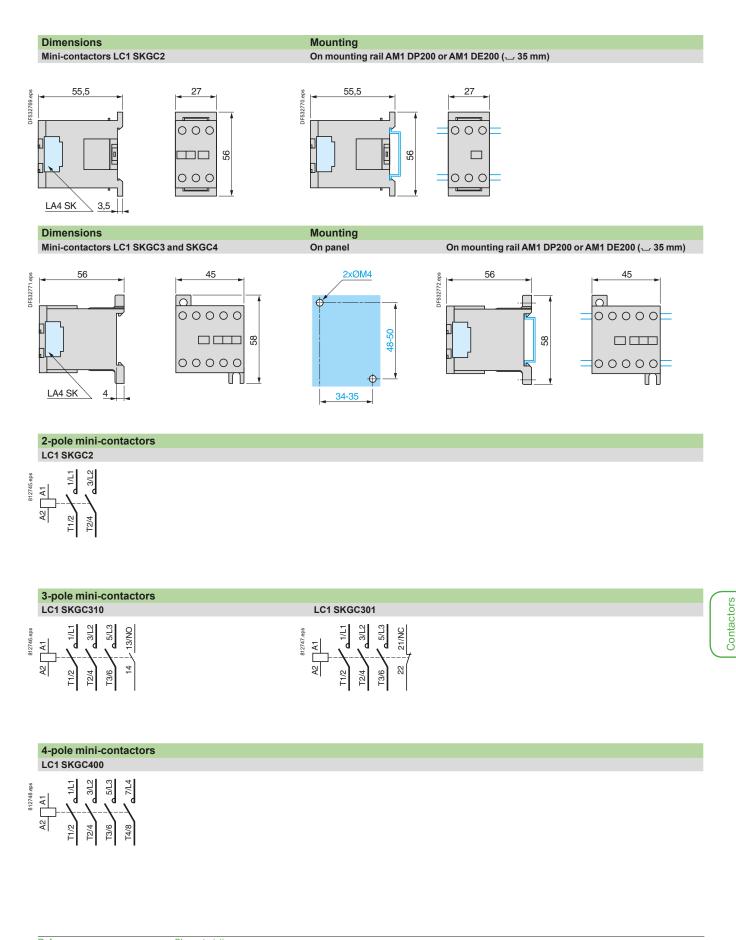

Use in category AC-3 (Ue ≤ 440 V)

Control of 3-phase asynchronous squirrel cage motors with breaking whilst running. The current broken (Ic) in category AC-3 is equal to the rated operational current of

---- only up to 415 V

Use in category AC-1 (Ue \leq 440 V)

Control of resistive circuits ($\cos \phi \ge 0.95$). The current broken (Ic) in category AC-1 is equal to the current (Ie) normally drawn by the load.



Dimensions, schemes:

Dimensions, mounting, schemes - TeSys SKGC

TeSys contactors

Mini-contactors TeSys LC1SKGC, for use in modular panels

Presentation, standards - TeSys GC

Modular equipment Standard contactors TeSys GC

Presentation

TeSys GC contactors are designed for use in modular panels and enclosures. These contactors feature:

Easy installation:

□quick clip-on fixing and locking onto 35 mm omega rail

□easy connection by means of ready-to-tighten, captive, pozidrive screw terminals.

Compact size:

All units have a common depth of 60 mm and width in modules of 17.5 mm (width of one module: 17.5 mm).

■ User safety:

□use of materials conforming to strictest fire safety standards □live parts protected against direct finger contact

□completely safe operation □state indication on front panel.

Standards

This range of modular contactors has been designed taking into account the requirements of international standard IEC 61095.

This standard is specific to "Electromagnetic contactors for domestic and similar use"

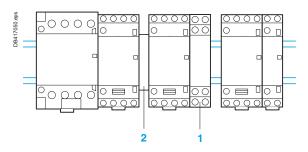
It has very strict requirements, meeting the expectations of users, with regard to the safety of equipment and persons in "premises and areas accessible to the public". Conformity with this standard makes it possible to obtain the following quality labels without the need for additional tests: NF-USE, VDE, CEBEC, etc.

Applications

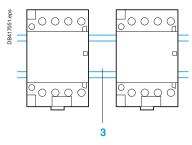
TeSys GC modular contactors are designed for switching all single-phase, 3-phase or 4-phase loads up to 100 A.

Power switching

These contactors have multiple applications in industrial, agricultural and commercial premises, hospitals and the home, i.e. wherever switching of a specific supply is required:


- lighting
- heating
- ventilation
- motorised shutters or gates.

Schneider

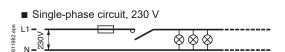

Setting-up precautions - TeSys GC Modular equipment Standard contactors TeSys GC

Setting-up precautions

The contactor controls must be bounce free. If not, connect a coil suppression block 1 (GAP 21 or 23) across the coil terminals y 250 V. When several contactors which operate at the same time are mounted side by side, a GAC 5 ventilation 1/2 module 2 must be fitted every 2 contactors.

It is advisable to mount electronic units at the bottom of the modular panel and to separate them from electromechanical units by a space 3 equal to one module, or by 2 ventilation 1/2 modules (GAC 5).

Derating of contactors mounted in a modular enclosure if the temperature within the enclosure is > 40 $^\circ\text{C}.$

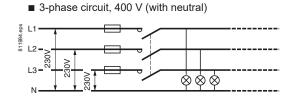

Contactor rating	40 °C	50 °C	60 °C (1)
16 A	16 A	14 A	13 A
25 A	25 A	22 A	20 A
40 A	40 A	36 A	32 A
63 A	63 A	57 A	50 A
100 A	100 A	87 A	80 A

(1) Ventilation 1/2 module must be fitted.

Contactor selection for lighting circuits - TeSys GC

Modular equipment

Modular contactors



Lighting (Maximum number of lamps depending on the power of each unit) Presentation of installations according to type of supply

The maximum number of lamps which can be operated per phase is equal to the number of lamps in the "single phase 230 V" table divided by $\sqrt{3}$.

The maximum number of lamps which can be operated per phase is equal to the total number of lamps in the "single-phase 230 V" table.

