

MiniSKili ${ }^{\circledR} 2$

SKiiP25AC12T4V25

Features

- Trench 4 IGBT's
- Robust and soft freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognised file no. E63532

Typical Applications*

- Inverter up to 26 kVA
- Typical motor power 15 kW

Remarks

- $\mathrm{V}_{\text {CEsat }}, \mathrm{V}_{\mathrm{F}}=$ chip level value
- Case temp. limited to $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$ max (for baseplateless modules $T_{C}=T_{S}$)
- product rel. results valid for $\mathrm{T}_{\mathrm{j}} \leq 150$ (recomm. $\mathrm{T}_{\text {op }}=-40 \ldots+150^{\circ} \mathrm{C}$)
- Dynamic test results for $\mathrm{V}_{\mathrm{cc}}=600 \mathrm{~V}$, $R_{\text {Gon/off }}=12 \Omega, I_{c}=50 \mathrm{~A}, \mathrm{~V}_{\mathrm{GE}}= \pm 15 \mathrm{~V}$: $\mathrm{E}_{\text {on }}$ $=5.6 \mathrm{~mJ}, \mathrm{E}_{\text {off }}=6.1 \mathrm{~mJ}, \mathrm{E}_{\mathrm{rr}}=3.3 \mathrm{~mJ}, \mathrm{di} /$ $\mathrm{dt}_{\mathrm{on}}=1440 \mathrm{~A} / \mu \mathrm{s}, \mathrm{t}_{\text {don }}=58 \mathrm{~ns}, \mathrm{t}_{\mathrm{r}}=43 \mathrm{~ns}$, $\mathrm{di} / \mathrm{dt}_{\text {off }}=600 \mathrm{~A} / \mu \mathrm{s}, \mathrm{t}_{\text {doff }}=370 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}=65 \mathrm{~ns}$

Absolute Maximum Ratings				
Symbol	Conditions		Values	Unit
Inverter - IGBT				
$\mathrm{V}_{\text {CES }}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		1200	V
I_{C}	$\mathrm{T}_{\mathrm{j}}=175{ }^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$	69	A
		$\mathrm{T}_{\mathrm{s}}=70^{\circ} \mathrm{C}$	56	A
$\mathrm{I}_{\text {coom }}$			50	A
$I_{\text {cra }}$	$\mathrm{I}_{\text {CRM }}=3 \times \mathrm{I}_{\text {Cnom }}$		150	A
$\mathrm{V}_{\text {GES }}$			-20 ... 20	V
$\mathrm{t}_{\text {psc }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=800 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GE}} \leq 15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CES}} \leq 1200 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$	10	$\mu \mathrm{s}$
T_{j}			-40 ... 175	${ }^{\circ} \mathrm{C}$
Inverse - Diode				
I_{F}	$\mathrm{T}_{\mathrm{j}}=175{ }^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$	60	A
		$\mathrm{T}_{\mathrm{s}}=70^{\circ} \mathrm{C}$	48	A
$\mathrm{I}_{\text {fnom }}$			50	A
Ifrm	$\mathrm{I}_{\text {FRM }}=3 \times \mathrm{I}_{\text {Fnom }}$		150	A
$\mathrm{I}_{\text {FSM }}$	$10 \mathrm{~ms}, \sin 180^{\circ}$	$=150^{\circ} \mathrm{C}$	270	A
T_{j}			-40 ... 175	${ }^{\circ} \mathrm{C}$
Module				
$\mathrm{I}_{\text {(RMS }}$	$\mathrm{T}_{\text {terminal }}=80^{\circ} \mathrm{C}, 20 \mathrm{~A}$ per spring		60	A
$\mathrm{T}_{\text {stg }}$			-40 ... 125	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {isol }}$	AC sinus 50 Hz ,	1 min	2500	V

