(()) seeed
 Grow the Difference

Grove - Starter Kit for mbed User Manual

Release date:		$2015 / 9 / 22$
Version:	1.0	

Wiki: http://www.seeedstudio.com/wiki/Grove Starter Kit for mbed

Bazaar: http://www.seeedstudio.com/depot/Grove-Starter-Kit-for-mbed-p-2032.html?cPath=34 78

Document Revision History

Revision	Date	Author	Description
1.0	Sep 22,2015	Loovee	Create file

Contents

Document Revision History 2

1. Introduction 2
2. Get Started 3
2.1 Hello, world 3
2.2 Fruit Piano 4
2.2.1 Hardware 5
2.2.2 Software 5
2.3 More, Step By Step 6

Disclaimer

For physical injuries and possessions loss caused by those reasons which are not related to product quality, such as operating without following manual guide, natural disasters or force majeure, we take no responsibility for that.

Under the supervision of Seeed Technology Inc., this manual has been compiled and published which covered the latest product description and specification. The content of this manual is subject to change without notice.

Copyright

The design of this product (including software) and its accessories is under tutelage of laws. Any action to violate relevant right of our product will be penalized through law. Please consciously observe relevant local laws in the use of this product.

1. Introduction

Mbed is an open source development platform for rapid prototyping with microcontrollers. It provides free software libraries, hardware designs and development tools to build projects very easily and fast.

Grove is a modular electronics platform for quick prototyping that does not involve soldering or bread boarding.

This kit is designed for you to get started with Mbed as soon as possible. It contains many plug-nplay Grove modules to start exploring the Mbed world. One goal is to have fun and build confidence with hardware and software in the journey.

2. Get Started

All the things to get started are:

- This kit
- An Arch
- A USB Micro B cable
- A computer with Internet

2.1 Hello, world

- Click this link to signup or login mbed, then you will get the mbed online compiler.

Import the program and open main.cpp, you will see the code.

Import Program		
Import Program Import a program from mbed.org into your workspace.		
(1) Please specify name		
Source URL: https://mbed.org/users/viswesr/code/Arch Import As: Program Library Import Name: Arch_GPIO_Ex Update: \square Update all libraries to the latest revision		
	Import	Cancel

- On mbed online IDE, click "Compile" of the top toolbar (or use CTRL + D) to compile the code and the binary file - Arch_GPIO_Ex1_LPC11U24.bin.

- Connect the Arch board to the computer and long press the button, a USB drive named CRP DISABLD will pop up.
- Delete firmware.bin and copy Arch_GPIO_Ex1_LPC11U24.bin to the USB drive.
- Quick press the button, the program will be running, an LED will be blinking.

```
#include "mbed.h"
/* Configure a GPIO pin as output for controlling a LED. 'led' is user assigned name and
'LED1' is a internal name given to a port pin P1_8 in this Arch platform. */
DigitalOut led(LED1);
int main()
{
    while(1) {
        led = 1; // Switch ON the LED.
        wait(0.5); // Wait for 0.5 Seconds.
        led = 0; // Switch 0FF the LED.
        wait(0.5); // Wait for 0.5 Seconds.
    }
}
```

The above program uses DigitalOut class and wait() function of mbed C/C++ SDK. LED1 is an pseudonym of I/O pin P1_8 and is labelled D1 in the Arch board. The state of LED1 is changed by writing either 0 or 1 toled. The wait() function produces a delay in seconds. The state of the led is continuous toggled every 0.5 seconds inside the endless while() loop.

More details of DigitalOut can be find in DigitalOut page of mbed handbook. Similarly the wait() function is documented in wait page.

2.2 Fruit Piano

A piano built with a basket of fruit, a microcontroller and a computer.

The idea is from Makey Makey, but uses different hardware and software. An mbed enabled microcontroller with USB is used.

2.2.1 Hardware

- An Arch board
- A basket of fruit
- A computer with AC power
- Some wires

2.2.2 Software

- Click this link to import the program to Mbed online compiler.
- Compile the code and download the binary file - Fruit_Piano_LPC11U24.bin.
- Connect the Arch board to the computer and long press the button, a USB drive named CRP DISABLD will pop up.
- Delete firmware.bin and copy Arch_GPIO_Ex1_LPC11U24.bin to the USB drive.
- Quick press the button to run the program
- Wire some apples or bananas to A0-A5 (P0_11-P0_14, P0_16, P0_22) pins of the Arch board
- Open Fruit Piano and play

2.3 More, Step By Step

- Digital Input - Button: use a button to control an LED
- Analog Input - Potentiometer: use a potentiometer to control the blinking
of an LED
- Temperature Sensing: use a analog temperature sensor to make a
thermometer
- PWM Ouput - Buzzer: use a buzzer to play a melody
- Display: make a digital clock
- A thermometer
- Infrared keyboard
- Colorful light
- Temperature controls color

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Other Development Tools category:
Click to view products by Seeed Studio manufacturer:
Other Similar products are found below :
DS100BR410EVK-4/NOPB BK0004 BK0012 SN65MLVD2-3EVM DS80EP100-EVK MAX9684EVKIT\# MAX4952AEVKIT+ ESD-EVM-001 MAX14842EVKIT+ EVAL01-HMC749LC3C 410-320 TPD6F002-Q1EVM TS9002DB DS80PCI800EVK/NOPB 118777HMC722LC3C 118777-HMC723LC3C 118777-HMC678LC3C DC1765A-A 125614-HMC851LC3C TPD1E05U06DPYEVM SN65LVDM31-32BEVM DC2062A-A NB4N855SMEVB LMH6321MR-EVAL/NOPB EVAL01-HMC747LC3C 4537 DK-M3F-1.8-TRK-1.5-S DK-M3-FS-1.8-1.5-M12/16 DK-M3L-1.8-TRK-6.0-S DK-M3-LS-1.8-6 ADALM1000 ADALP2000 EVAL-CN0202-SDPZ EVAL-CN0203-SDPZ EVAL-CN0204-SDPZ EVAL-CN0209-SDPZ EVAL-CN0225-SDPZ EVAL-CN0229-SDPZ EVAL-CN0251-SDPZ EVAL-CN0272-SDPZ EVAL-CN0301-SDPZ EVAL-CN0325-SDPZ EVAL-CN0355-PMDZ EVAL-CN0364-SDPZ EVAL-SDP-CB1Z EVAL-SDP-CS1Z DS1964SEVKIT\# MAX14611EVKIT\# MAX22088EVKIT\# MAX4951AEEVKIT+