Contactor

Contactor rating for a single-phase 230 V circuit (single-pole)

Fluoresc	ent laı	nps w	ith st	arter							
Single fitting	Non c	orrect	ed			With	paralle		Contactor rating		
P (W)	20	40	50	80	110	20	40	58	80	110	-
I _B (A)	0.39	0.43	0.70	0.80	1.2	0.19	0.29	0.46	0.57	0.79	-
C (µF)	-	-	-	-	-	5	5	7	7	16	-
Maximum	22	20	13	10	7	15	15	10	10	5	16 A
number	30	28	17	15	10	20	20	15	15	7	25 A
of lamps	70	60	35	30	20	40	40	30	30	14	40 A
	100	90	56	48	32	60	60	43	43	20	63 A
Twin fitting	Non c	orrect	ed			With	series	correc	ction		Contactor rating
fitting P (W)				2 x 80	2 x 140					2 x 140	
fitting				2 x 80 1.64	2 x 140 2.2					2 x 140 1.3	rating
fitting P (W)	2 x 18	2 x 36	2 x 58			2 x 18	2 x 36	2 x 58	2 x 80		rating -
fitting P (W) I _B (A)	2 x 18 0.44	2 x 36 0.82	2 x 58	1.64		2 x 18 0.26	2 x 36 0.48	2 x 58 0.78	2 x 80 0.96	1.3	rating -
fitting P (W) I _B (A) C (μF) Maximum number	2 x 18 0.44 -	2 x 36 0.82 -	2 x 58 1.34 -	1.64 -	2.2	2 x 18 0.26 3.5	2 x 36 0.48 4.5	2 x 58 0.78 7	2 x 80 0.96 9	1.3 18	rating
fitting P (W) I _B (A) C (μF) Maximum	2 x 18 0.44 - 20	2 x 36 0.82 - 11	2 x 58 1.34 - 7	1.64 - 5	2.2 - 4	2 x 18 0.26 3.5 30	2 x 36 0.48 4.5 17	2 x 58 0.78 7 10	2 x 80 0.96 9 9	1.3 18 6	rating
fittingP (W) I_{B} (A)C (μ F)Maximumnumber	2 x 18 0.44 - 20 30	2 x 36 0.82 - 11 16	2 x 58 1.34 - 7 10	1.64 	2.2 - 4 6	2 x 18 0.26 3.5 30 46	2 x 36 0.48 4.5 17 25	2 x 58 0.78 7 10 16	2 x 80 0.96 9 9 13	1.3 18 6 10	rating - - 16 A 25 A

Non corrected With parallel correction

				-				P						rating
P (W)	50	80	125	250	400	700	50	80	125	250	400	700	1000	-
I _B (A)	0.6	0.8	1.15	2.15	3.25	5.4	0.35	0.50	0.7	1.5	2.4	4	5.7	-
C (µF)	-	-	-	-	-	-	7	8	10	18	25	40	60	-
Maximum	15	10	8	4	2	1	10	9	9	4	3	2	-	16 A
number	20	15	10	6	4	2	15	13	10	6	4	2	1	25 A
of lamps	34	27	20	10	6	4	28	25	20	11	8	5	3	40 A
	53	40	28	15	10	6	43	38	30	17	12	7	5	63 A

I_g: value of current drawn by each lamp at its rated voltage. **C**: unit capacitance for each lamp.

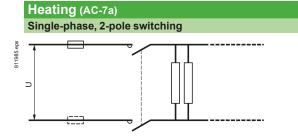
 $I_{_{B}}$ and C correspond to values normally quoted by lamp manufacturers

Characteristics: pages B8/112 and B8/113 References page B8/54 B8/108 Schneider Belectric Life Is On

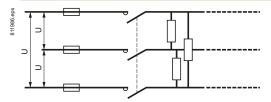
Contactor selection for lighting circuits - TeSys GC

Modular equipment

Modular contactors


Low press			ued) n van		amne									
Low press			ected	ouri	amps	•	With	nar		orro	ction			Contact
	NON	corre	ctea				vvitn	para	anero	orre	cuon			rating
⊃(W)	18	35	55	90	135	180	18	35	55	90	135	180		-
_в (А)	0.35	1.4	1.4	2.1	3.1	3.1	0.35	0.6	0.6	0.9	0.9	0.9		-
C (µF)	-	-	-	-	-	-	5	20	20	26	45	40		-
Maximum	18	4	5	3	2	2	14	3	3	2	1	1		16 A
number	34	9	9	6	4	4	21	5	5	4	2	2		25 A
of lamps	57	14	14	9	6	6	40	10	10	8	4	5		40 A
	91	24	24	19	10	10	60	15	15	11	6	7		63 A
High pres	sure s	odiu	m vaj	oour	lamp	s								
	Non	corre	ected				With	para	allel c	orre	ction			Contact rating
P (W)	70	150	250	400	1000)	70	150	250	400	1000)		-
(VV) _R (A)	1	1.8	3	4.4	10.3		0.6	0.7	1.5	2.5	6	•		-
_Β (/() C (μF)	-	-			-		12	20	32	45	100			_
Vaximum	8	4	2	1	_		6	6	2	2	100			_ 16 A
number	0 12	7	4	3	1		9	9	2	4	2			25 A
oflamps	20	13	8	5	2		9 18	9 18	5 6	8	4			25 A 40 A
	32	18	0 11	8	2		25	25	9	12	6			40 A 63 A
Madelliseli				-	-		20	25	9	12	0			63 A
Metal iodi				apou	riam	ps	14/:46							Contract
	NON	corre	ected				with	para	allei c	orre	ction			Contact rating
⊃(W)	35	70	150	250	400	1000	39	70	150	250	400	100	0 2000	-
_в (А)	0.3	0.5	1	1.5	2.5	6	0.3	0.5	1	1.5	2.5	6	5.5	-
C (µF)	-	-	-	-	-	-	6	12	20	32	45	85	60	-
Maximum	27	16	8	5	3	1	12	6	4	3	2	-	1	16 A
number	40	24	12	8	5	2	18	9	6	4	3	1	2	25 A
of lamps	68	42	20	14	8	4	31	16	10	7	5	3	3	40 A
	106	64	32	21	13	5	50	25	15	10	7	4	5	63 A
Incandeso	ent ar	nd ha	loge	n Iam	ps									
														Contact rating
P (W)	60	75	100	150	200	300	500	100	0					-
_в (А)	0.26	0.32	0.44	0.65	0.87	1.3	2.17	4.4						-
Maximum	30	25	19	12	10	7	4	2						16 A
number	45	38	28	18	14	10	6	3						25 A
of lamps	85	70	50	35	26	18	10	6						40 A
	125	100	73	50	37	25	15	8						63 A
Halogen la	amps	used	with	trans	form	er					_			
														Contact rating
P (W)	60	80	105	150										-
_в (А)	0.26	0.35	0.45	0.65										-
/aximum	9	8	6	4										16 A
oflamps	14	12	9	6										25 A
	27	23	18	13										40 A
	40	35	27	19										63 A

 $I_{\rm B}$ value of carbon of each lamp. The rest of the voltage. C: unit capacitance for each lamp. $I_{\rm B}$ and C correspond to values normally quoted by lamp manufacturers


Contactor selection for heating circuits - TeSys GC

Modular equipment

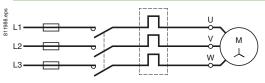
Modular contactors

3-phase switching

Heating by resistive elements or by infra-red radiators, convectors or radiators, heating ducts, industrial furnaces. The current peak between the hot and cold states must not exceed 2 to 3 In at the moment of switch-on.

