(0) seeed Grow the Difference

Grove - HCHO Sensor

Release date : 9/20/2015
Version : 1.0
Wiki: http://www.seeedstudio.com/wiki/Breakout - 3-Axis Analog Accelerometer ADXL335
Bazaar: http://www.seeedstudio.com/depot/Grove-3Axis-Analog-Accelerometer-p-1086.html

Document Revision History

Revision	Date	Author	Description
1.0	Sep 21,2015	Victor.He	Create file

Contents

Document Revision History 2

1. Introduction 2
2. Features 3
3. Application Ideas 4
4. Usage 5
5. Resources - 8
6. Support 9

Disclaimer

For physical injuries and possessions loss caused by those reasons which are not related to product quality, such as operating without following manual guide, natural disasters or force majeure, we take no responsibility for that.

Under the supervision of Seeed Technology Inc., this manual has been compiled and published which covered the latest product description and specification. The content of this manual is subject to change without notice.

Copyright

The design of this product (including software) and its accessories is under tutelage of laws. Any action to violate relevant right of our product will be penalized through law. Please consciously observe relevant local laws in the use of this product.

1. Introduction

The ADXL335 is a small, thin, low power, complete 3-axis accelerometer with signal conditioned voltage outputs. The product measures acceleration with a minimum full-scale range of $\pm 3 \mathrm{~g}$.

The module was designed as breakout board because ADXL335's signal is analog(more ports requested). But the board outline is grove module that you can fix it conveniently like other groves. The sensor combined 3.3 and 5 V power supply, can be used in standard Arduino device and Seeeduino Stalker. The following program code includes first-order filter which can make the output smoothly if the sensor was used in robot or toy car.

2. Features

- Wide power range DC3V to 5 V
- Grove outline
- 3 axis sensing
- Small, low-profile package: $4 \times 4 \times 1.45 \mathrm{~mm}$ LFCSP
- Low power $350 \mu \mathrm{~A}$ at 3 V (typical)
- High sensitive
- $10,000 \mathrm{~g}$ shock survival
- BW adjustment with a single capacitor per axis
- RoHS/WEEE lead-free compliant

3. Application Ideas

- Motion Sensor
- Shock detector
- Vibration sensor
- Toy car
- Robot

4. Usage

The sensor's outline is breakout board, you can welding wire in the board or use jumper wire to connect the sensor.

- The VCC connect to power source (DC5V or DC3.3V) , GND to ground, X to Arduino analog port $\mathrm{A} 0, \mathrm{Y}$ to $\mathrm{A} 1, \mathrm{Z}$ to A 2 .

- Download the File: 3-Axis Analog Accelerometer Library and Unzip it into the libraries file of Arduino IDE by the path: ..\arduino-1.0.1\libraries.
- Regulate the sensor

The sensor is analog device, you should regulate the sensor before combining it to you system.
Step 1:Open the Demo: Calibration and upload it to Arduino. Please click here if you do not know how to upload.

Step 2: Open your serial monitor, make sure the sensor is connected. Follow the axis institutions printed on sensor's board. First, make sure that Z-axis direction is straight up, please type any character if you are ready. Change the sensor position, repeat the above operation to obtain X -axis and Y -axis direction are straight up .

SSCOM3.2 (Author: NieXiaoMeng . http://www.mcu51.com, Email: ... | \square |
| :--- |

```
First, make sure that Z-axis direction is straight up
please type any charactor if you are ready
voltage:
1.25
1.25
1.54
Second, make sure that X-axis direction is straight up
please type any charactor again if you are ready
voltage:
1.48
1.25
1.28
ZERO_X = 1.25
ZERO_Y = 1.25
ZERO_Z = 1.28
SENSITIVITY = 0.25
please modified the macro definitions with these results in ADXL335.h
```


Step 3: You can get these value as show above. Please modified the macro definitions with these results in ADXL335.h

```
#ifndef ADXL335_H
    #define - ADXL335_H-
    include <Arduino.h>
    /macro definitions of Analog read pins*/
    idefine X AXIS_PIN A0
    flefine Y AXIS PIN Al
    #define z AXIS_PIN A2
    #define ADC AMPLITUDE 1024//amplitude of the 10bit-aDC of Arduino is 1024LSB
    #define ADC REF 5 //ADC reference is 5v
    fdefine 8ERO_X 1.22 //aqcleration of X-AXIS is Og, the voltage of X-AXIS is 1.22v
    %define zERO Y 1.22 //
    #define zERO_Z 1.25 //
    fdefine SENSITIVITY 0.25/sensitivity of X/Y/z axis is 0.25v/g
    class ADXL335
    !
    private:
    void pinsInit();
    float scale;
    public:
        void begin();
    void getxyz(int16_t *x,int16_t *y,int16_t *2);
    void getacceleration(float *ax,float *ay,float *az);
```

Now the calibration has been completed.

- Downloading the demo code: Measuring Acceleration, then open serial monitor, turn the sensor any angle, you can see the digital angle value sent from the accelerometer to the monitor.

SSCOM3.2 (Author: NieXiaoMeng . http://www.mcu51.com, Email: ... 回

```
value of X/Y/Z:
254
256
313
voltage:
1.24
1.25
1.52
accleration of X/Y/Z
-0.04 g
0.00 g
1.09 g
value of X/Y/Z:
254
256
313
voltage:
1.24
1.25
1.53
accleration of X/Y/Z:
-0.04 g
```



```
mww.mcu51.cor S:0 R:12643 COM30 closed 9600bps CTS=0 DSR=0 RL
```


5. Resources

Grove - 3-Axis Analog Accelerometer Eagle File
3-Axis Analog Accelerometer Library
github repository for 3-Axis Analog Accelerometer
ADXL335 datasheet.pdf

6. Support

If you have questions or other better design ideas, you can go to our forum or wish to discuss.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Acceleration Sensor Development Tools category:
Click to view products by Seeed Studio manufacturer:

Other Similar products are found below :
2019 EVAL-ADXL343Z-S BRKOUT-FXLN8362Q MXC6655XA-B 1018 EVAL-ADXL362-ARDZ EVAL-KXTJ2-1009 $\underline{1231} \underline{1413} \underline{\text { DEV- }}$ $13629 \underline{2020}$ EVAL-ADXL343Z-DB EVAL-ADXL344Z-M EVAL-ADXL375Z-S EV-BUNCH-WSN-1Z EV-CLUSTER-WSN-2Z STEVAL-MKI033V1 EVAL-ADXL344Z-DB EVAL-ADXL346Z-DB EVAL-ADXL363Z-MLP EV-CLUSTER-WSN-1Z 2472 EVALADXL312Z EVAL-ADXL343Z EVAL-ADXL344Z-S EVAL-ADXL363Z-S EVAL-ADXL375Z STEVALMKI032V1 DFR0143 SEN0032 SEN0079 SEN0168 SEN0224 MXD6240AU-B FIT0031 SEN-13963 MXP7205VW-B ASD2511-R-A 3463 SEN0140 SEN0183 SEN11446 EVAL-KX022-1020 EVAL-KX023-1025 $163 \underline{2809} \underline{4097} 4344 \underline{4627} 4626$

