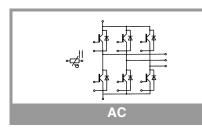


MiniSKiiP[®] 3

SKiiP 37AC12T4V1

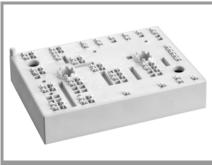
Features

- Trench 4 IGBTs
- Robust and soft freewheeling diodes in CAL technology
- Highly reliable spring contacts for
- electrical connectionsUL recognised: File no. E63532


Typical Applications*

Inverter up to 36 kVA

Typical motor power 22 kW


Remarks

- Max. case temperature limited to $T_C=125^{\circ}C$
- Product reliability results valid for T_j≤150°C (recommended T_{i.op}=-40...+150°C)
- T_{j,op}=-40...+150°C)
 MiniSKiiP "Technical Explanations" and "Mounting Instructions" are part of the data sheet. Please refer to both documents for further information.

Symbol	Conditions		Values			
Inverter -	IGBT					
V _{CES}	T _i = 25 °C		1	1200		V
Ic	λ _{paste} =0.8 W/(mK)	T _s = 25 °C		90		А
	T _j = 175 °C	T _s = 70 °C		73		А
I _C	λ_{paste} =2.5 W/(mK) T _j = 175 °C	T _s = 25 °C		106		Α
		T _s = 70 °C		86	Α	
I _{Cnom}				75		
I _{CRM}	I _{CRM} = 3 x I _{Cnom}			225		Α
V _{GES}				-20 20		V
t _{psc}	$V_{CC} = 800 V$ $V_{GE} \le 15 V$ $V_{CES} \le 1200 V$	T _j = 150 °C		10		μs
Tj	-40 175			°C		
Inverse -	Diode					
l _F	λ_{paste} =0.8 W/(mK) T _j = 175 °C	T _s = 25 °C		83		Α
		T _s = 70 °C		66		Α
l _F	λ_{paste} =2.5 W/(mK) T _j = 175 °C	T _s = 25 °C		95		Α
		T _s = 70 °C		76	Α	
I _{Fnom}				75		Α
I _{FRM}	I _{FRM} = 3 x I _{Fnom}			225		
I _{FSM}	10 ms, sin 180°, T _j = 150 °C			430		
Tj				-40 175		
Module						
I _{t(RMS)}	T _{terminal} = 80 °C, 20 A per spring			160		
T _{stg}				-40 125		
Visol	AC sinus 50 Hz, t = 1 min			2500		
Characte	ristics					
Symbol	Conditions		min.	typ.	max.	Unit
Inverter -	IGBT					
V _{CE(sat)}	I _C = 75 A V _{GE} = 15 V chiplevel	T _j = 25 °C		1.85	2.10	V
		T _j = 150 °C		2.25	2.45	V
VCE0		T _i = 25 °C		0.80	0.90	v

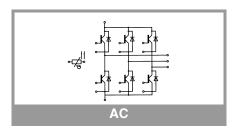
Inverter	- IGBT					
V _{CE(sat)}	I _C = 75 A	T _j = 25 °C		1.85	2.10	V
	V _{GE} = 15 V chiplevel	T _j = 150 °C		2.25	2.45	V
V _{CE0}	chiplevel	T _j = 25 °C		0.80	0.90	V
		T _j = 150 °C		0.70	0.80	V
r _{CE}	V _{GE} = 15 V	T _j = 25 °C		14	16	mΩ
	chiplevel	T _j = 150 °C		21	22	mΩ
$V_{\text{GE(th)}}$	$V_{GE} = V_{CE}, I_C = 3 \text{ m}$	$V_{GE} = V_{CE}, I_C = 3 \text{ mA}$		5.8	6.5	V
I _{CES}	$V_{GE} = 0 V, V_{CE} = 12$	00 V, T _j = 25 °C		0.1	0.3	mA
Cies		f = 1 MHz		4.40		nF
Coes	$V_{GE} = 0 V$	f = 1 MHz		0.29		nF
C _{res}		f = 1 MHz		0.24		nF
Q _G	- 8 V+ 15 V			425		nC
R _{Gint}	T _j = 25 °C			10		Ω
t _{d(on)}	$V_{CC} = 600 V$	T _j = 150 °C		145		ns
t _r	$l_{\rm C} = 75 \rm{A}$	T _j = 150 °C		45	ns	
Eon	$R_{G \text{ on}} = 1 \Omega$ $R_{G \text{ off}} = 1 \Omega$	T _j = 150 °C		11.5		mJ
t _{d(off)}	di/dt _{on} = 1560 A/µs	T _j = 150 °C		350		ns
t _f	di/dt _{off} = 1180 A/µs	T _j = 150 °C		65		ns
E _{off}	V _{GE} = +15/-15 V	T _j = 150 °C		6.8		mJ
R _{th(j-s)}	per IGBT, λ _{paste} =0.8 W/(mK)			0.58		K/W
R _{th(j-s)}	per IGBT, λ _{paste} =2.5	per IGBT, λ _{paste} =2.5 W/(mK)		0.44		K/W