Electrical durability	Maximur	cording to power and required electrical life Maximum power (kW)						
(in operating cycles)	100 x 10 ³	150 x 10 ³	200 x 10 ³	500 x 10 ³	10 ⁶	rating		
Single-phase switching	3.5	3	2.2	1	0.8	16 A		
230 V	5.4	4.6	3.5	1.6	1.2	25 A		
(2-pole)	8.6	7.4	5.6	2.6	1.9	40 A		
	13.6	11.6	8.8	4	3	63 A		
	21.6	18.4	14	6.4	4.8	100 A		
3-phase switching	10	9	6.5	3.2	2.2	16 A		
400 V	16	14	10	5	3.5	25 A		
(3-pole)	26	22	17	7.5	6	40 A		
	41	35	26.5	12	9	63 A		
	64.8	55.2	42	19.2	14.4	100 A		

Contactor selection for motor control - TeSys GC


Modular equipment

Modular contactors

Motor control (AC-7b) Single-phase circuit, 230 V

3-phase circuit, 400 V

Contactor selection acco	ording to maximum power in kW	
230 V single-phase capacitor motor (2-pole)	400 V 3-phase motor	Contactor rating (Ith)
0.55	2.2	16 A
1.1	4	25 A
2.2	7.5	40 A
4	11	63 A

Characteristics - TeSys GC

Modular equipment TeSys GC standard contactors

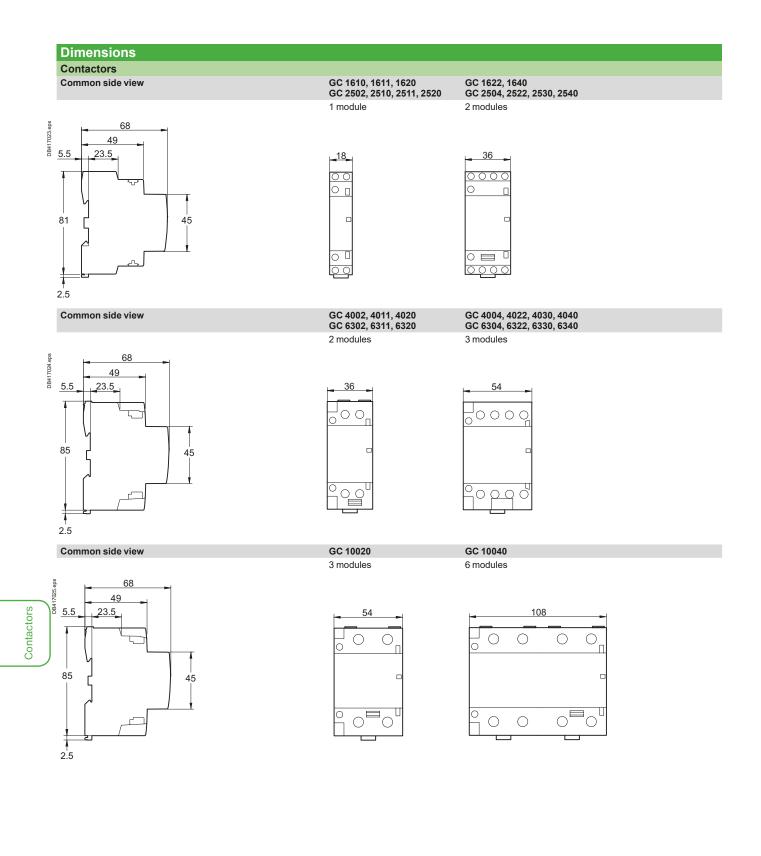
Environment							
Contactor type			GC16	GC25	GC40	GC63	GC100
Rated insulation voltage	Conforming to IEC 61095	V	500				
(Ui)	Conforming to VDE 0110	V	500				
Rated impulse withstand voltage (Uimp)		kV	4 in enclosu	re			
Conforming to standards			IEC 61095 a	and IEC 60947-5-1	for auxiliary cont	acts	
Degree of protection	Conforming to IEC 60529		Protection a	gainst direct finge	r contact (IP 20 op	oen, IP 40 in enclo	sure)
Ambient air temperature	Storage	°C	-40+70				
around the device	Operation	°C	-5+50 (0.8	351.1 Uc)			
Maximum operating altitude	Without derating	m	3000				
Operating positions	Without derating		±30° in relat	ion to normal verti	cal mounting plan	e	
Shock registered	Contactor anon		10 ap				
Shock resistance 1/2 sine wave = 10 ms	Contactor open	_	10 gn				
	Contactor closed		15 gn				
Vibration resistance	Contactor open		2 gn				
5300 Hz	Contactor closed		3 gn				
Flame resistance			Conforming	to IEC 61095			
Pole characteristics							
Number of poles			2, 3 or 4				
Rated operational current (le)	In AC-7a (heating)	A	16	25	40	63	100
(Ue ≤ 440 V)	In AC-7b (motor control)	A	5	8.5	15	25	-
Rated operational voltage ′Ue)	Up to	v	250 two-pole contactors, 415 three and four-pole contactors				
Frequency limits	Of the operating current	Hz	400				
Conventional thermal current	θ ≤ 50 °C	A	16	25	40	63	100
(lth) Rated breaking and making capacit	y Conforming to IEC 61095 (AC-7b) I rms 400 V 3-phase	A	40	68	120	200	-
Permissible short time rating	For 10 s	A	128	200	320	504	800
no current flowing for preceding 15 minutes with q ≤ 40 °C	For 30 s	A	40	62	100	157	250
Short-circuit protection	gl fuse	A	16	25	40	63	100
by fuse or circuit breaker	Circuit breaker I ² t 230 V	A ² s	5000	10000	16000	18000	-
Ĵ≤440 V	(at 3 kA rms 400 V prospective)	A ² s	9000	14000	17500	20000	-
Electrical durability in operating cycles	AC-7a, AC-7b		100000	100000	100000	100000	30000
Average impedance per pole	At lth and 50 Hz	mΩ	2.5	2.5	2	2	1
Power dissipated per pole	For the above operational currents	w	0.65	1.6	3.2	8	10
Maximum cabling Flexible cable	1 conductor	mm ²	6	6	25	25	35
c.s.a. without cable end	2 conductors	mm ²	4	4	16	16	-
Flexible cable	1 conductor	mm ²	6	6	16	16	35
with cable end	2 conductors	mm ²	1.5	1.5	4	4	-
Solid cable	1 conductor	mm ²	6	6	25	25	35
without cable end		mm ²	4	4	6	6	10
Tightoning torm-	Dewer eizer "	N	0.0	0.0	25	25	0.5
Tightening torque	Power circuit connections	N.m	0.8	0.8	3.5	3.5	3.5