Characteristics					
Symbol	Conditions		min. typ.	max.	Unit
Inverter - IGBT					
$\mathrm{V}_{\text {CE(sat) }}$	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=50 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V} \\ & \text { chiplevel } \end{aligned}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	1.85	2.10	V
		$\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$	2.20	2.40	V
$\mathrm{V}_{\text {CEO }}$		$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	0.8	0.9	V
		$\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$	0.7	0.8	V
$\mathrm{r}_{\text {CE }}$	$\mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	21	24	$\mathrm{m} \Omega$
		$\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$	30	32	$\mathrm{m} \Omega$
$\mathrm{V}_{\mathrm{GE} \text { (th) }}$	$\mathrm{V}_{\mathrm{GE}}=\mathrm{V}_{\mathrm{CE}}, \mathrm{I}_{\mathrm{C}}=1.7 \mathrm{~mA}$		$5 \quad 5.8$	6.5	V
$\mathrm{I}_{\text {ces }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{GE}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CE}}=1200 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	0.1	0.3	mA
					mA
$\mathrm{C}_{\text {ies }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=25 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V} \end{aligned}$	$\mathrm{f}=1 \mathrm{MHz}$	2.77		nF
$\mathrm{C}_{\text {oes }}$		$\mathrm{f}=1 \mathrm{MHz}$	0.20		nF
$\mathrm{C}_{\text {res }}$		$\mathrm{f}=1 \mathrm{MHz}$	0.16		nF
Q_{G}	-8V...+15V		283		nC
$\mathrm{R}_{\text {Gint }}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		4		Ω
$\mathrm{t}_{\text {d(on) }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=800 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=22 \mathrm{~A} \\ & \mathrm{R}_{\mathrm{G} \text { on }}=12 \Omega \\ & \mathrm{R}_{\mathrm{G} \text { off }}=1 \Omega \\ & \mathrm{di}_{\mathrm{i}} / \mathrm{dt}_{\mathrm{on}}=1640 \mathrm{~A} / \mu \mathrm{s} \\ & \mathrm{di}^{2} / \mathrm{dt}_{\text {tef }}=320 \mathrm{~A} / \mu \mathrm{s} \\ & \mathrm{~V}_{\mathrm{GE}}=+15 / 0 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$	45		ns
t_{r}		$\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$	19		ns
$\mathrm{E}_{\text {on }}$		$\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$	3.4		mJ
$\mathrm{t}_{\text {d(off) }}$		$\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$	480		ns
t_{f}		$\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$	44		ns
$\mathrm{E}_{\text {off }}$		$\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$	3.1		mJ
$\mathrm{R}_{\mathrm{th}(\mathrm{i}-\mathrm{s})}$	per IGBT		0.71		K/W

SKiiP25AC12T4V25

Features

- Trench 4 IGBT's
- Robust and soft freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognised file no. E63532

Typical Applications*

- Inverter up to 26 kVA
- Typical motor power 15 kW

Remarks

- $\mathrm{V}_{\text {CEsat }}, \mathrm{V}_{\mathrm{F}}=$ chip level value
- Case temp. limited to $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$ max (for baseplateless modules $T_{C}=T_{S}$)
- product rel. results valid for $\mathrm{T}_{\mathrm{j}} \leq 150$ (recomm. $\mathrm{T}_{\text {op }}=-40 \ldots+150^{\circ} \mathrm{C}$)
- Dynamic test results for $\mathrm{V}_{\mathrm{cc}}=600 \mathrm{~V}$, $R_{\text {Gon/off }}=12 \Omega, I_{c}=50 \mathrm{~A}, \mathrm{~V}_{\mathrm{GE}}= \pm 15 \mathrm{~V}$: $\mathrm{E}_{\text {on }}$ $=5.6 \mathrm{~mJ}, \mathrm{E}_{\text {off }}=6.1 \mathrm{~mJ}, \mathrm{E}_{\mathrm{rr}}=3.3 \mathrm{~mJ}, \mathrm{di} /$ $\mathrm{dt}_{\mathrm{on}}=1440 \mathrm{~A} / \mu \mathrm{s}, \mathrm{t}_{\text {don }}=58 \mathrm{~ns}, \mathrm{t}_{\mathrm{r}}=43 \mathrm{~ns}$, $\mathrm{di} / \mathrm{dt}_{\text {off }}=600 \mathrm{~A} / \mu \mathrm{s}, \mathrm{t}_{\text {doff }}=370 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}=65 \mathrm{~ns}$