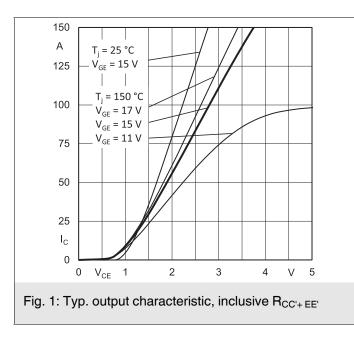
MiniSKiiP[®] 3

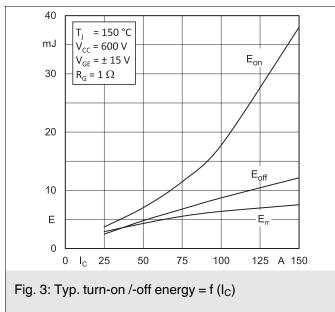
SKiiP 37AC12T4V1

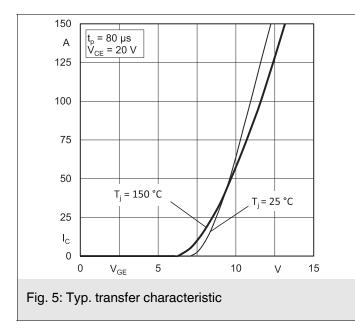
Features

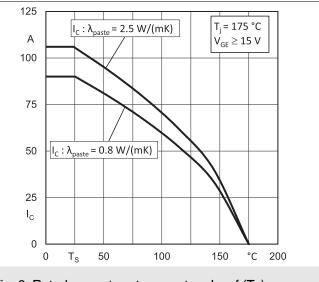
- Trench 4 IGBTs
- Robust and soft freewheeling diodes in CAL technology
- Highly reliable spring contacts for
- electrical connectionsUL recognised: File no. E63532

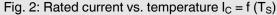

Typical Applications*

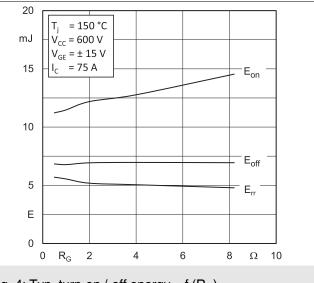

- Inverter up to 36 kVA
- Typical motor power 22 kW

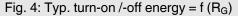

Remarks

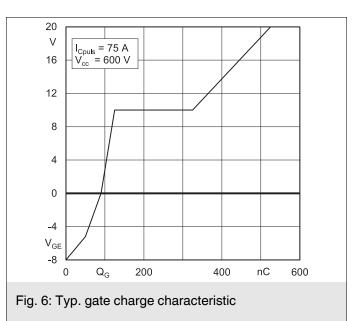

- Max. case temperature limited to $T_C=125^{\circ}C$
- Product reliability results valid for T_i≤150°C (recommended T_{i on}=-40...+150°C)
- T_{j,op}=-40...+150°C)
 MiniSKiiP "Technical Explanations" and "Mounting Instructions" are part of the data sheet. Please refer to both documents for further information.