 Selection:
 F

 pages B8/108 to B8/111
 p

 B8/112
 Life Is On I
 Sc

References: page B8/54 Dimensions, schemes: pages B8/114 and B8/115

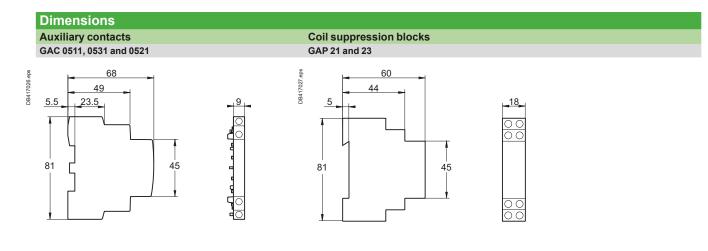

Characteristics - TeSys GC Modular equipment TeSys GC standard contactors

Contactor type				GC16, GC25 single or 2-pole	GC16, GC25 3 or 4-pole GC40, GC63 2-pole	GC40, GC63 3 or 4-pole GC100 2-pole	GC100 4-pole
Rated control circuit volt	age (Uc)	50 or 60 Hz	V	12240 V, for othe	er voltages, please co	onsult your Regional S	ales Office
Control voltage limits	50 Hz coils	Operational		0.851.1 Uc			
(θ ≤ 50 °C)		Drop-out		0.20.75 Uc			
Average coil	\sim 50 Hz	Inrush	VA	15	34	53	106
consumption at 20 °C and at Uc		Sealed	VA	3.8	4.6	6.5	13
Maximum heat dissipati	on	50/60 Hz	w	1.3	1.6	2.1	4.2
Operating time		Closing "C"	ms	1030			
		Opening "O"	ms	1025			
Mechanical durability		In operating cycles		10 ⁶			
Maximum operating rate at ambient temperature		In operating cycles per hour		300			
Maximum cabling c.s.a.	Flexible cable without cable end	1 or 2 conductors	mm²	2.5			
	Flexible cable	1 conductor	mm ²	2.5			
	with cable end	2 conductors	mm ²	1.5			
	Solid cable without cable end	1 or 2 conductors	mm²	1.5			
Tightening torque			N.m	0.8			
Instantaneous	auxiliary co	ontact characteri	stics				
Rated operational voltag	ge (Ue)	Up to	v	250			
Rated insulation voltage	e (Ui)	Conforming to IEC 60947-5	V	500			
		Conforming to VDE 0110	v	500			
Conventional thermal cu	urrent (Ith)	For ambient $\theta \leq 50 \ ^{\circ}\text{C}$	A	5			
Mechanical durability		Operating cycles		106			
Maximum cabling c.s.a.		Flexible or solid conductor	mm ²	2.5			
Tightening torque			N.m	0.8			

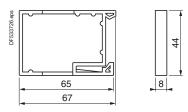
Dimensions - TeSys GC

Modular equipment

TeSys GC standard contactors


Schneider

References page B8/54


Dimensions, schemes - TeSys GC

Modular equipment

TeSys GC standard contactors

Clip-on ventilation 1/2 module GAC 5

Schemes				
Contactors				
GC ••10	GC ●●20	GC ••30	GC ●●40	
A2 A1				

	GC ••11	GC ••22	GC ●●02	GC ••04
DF533733.eps			Pressysta environmental and a constraint of the second sec	┌┴ኁ┦┦

Auxiliary contacts			
GAC 0521	GAC 0531	GAC 0511	
DF53777 aps 14 13/NO 22 21/NC	DF53738 eps 14 13/NO 24 23/NO	DF533739 eps 14/NO 12 12	

Contactors

Presentation standards - TeSys GY

Modular equipment TeSys GY "dual tariff" contactors

Presentation

TeSys GY "dual tariff" contactors are designed for use in modular panels and enclosures.

These contactors feature: **Easy installation:**

□quick clip-on fixing and locking onto 35 mm omega rail

□easy connection by means of ready-to-tighten captive, pozidrive screw terminals.

Compact size

All units have a common depth of 60 mm and width in modules of 17.5 mm (width of one module: 17.5 mm).

User safety:

□ use of materials conforming to strictest fire safety standards □ live parts protected against direct finger contact □ completely safe operation

□state indication on front panel.

"Dual tariff" contactors are designed for use with Electricity Supply Authority dual tariffs.

They have a 4-position selector switch on the front panel:

"Stop" (O)	For switching off the load, e.g. for prolonged periods of absence.					
"Off peak" Automatic start (A)	The contactor switches automatically during "off peak" hours as set by the Supply Authority remote control and thus supplies the load, (washing machine, dishwasher, convector heater, water heater) during this period, at an economy rate to the user.					
"Peak time" Manual start (I)	In this position, the contactor supplies the load to cater for additional requirements for hot water, heating, etc., but at the standard rate. The contactor returns automatically to the "off-peak" position at the start of the "off-peak" period.					
"Peak time" Manual override with lock	Facility for setting the contactor to continuous manual operation, ignoring the automation system and the Supply Authority control; setting and locking is achieved by means of a tool, with manual return to the "AUTO" position.					

Standards

This range of modular contactors has been designed taking into account the requirements of international standard IEC 61095.

This standard is specific to "Electromagnetic contactors for domestic and similar use".

It has very strict requirements, meeting the expectations of users, with regard to the safety of equipment and persons in "premises and areas accessible to the public". Conformity with this standard makes it possible to obtain the following quality labels without the need for additional tests: NF-USE, VDE, CEBEC, etc.

"Dual tariff" modular contactors are designed for switching all single-phase, 3-phase or 4-phase loads up to 63 A.

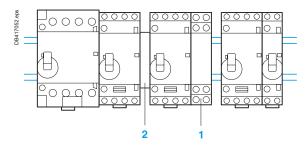
TeSys GY contactors have multiple applications in industrial, agricultural and commercial premises, hospitals and the home, i.e. wherever switching of a specific supply is required:

- lighting,
- heating, ventilation,
- motorised shutters or gates.