Characteristics						
Symbol	Conditions		min.	typ.	max.	Unit
Inverse - Diode						
$\mathrm{V}_{\mathrm{F}}=\mathrm{V}_{\mathrm{EC}}$	$I_{F}=50 \mathrm{~A}$$\mathrm{V}_{\mathrm{GE}}=0 \mathrm{~V}$chiplevel	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		2.2	2.5	V
		$\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$		2.2	2.5	V
V_{Fo}		$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		1.3	1.5	V
		$\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$		0.9	1.1	V
r_{F}	$\begin{aligned} & \mathrm{l}_{\mathrm{F}}=22 \mathrm{~A} \\ & \mathrm{di}_{\mathrm{d}} / \mathrm{dt}_{\mathrm{tff}}=1680 \mathrm{~A} / \mu \mathrm{s} \\ & \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=800 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		18	21	$\mathrm{m} \Omega$
		$\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$		26	28	$\mathrm{m} \Omega$
$I_{\text {RRM }}$		$\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$		0		A
Q_{rr}		$\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$		5.5		$\mu \mathrm{C}$
E_{rr}		$\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$		2.9		mJ
$\mathrm{R}_{\mathrm{th}(\text { (-s) }}$	per Diode			0.95		K/W
Module						
$\mathrm{M}_{\text {s }}$	to heat sink		2		2.5	Nm
w				65		g
Temperatur Sensor						
R_{100}	$\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}\left(\mathrm{R}_{25}=1000 \Omega\right)$			$\begin{gathered} 1670 \pm \\ 3 \% \end{gathered}$		Ω
$\mathrm{R}(\mathrm{T})$	$\begin{aligned} & \mathrm{R}(\mathrm{~T})=1000 \Omega\left[1+\mathrm{A}\left(\mathrm{~T}-25^{\circ} \mathrm{C}\right)+\mathrm{B}\left(\mathrm{~T}-25^{\circ} \mathrm{C}\right)^{2}\right. \\ &], \mathrm{A}=7.635^{*} 10^{-3}{ }^{\circ} \mathrm{C}^{-1}, \\ & \mathrm{~B}=1.731^{*} 10^{-5} \mathrm{o}^{-2} \mathrm{C}^{-2} \end{aligned}$					

Fig. 1: Typ. output characteristic, inclusive $\mathrm{R}_{\mathrm{CC}^{\prime}+\mathrm{EE}}{ }^{\prime}$

Fig. 3: Typ. turn-on /-off energy $=\mathrm{f}\left(\mathrm{I}_{\mathrm{C}}\right)$

Fig. 5: Typ. transfer characteristic

Fig. 2: Rated current vs. temperature $\mathrm{I}_{\mathrm{C}}=\mathrm{f}\left(\mathrm{T}_{\mathrm{S}}\right)$

Fig. 4: Typ. turn-on/-off energy $=f\left(\mathrm{R}_{\mathrm{G}}\right)$

Fig. 6: Typ. gate charge characteristic

SKiP25AC12T4V25

Fig. 7: Typ. switching times vs. Ic

Fig. 9: Transient thermal impedance of IGBT and Diode

Fig. 8: Typ. switching times vs. gate resistor R_{G}

Fig. 10: CAL diode forward characteristic

Fig. 11: Typ. CAL diode peak reverse recovery current

Fig. 12: Typ. CAL diode recovery charge

pinout, dimensions

pinout

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our staff.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for IGBT Modules category:
Click to view products by Semikron manufacturer:
Other Similar products are found below :
F3L100R07W2E3_B11 F3L15R12W2H3_B27 F3L400R07ME4_B22 F3L400R12PT4_B26 F4-100R12KS4 F4-50R07W2H3_B51 F475R12KS4_B11 FB15R06W1E3 FB20R06W1E3_B11 FD1000R33HE3-K FD300R06KE3 FD300R12KE3 FD300R12KS4_B5 FD400R12KE3 FD400R33KF2C-K FD401R17KF6C_B2 FD-DF80R12W1H3_B52 FF100R12KS4 FF1200R17KE3_B2 FF150R12KE3G FF200R06KE3 FF200R06YE3 FF200R12KT3 FF200R12KT3_E FF200R12KT4 FF200R17KE3 FF300R06KE3_B2 FF300R12KE4_E FF300R12KS4HOSA1 FF300R12ME4_B11 FF300R12MS4 FF300R17ME4 FF450R12ME4P FF450R17IE4 FF600R12IE4V FF600R12IP4V FF800R17KP4_B2 FF900R12IE4V MIXA30W1200TED MIXA450PF1200TSF FP06R12W1T4_B3 FP100R07N3E4 FP100R07N3E4_B11 FP10R06W1E3_B11 FP10R12W1T4_B11 FP10R12YT3 FP10R12YT3_B4 FP150R07N3E4 FP15R12KT3 FP15R12W2T4