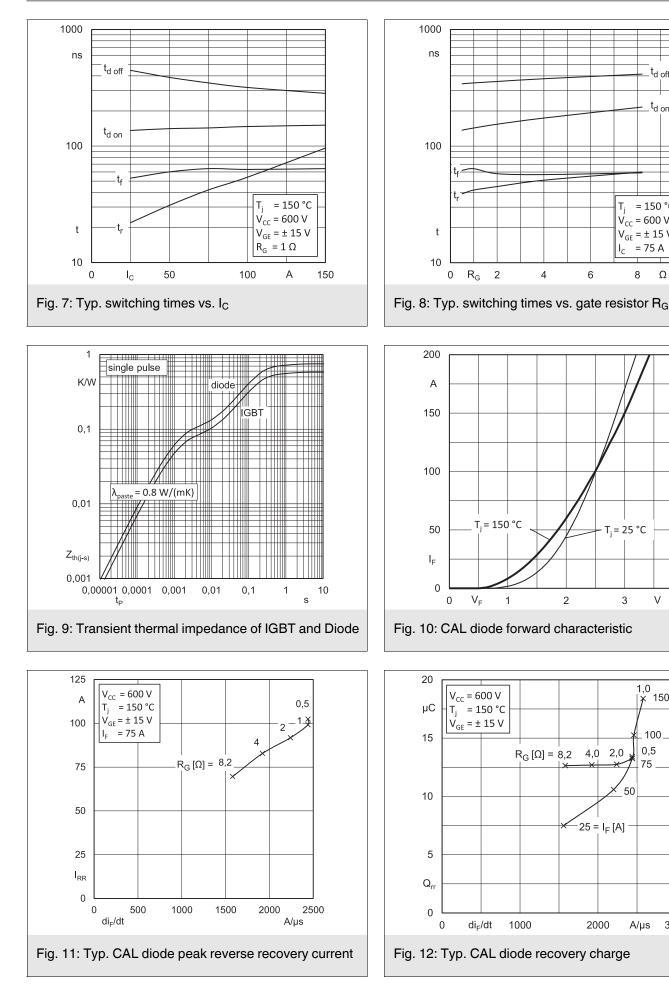

Characte	ristics					
Symbol	Conditions		min.	typ.	max.	Unit
Inverse -	Diode					
$V_F = V_{EC}$	I _F = 75 A	T _j = 25 °C		2.17	2.49	V
	V _{GE} = 0 V chiplevel	T _j = 150 °C		2.11	2.42	V
V _{F0}	chiplevel	T _j = 25 °C		1.30	1.50	V
		T _j = 150 °C		0.90	1.10	V
۲ _F	chiplevel	T _j = 25 °C		12	13	mΩ
		T _j = 150 °C		16	18	mΩ
I _{RRM}	I _F = 75 A di/dt _{off} = 2440 A/μs +15/-15	T _j = 150 °C		99		Α
Q _{rr}		T _j = 150 °C		13.3		μC
E _{rr}	$V_{CC} = 600 V$	T _j = 150 °C		5.5		mJ
R _{th(j-s)}	per Diode, λ_{paste} =0.8 W/(mK)			0.75		K/W
R _{th(j-s)}	per Diode, λ_{paste} =2.5 W/(mK)			0.61		K/W
Module	÷	·				
L _{CE}						nH
Ms	to heat sink		2		2.5	Nm
w				82		g
Temperat	ure Sensor					
R ₁₀₀	T _r =100°C (R ₂₅ =1000Ω)			1670 ± 3%		Ω
R(T)	R(T)=1000Ω[1+A(T], A = 7.635*10 ⁻³ °C B = 1.731*10 ⁻⁵ °C ⁻²	-25°C)+B(T-25°C) ² -1,				