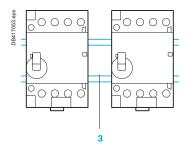
Characteristics: pages B8/118 and B8/119

Schneider

References: page B8/55


Setting-up precautions - TeSys GY Modular equipment

TeSys GY "dual tariff" contactors


Setting-up precautions

The contactor controls must be bounce free. If not, connect a coil suppression block 1 (GAP 21 or 23) across the coil terminals \leq 250 V.

When several contactors which operate at the same time are mounted side by side, a GAC 5 ventilation 1/2 module 2 must be fitted every 2 contactors.

It is advisable to mount electronic units at the bottom of the modular panel and to separate them from electromechanical units by a space equal to one module 3 or by 2 ventilation 1/2 modules GAC 5.

Derating of contactors mounted in a modular enclosure if the temperature within the enclosure is $>40\ ^{\circ}\text{C}.$

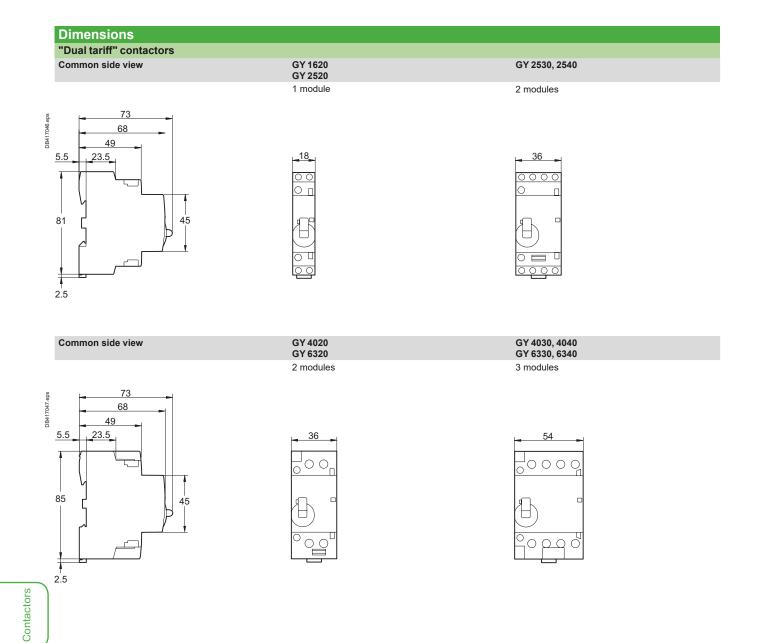
Contactor rating	40 °C	50 °C	60 °C (1)
16 A	16 A	14 A	13 A
25 A	25 A	22 A	20 A
40 A	40 A	36 A	32 A
63 A	63 A	57 A	50 A

(1) Ventilation 1/2 module must be fitted.

Characteristics - TeSys GY Modular equipment TeSys GY "dual tariff" contactors

Туре			GY 16	GY 25	GY 40	GY 63
Rated insulation voltage (Ui)	Conforming to IEC 61095	v	500	0120	5140	0100
Valeu insulation voltage (01)	Conforming to VDE 0110	v	500			
Rated impulse withstand voltage	e (Uimp)	kV	4 in enclosure			
Conforming to standards			IEC 61095 an	d IEC 60947-5-1 for au	ixiliary contacts	
Product certifications			NF-USE, VDE	, CEBEC, ÖVE		
Degree of protection	Conforming to IEC 60529		Protection aga	ainst direct finger conta	act IP 20 open, IP 40 in	enclosure
Ambient air temperature around	Storage	°C	-40+70			
he device	Operation	°C	-5+50 (0.85	1.1 Uc)		
Maximum operating altitude	Without derating	m	3000			
Operating positions	Without derating		±30° in relatio	n to normal vertical mo	ounting plane	
Shock resistance	Contactor open	_	10 gn			
1/2 sine wave = 11 ms	Contactor closed		15 gn			
/ibration resistance	Contactor open		2 gn			
5300 Hz	Contactor closed		3 gn			
Flame resistance			Conforming to	EC 61095		
Pole characteristics						
Number of poles			2, 3 or 4			
Rated operational current (le)	In AC-7a (heating)	A	16	25	40	63
Ue ≤ 440 V)	In AC-7b (motor control)	A	5	8.5	15	25
Rated operational voltage (Ue)	Up to	v	250 - 2-pole c	ontactors, 415 - 3 and	4-pole contactors	I
requency limits	Of the operating current	Hz	400			
Conventional hermal current (Ith)	θ ≤ 50 °C	A	16	25	40	63
Rated breaking and making capacity	Conforming to IEC 61095 (AC-7b) I rms 400 V 3-phase	A	40	68	120	200
Short time rating	For 10 s	Α	128	200	320	504
with no current flow for the previous previous 15 minutes with θ ≤ 40 °C	For 30 s	A	40	62	100	157
Short-circuit protection by fuse o $U \leq 440 V$	r circuit breaker					
gl fuse		A	16	25	40	63
Circuit breaker I ² t (at 3 kA rms prospective)	230V	A ² s	5000	10000	16000	18000
(at 5 KATHIS prospective)		A ² s	9000	14000	17500	20000
Electrical durability in operating cycles	AC-7a, AC-7b		100000	100000	100000	100000
Average impedance per pole	At Ith and 50 Hz	mΩ	2.5	2.5	2	2
Power dissipated per pole	For the above operational currents	w	0.65	1.6	3.2	8
Maximum cabling c.s.a.			0		05	65
Flexible cable without cable end	1 conductor	mm ²	6	6	25	25
	2 conductors	mm ²	4	4	16	16
Flexible cable	1 conductor	mm ²	6	6	16	16
with cable end	2 conductors	mm²	1.5	1.5	4	4
Solid cable	1 conductor	mm ²	6	6	25	25
without cable end	2 conductors	mm²	4	4	6	6
			_		3.5	

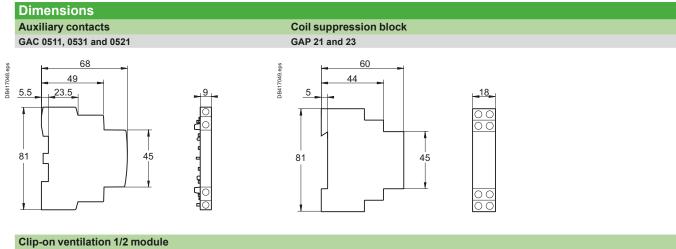
Selection: pages B8/108 to B8/111 B8/118 Life Is On Schneider

