

Grove - UV Sensor

Release date : 9/20/2015

Version : 1.0

Wiki: <u>http://www.seeedstudio.com/wiki/Grove - UV Sensor</u>

Bazaar: http://www.seeedstudio.com/depot/Grove-UV-Sensor-p-1540.html

Document Revision History

Revision	Date	Author	Description
1.0	Sep 21, 2015	Victor.He	Create file

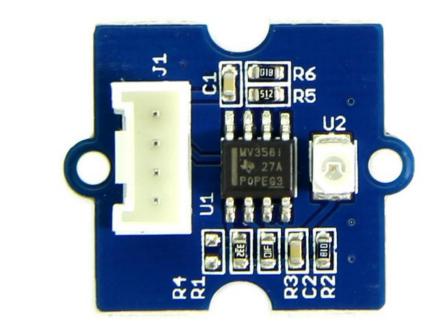
Contents

Doc	ument R	evision History······2	<u>)</u>
1.	Introduc	tion2	<u>)</u>
2.	Features	;3	3
3.	Specifica	ation ······	ł
4.	Usage…	5	5
	4.1	Example	5
5.	Resource	e7	7

Disclaimer

For physical injuries and possessions loss caused by those reasons which are not related to product quality, such as operating without following manual guide, natural disasters or force majeure, we take no responsibility for that.

Under the supervision of Seeed Technology Inc., this manual has been compiled and published which covered the latest product description and specification. The content of this manual is subject to change without notice.


Copyright

The design of this product (including software) and its accessories is under tutelage of laws. Any action to violate relevant right of our product will be penalized through law. Please consciously observe relevant local laws in the use of this product.

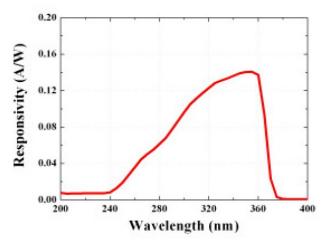
1. Introduction

The Grove – UV Sensor is used for detecting the intensity of incident ultraviolet(UV) radiation. This form of electromagnetic radiation has shorter wavelengths than visible radiation. The Grove - UV Sensor is based on the sensor GUVA-S12D which has a wide spectral range of 200nm-400nm. The module outputs electrical signal which varies with the UV intensity, which gives your suggestion if it is a good idea to beach today.

2. Features

- High stability
- Good Sensitivity
- Low power consumption
- Schottky type photodiode sensor
- Wide response range
- Grove Interface

3. Specification


Item	Min	Typical	Max	Unit
Operating Voltage	3.0	5.0	5.1	VDC
Current		0.31		mA
Output Voltage				mV
Response wavelength	200	~	370	nm
Working Temperature	-30	~	85	°C

4. Usage

UV sensors are used in many different applications. Examples include pharmaceuticals, automobiles, and robotics. UV sensors are also used in the printing industry for solvent handling and dyeing processes. In addition, UV sensors are also used in the chemical industry for the production, storage, and transportation of chemicals.

The fact of the UV sensor work is: In sunlight, the UV index and Photocurrent are a linear relationship.

About our Grove - UV Sensor, we have converted Photocurrent to corresponding voltage value collected by Arduino/Seeeduino. The output voltage and the UV index is linear:

illumination intensity = 307 * Vsig

where:

Vsig is the value of voltage measured from the SIG pin of the Grove interface, unit V.

illumination intensity unit: mW/m^2 for the combination strength of UV light with wavelength range: 240nm~370nm

Note: To calculate the UV index value, please refer to <u>http://www2.epa.gov/sunwise/uv-index</u>. It's hard to say that the measurement from this sensor can be converted to the EPA standard UV index, but can be estimated roughly.

UV Index = illumination intensity / 200

4.1 Example

- Connect it to A0 port of Grove Base Shield.
- Plug the Grove Base Shield into Arduino/Seeeduino and connect them to PC using a USB cable.
- The demo code as show below.

}

```
void setup(){
   Serial.begin(9600);
}
void loop()
{
   int sensorValue;
   long sum=0;
   for(int i=0;i<1024;i++)</pre>
   {
       sensorValue=analogRead(A0);
      sum=sensorValue+sum;
      delay(2);
   }
   sum = sum >> 10;
   Serial.print("The voltage value:");
   Serial.print(sum*4980.0/1023.0);
   Serial.println("mV");
   delay(20);
   Serial.print("\n");
```


5. Resource

<u>Grove - UV Sensor Eagle File</u> <u>Grove - UV Sensor Schematic.pdf</u> <u>UV Sensor Datasheet</u>

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Optical Sensor Development Tools category:

Click to view products by Seeed Studio manufacturer:

Other Similar products are found below :

MT9V034C12STCH-GEVB MT9V115EBKSTCH-GEVB 416015300-3 ISL29102IROZ-EVALZ MT9M021IA3XTMH-GEVB AR1335CSSC11SMKAH3-GEVB MAXCAMOV10640# MT9M031I12STMH-GEVB TSL2581CS-DB TMD3700-DB NANOUSB2.2 ASX340AT3C00XPEDH3-GEVB AR0144ATSM20XUEAH3-GEVB AR0144CSSC00SUKAH3-GEVB AR0522SRSC09SURAH3-GEVB AR0522SRSM09SURAH3-GEVB AR0521SR2C09SURAH3-GEVB MARS1-MAX9295A-GEVK MARS1-MAX9296B-GEVB ISL29112IROZ-EVALZ AR0233AT2C17XUEAH3-GEVB AR0431CSSC14SMRAH3-GEVB MARS-DEMO3-MIPI-GEVB TCS3430-DB AR0234CSSC00SUKAH3-GEVB AR0130CSSM00SPCAH-GEVB TSL2521-DB TSL2520-DB EVALZ-ADPD2212 TMD2772EVM TMG3993EVM MIKROE-2103 TSL2672EVM 1384 MT9M114EBLSTCZDH-GEVB SEN0043 SEN0162 TMD2771EVM TMD3782EVM TSL4531EVM 1918 AS7225 DEMO KIT SEN0097 SEN0212 SEN0228 AR0134CSSC00SUEAH3-GEVB AP0100AT2L00XUGAH3-GEVB AR0144CSSM20SUKAH3-GEVB 725-28915 EVAL-ADPD1081Z-PPG