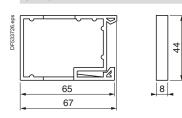

References: page B8/55

Dimensions and schemes: pages B8/120 and B8/121

Characteristics - TeSys GY Modular equipment TeSys GY "dual tariff" contactors

Туре			GY 16, GY 25	GY 16, GY 25	GY 40, GY 63
			single or 2-pole	3 or 4-pole	3 or 4-pole
				GY 40, GY 63 2-pole	
Rated control circuit voltage (Uc)	50 or 60 Hz	V	12240 V, for other ve	oltages, please consult your	Regional Sales Office
Control voltage limits (θ ≤ 50 °C)				
50 Hz coils	Operational		0.851.1 Uc		
	Drop-out		0.20.75 Uc		
Average consumption at 20 °C a	and at Uc				
\sim 50 Hz	Inrush	VA	15	34	53
	Sealed	VA	3.8	4.6	6.5
Heat dissipation	50/60 Hz	w	1.3	1.6	2.1
Operating time	Closing "C"	ms	10 30	I	
	Opening "O"	ms	10 25		
Mechanical durability	In operating cycles		106		
Maximum operating rate at ambient temperature ≤ 50 °C	In operating cycles per hour		300		
Maximum cabling c.s.a.					
Flexible cable without cable end	1 or 2 conductors	mm²	2.5		
Flexible cable with cable end	1 conductor	mm²	2.5		
	2 conductors	mm²	1.5		
Solid cable without cable end	1 or 2 conductors	mm²	1.5		
Tightening torque		N.m	0.8		
Instantaneous auxil	iary contact characte	ristics			
Rated operational voltage (Ue)	Up to	V	250		
Rated insulation voltage (Ui)	Conforming to IEC 60947-5	V	500		
	Conforming to VDE 0110	v	500		
Conventional thermal current (Ith)	For ambient $\theta \leq 50 ^{\circ}\text{C}$	Α	5		
Mechanical durability	In operating cycles		10 ⁶		
Maximum cabling c.s.a.	Flexible or solid conductor	mm²	2.5		
Tightening torque		N.m	0.8		


Dimensions - TeSys GY **Modular equipment** TeSys GY "dual tariff" contactors


Dimensions, schemes - TeSys GY

Modular equipment

TeSys GY "dual tariff" contactors

GAC 5

Schemes			
Contactors			
GY ••20	GY ••30	GY ●●40	GY ●●11
$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \xrightarrow{1} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \xrightarrow{1} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$	Bigging and the second		

Auxiliary contacts			
GAC 0521	GAC 0531	GAC 0511	tors
a12041 eps	812042.eps 14/13/NO 24/23/NO	812046.eps 14/NO 12 12	Contact

Presentation - TeSys GF Modular equipment TeSys GF impulse relays

Presentation

TeSys GF impulse relays are designed for use in modular enclosures. They feature:

Easy installation:

□quick clip-on fixing and locking onto 35 mm omega rail

□easy connection by means of ready-to-tighten captive, pozidrive screw terminals.

Compact size

Units have a common depth of 60 mm and width of 18 mm.

■ User safety:

□live parts protected against direct finger contact □completely safe operation □state indication on front panel.

Standards

This range of modular impulse relays has been designed taking into account the requirements of international standard IEC 60669-2.

This standard is specific to "Impulse relays". Conformity with this standard makes it possible to obtain the following quality labels without the need for additional tests: NF-USE, VDE, CEBEC, etc.

Functions

Modular impulse relays are designed for opening and closing of circuits which are remotely controlled by impulses. The position is mechanically maintained. These impulse relays are used in lighting circuits when there are more than two switching points.

Power switching

TeSys GF impulse relays have multiple applications in industrial, agricultural and commercial premises, hospitals and the home, i.e. wherever switching of a specific lighting supply is required.

Selection for lighting and heating circuits - TeSys GF Modular equipment TeSys GF impulse relays

Lighting circu	iits									
Fluorescent lamp	s with sta	arter								
Single fitting	Non co	rrected		With p	With parallel correction					
Power in W	18	36	58	18	36	58				
Number of lamps	70	35	21	50	25	16				
Twin fitting	With se	With series correction								
Power in W	2 x 18	2 x 36	2 x 58							
Number of lamps	56	28	17							

Incandescent lamps: filament lamps											
Power in W	40	60	75	100	200						
Number of lamps	40	25	20	16	8						

Incandescent la	mps: halo	gen lamp	s		
Power in W	300	500	1000	1500	
Number of lamps	5	3	1	1	

Incandescent I	Incandescent lamps: very low voltage halogen lamps										
Power in W	20	50	75	100							
Number of lamps	70	28	19	4							

Low pressure so	dium va	pour lamp	s		
	Nond	orrected			
Power in W	55	90	135	180	
Number of lamps	24	15	10	7	

High pressure se	odium vaj	oour lamp	IS	
	Non co	orrected		
Power in W	250	400	1000	
Number of lamps	5	3	1	

Heating circuits Single-phase 230 V, 2-pole Power in kW 3.6

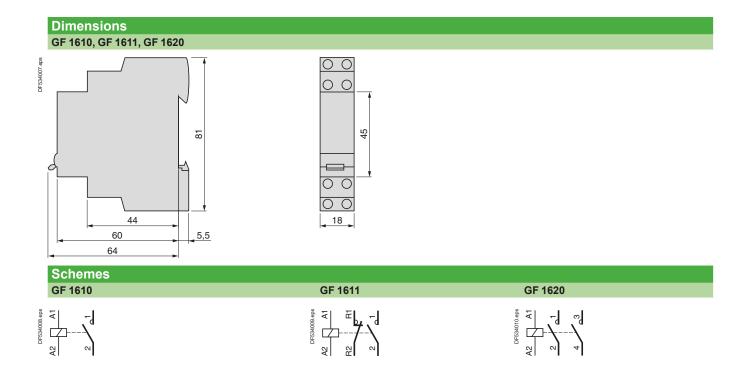
Characteristics - TeSys GF Modular equipment TeSys GF impulse relays

Environment				
Rated insulation voltage (Ui)	Conforming to IEC 60947-1-5	V	400	
	Conforming to VDE 0110	V	400	
Rated impulse withstand voltage (Uimp)		kV	4 in enclosure	
Conforming to standards			IEC 60669-1 and 60669-2	
Product certifications			NF-USE, CEBEC, ASE, KEMA, N, S, D, FI	I, VDE
Degree of protection	Conforming to IEC 60529		Protection against direct finger contact IP 2	20 open, IP 40 in enclosure
Ambient air temperature around the device	Storage	°C	-40+80	
	Operation	°C	-20+50	
Maximum operating altitude	Without derating	m	2000	
Operating positions	Without derating		±90° in relation to normal vertical mounting	g plane
Shock resistance 1/2 sine wave = 10 ms	Impulse relay open		Please consult your Regional Sales Office	
	Impulse relay closed		Please consult your Regional Sales Office	
Vibration resistance 5300 Hz	Impulse relay open		4 gn	
	Impulse relay closed		4 gn	
Pole characteristics				
Number of poles			1 or 2	
Rated operational current (Ie) (Ue ≤ 250 V)	In AC-7a (heating)	A	16	
Rated operational voltage		v	250	
Conventional thermal current (Ith)	θ ≤ 50 °C	A	16	
Permissible short time rating no current flowing for preceding	For 1 s	Α	320	
15 minutes with $\theta \le 40$ °C	For 10 s	Α	96	
	For 30 s	A	48	
Short-circuit protection by fuse or circuit breaker	gl fuse	A	16	
by fase of offour breaker	Circuit breaker l²t (at 3 kA rms prospective)	A ² s	5000	
Average impedance per pole	At Ith and 50 Hz	mΩ	4	
Power dissipated per pole		w	1	
Maximum			Min.	Max.
cabling Flexible cable c.s.a. without cable end	1 conductor	mm²	0.5	6
	2 conductors	mm ²	0.5	4
Flexible cable with cable end	1 conductor	mm ²	0.5	6
	2 conductors	mm ²	0.5	4
Solid cable without cable end	1 conductor	mm ²	0.5	6
	2 conductors	mm ²	0.5	4
Tightening torque	Power circuit connections	N.m	0.8	

Presentation: page B8/122 B8/124 References: page B8/56

Dimensions, schemes: page B8/126

Characteristics - TeSys GF Modular equipment TeSys GF impulse relays


Control o	ircuit characte	ristics		
Rated control o	ircuit voltage (Uc)		V	12240 V, for other voltages, please consult your Regional Sales Office
Control voltage limitsOperating threshold, $(\theta < 50 \ ^{\circ}C)$ dual frequency 50/60 Hz		V	0.851.1 Uc	
Average consu at 20 °C and at	Imption Uc	Inrush at 50 Hz	VA	19
Operating time		Closing "C"	ms	70
		Opening "O"	ms	70
Minimum impu	lse time		ms	70
Mechanical du	rability			10 ⁶ operating cycles
Electrical dural	oility			
		AC-21		200000 operating cycles
		AC-22		100000 operating cycles
Maximum oper	ating rate	Operating cycles per hour		900
Maximum cabling c.s.a.				
	Flexible cable without cable end	1 or 2 conductors	mm²	2.5
	Flexible cable with cable end	1 conductor	mm ²	2.5
		2 conductors	mm ²	1.5
	Solid cable without cable end	1 or 2 conductors	mm²	1.5
Tightening torc	ue		N.m	0.8

Dimensions, schemes - TeSys GF

Modular equipment

TeSys GF impulse relays

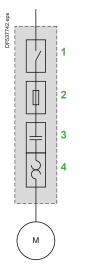
Contactors

Presentation:
page B8/122
B8/126

General - TeSys SK, K, D, GC, GY, GF

Technical information

Tests according to standard utilisation categories conforming to IEC 60947-4-1 and 5-1


a.c. supply			ical dura g and b	ability: reaking co	onditio	ns			sional du ng and br	ty: eaking co	onditio	าร	
Typical	Utilisation	Makin	q		Break	ing		Makin	q		Breaki	ng	
applications	category	1	Ŭ	cos φ	1	Ű	cos φ	1	ับ	cos φ	1	Ŭ	cos φ
Resistors, non inductive or slightly inductive loads	AC-1	le	Ue	0.95	le	Ue	0.95	1.5 le	1.05 Ue	0.8	1.5 le	1.05 Ue	0.8
Motors													
Slip ring motors: starting, breaking.	AC-2	2.5 le	Ue	0.65	2.5 le	Ue	0.65	4 le	1.05 Ue	0.65	4 le	1.05 Ue	0.65
Squirrel cage motors:	AC-3												
starting, breaking whilst	le ≤ ⁽¹⁾	6 le	Ue	0.65	1 le	0.17 Ue	0.65	10 le	1.05 Ue	0.45	8 le	1.05 Ue	0.45
motor running.	le > (2)	6 le	Ue	0.35	1 le	0.17 Ue	0.35	10 le	1.05 Ue	0.35	8 le	1.05 Ue	0.35
Squirrel cage motors:	AC-4												
starting,	le ≤ ⁽¹⁾	6 le	Ue	0.65	6 le	Ue	0.65	12 le	1.05 Ue	0.45	10 le	1.05 Ue	0.45
reversing, inching	le > (2)	6 le	Ue	0.35	6 le	Ue	0.35	12 le	1.05 Ue	0.35	10 le	1.05 Ue	0.35
d.c. supply													
Typical	Utilisation	Makin	g		Break	ing		Making	g		Breaki	ng	
applications	category	1	U	L/R (ms)	1	U	L/R (ms)	1	U	L/R (ms)	1	U	L/R (ms)
Resistors, non inductive or slightly inductive loads	DC-1	le	Ue	1	le	Ue	1	1.5 le	1.05 Ue	1	1.5 le	1.05 Ue	1
Shunt wound motors: starting, reversing, inching	DC-3	2.5 le	Ue	2	2.5 le	Ue	2	4 le	1.05 Ue	2.5	4 le	1.05 Ue	2.5
Series wound motors: starting, reversing, inching	DC-5	2.5 le	Ue	7.5	2.5 le	Ue	7.5	4 le	1.05 Ue	15	4 le	1.05 Ue	15
Control relays an	d auxiliary	/ cont	acts										
		Electr	ical dura	ability: reaking co	onditio	ns			sional du ng and br	ty: eaking co	onditio	ns	
a.c. supply													
Typical applications	Utilisation category	Makin I	g U	cos φ	Break I	ing U	cos φ	Making I	g U	cos φ	Breaki I	ng U	cos φ
Electromagnets													
≤ 72 VA	AC-14	-	-	-	-	-	-	6 le	1.1 Ue	0.7	6 le	1.1 Ue	0.7
> 72 VA	AC-15	10 le	Ue	0.7	le	Ue	0.4	10 le	1.1 Ue	0.3	10 le	1.1 Ue	0.3
d.c. supply													
		Makin	~		Break	ina		Making	a		Breaki	na	
Typical applications	Utilisation category	Makin	y U	L/R (ms)	I	U	L/R (ms)	1	U	L/R (ms)	1	U	L/R (ms)

(1) le ≤ 17 A for electrical durability, le ≤ 10 A for occasional duty.
 (2) le > 17 A for electrical durability, le > 100 A for occasional duty.
 (3) The value 6 P (in watts) is based on practical observations and is considered to represent the majority of d.c. magnetic loads up to the maximum limit of P = 50 W i.e. 6 P = 300 ms = L/R. Above this, the loads are made up of smaller loads in parallel. The value 300 ms is therefore a maximum limit whatever the value of current drawn.

Presentation - TeSys SK, K, D, GC, GY, GF

TeSys contactors

For the North American market Conforming to UL and CSA

- 1 Motor Disconnect (Disconnect switch)
- 2 Motor Branch Circuit Protection
- (Short-circuit protection)
- **3** Motor Controller (Contactor)
- 4 Motor Overload Protection (Thermal overload relay)

Starters for the North American market

In recent years, the North American market has started to harmonise UL, CSA and ANCE standards, as well as the industrial installation codes provided by national regulations (NEC for the United States, CEC for Canada and MEC for Mexico). ⁽¹⁾ Major improvements, carried out by the Canena ⁽²⁾ are aimed at harmonising product requirements based on IEC ⁽³⁾ standards.

However, the North American codes use specific terminology for defining the functions of a starter.

These functions can be fulfilled by standard IEC products, accompanied by appropriate certifications.

Combination Starters

Combination Starters are the most common type of packaged motor starter. They are called "Combination" because of their structure and their combined functions. The figure opposite shows the four combined functions that constitute a complete motor starter circuit, defined as a "Motor branch circuit" by the NEC (US National Electric Code) in article 430. Standard UL508 currently gives different types of combination starter that meet the requirements of a "Motor branch circuit".

Type E, called **"self-protected combination starter**", covers all these functions and can be controlled manually (thermal-magnetic circuit breaker) or remotely (starter-controller). Type E starters withstand faults within their declared nominal rating without sustaining damage, after which they can be put back into service. In addition, they can withstand more severe short-circuit and durability performance tests without welding or excessive wear of the contact tips.

Type F, called "**Combination motor starter**", consists of a type E manual starter (thermal-magnetic circuit breaker) combined with a contactor. These starters are evaluated by means of basic short-circuit tests, but are not considered as "self-protected".

For this combination, the type E starter must be marked "Combination Motor Controller when used with ...", followed by the reference of the load side contactor.

- (1) UL: Underwriters Laboratories, CSA: Canadian Standards Association, ACNE: Association of Standardization and Certification, NEC: National Electric Code, CEC: Canadian Electrical Code. MEC: Mexican Electrical Code.
- (2) Canena: Council for Harmonization of Electrotechnical Standardization of North America.
 (3) IEC: International Electrotechnical Commission.

Contactors

Presentation - TeSys SK, K, D, GC, GY, GF

TeSys contactors For the North American market Conforming to UL and CSA

Control panels

To help users properly coordinate their motor control equipment with their distribution system in the event of a fault, article 409 of the 2005 NEC requires panel builders to list the short-circuit withstand rating of their motor control panels. According to standard UL508A, manufacturers must use the short-circuit withstand value of the lowest rated device as the nominal withstand rating of the panel, unless the devices have been tested together for a higher coordinated rating. The minimum "**short-circuit current rating**" (SCCR), on motor control components for horsepower ratings of 50 hp or below is 5000 A.

Using a **type E** or **type F** combination starter eliminates the coordination problems of using individual components for the "motor branch circuit protection", "motor controller" and "motor overload protection" functions.

The panel builder uses the declared short-circuit current rating for the combination starter. This value is generally higher than 5000 A.

This makes it easier to list the short-circuit current ratings and to check the compatibility of a UL508A motor control panel within a given distribution system.

Group protection

Article 430.53 of the NEC allows a single short-circuit protection device to be used for more than one motor circuit if the components used are marked and listed for such use.

Components suitable for use in group protection, known as "**motor group installations**", can be marked in one of the following two ways:

Case nº 1

The contactor and the motor overload relay are both listed as suitable for group installation.

An inverse time circuit breaker can be used as the short-circuit protection device if it is also listed as suitable for group installation.

The panel builder must therefore make sure that the short-circuit protection device selected (fuses or inverse time circuit breaker) does not exceed the value allowed by article 430.40 for the smallest overload relay used in the circuit.

Once these conditions have been met, the panel builder can reduce the size of the conductor connecting the short-circuit protection device to the individual motor contactor/overload relay, to one third of the size of the upstream circuit conductor supplying the protection device.

The panel builder must limit the length of the motor starter conductor (connecting the short-circuit protection device to the motor contactor/overload relay) to a maximum of 7.6 m (25 feet).

Case n° 2

The motor contactor and overload relay are listed as suitable for "**tap conductor protection**" in group installations.

This category allows the panel designer to reduce the size of the conductor connecting the short-circuit protection device to the individual motor

contactor/overload relay, to one tenth of the size of the upstream circuit conductor supplying the protection device.

The designer must limit the length of this conductor to a maximum of 3.05 m (10 feet).

In both cases, the supply circuits must not be less than 125 % of the connected motor FLA (Full Load Amps) rating.

For panel builders, using **type F** combination starters in group installations simplifies group motor considerations.

Each starter is a fully coordinated motor branch circuit.

The panel builder follows the same NEC requirements for sizing the supply conductors as those required for single motor branch circuits.

The size of the supply conductors can be reduced in accordance with the specifications of article 430.28.

This allows the same flexibility in conductor sizing as that offered in article 430.53 (D), without a requirement to check the short-circuit protection rating marked on the components and the overload relay limit.

A UL508A panel does not need a short-circuit protection device when each motor starter installed is a **type F**.

The upstream short-circuit protection device supplying the starter protects the panel. The panel builder only has to consider the panel/enclosure disconnect requirements specified by the NEC or local codes.

Contactors

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Relay Sockets & Fixings category:

Click to view products by Schneider Electric manufacturer:

Other Similar products are found below :

M41G 7-1616360-5 8000-DG2-5 GDA12HA GDA12HD GDA12SA GDA12SD GDA16HD GDA22HA GDA95A GDA95D GFX20 GUA1 GUA2-11 GUA2-20 GUA4-04 GUA4-31 GUM5R GUR-120 GUR-24 GUR-240 GUR-277 GURX-277 GUW12 GUW95 GUZ32S GUZ63L GUZ95L AS-11 AX-4MS-40 1611434-8 2-1608090-3 PB-16 SM2S-61 SQ9Z-C SYSWINSMP AR-12MW GDA16HA GDA16SA GDA16SD GDA22HD GDA22SA GDA22SD GDA32HA GDA32HD GDA32SA GDA32SD GDA63A GDA63D GFX02