A/µs

3000

t_{d off}

t_{d on}

T_j = 150 °C

 $V_{cc} = 600 V$

V_{GE} = ± 15 V

8 Ω 10

 $|_{c}$

T_j = 25 °C

3

V 4

1,0

150

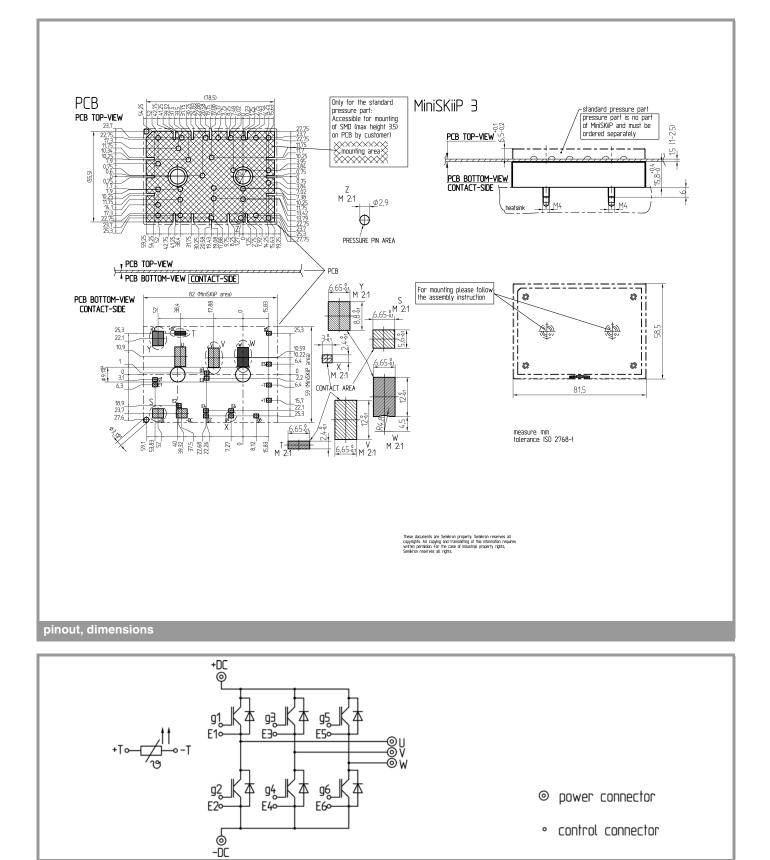
100

0,5

75

50

4,0 2,0


25 = I_F [A]

2000

2

6

= 75 A

pinout

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, chapter IX.

***IMPORTANT INFORMATION AND WARNINGS**

The specifications of SEMIKRON products may not be considered as guarantee or assurance of product characteristics ("Beschaffenheitsgarantie"). The specifications of SEMIKRON products describe only the usual characteristics of products to be expected in

typical applications, which may still vary depending on the specific application. Therefore, products must be tested for the respective application in advance. Application adjustments may be necessary. The user of SEMIKRON products is responsible for the safety of their applications embedding SEMIKRON products and must take adequate safety measures to prevent the applications from causing a physical injury, fire or other problem if any of SEMIKRON products become faulty. The user is responsible to make sure that the application design is compliant with all applicable laws, regulations, norms and standards. Except as otherwise explicitly approved by SEMIKRON in a written document signed by authorized representatives of SEMIKRON, SEMIKRON products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury. No representation or warranty is given and no liability is assumed with respect to the accuracy, completeness and/or use of any information herein, including without limitation, warranties of non-infringement of intellectual property rights of any third party. SEMIKRON does not assume any liability arising out of the applications or use of any product; neither does it convey any license under its patent rights, copyrights, trade secrets or other intellectual property rights of any third party which may arise from applications. Due to technical requirements our products may contain dangerous substances. For information on the types in question please contact the nearest SEMIKRON sales office. This document supersedes and replaces all information previously supplied and may be superseded by updates. SEMIKRON reserves the right to make changes.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for IGBT Modules category:

Click to view products by Semikron manufacturer:

Other Similar products are found below :

 F3L100R07W2E3_B11
 F3L15R12W2H3_B27
 F3L400R07ME4_B22
 F3L400R12PT4_B26
 F4-100R12KS4
 F4-50R07W2H3_B51
 F4

 75R12KS4_B11
 FB15R06W1E3
 FB20R06W1E3_B11
 FD1000R33HE3-K
 FD300R06KE3
 FD300R12KE3
 FD300R12KS4_B5

 FD400R12KE3
 FD400R33KF2C-K
 FD401R17KF6C_B2
 FD-DF80R12W1H3_B52
 FF100R12KS4
 FF1200R17KE3_B2
 FF150R12KE3G

 FF200R06KE3
 FF200R06YE3
 FF200R12KT3
 FF200R12KT3_E
 FF200R12KT4
 FF200R17KE3
 FF300R12KE4_E

 FF300R12KS4HOSA1
 FF300R12ME4_B11
 FF300R12MS4
 FF300R12MS4
 FF300R12ME4_F4
 FF450R17IE4
 FF600R12IE4V

 FF600R12IP4V
 FF800R17KP4_B2
 FF900R12IE4V
 MIXA30W1200TED
 MIXA450PF1200TSF
 FP06R12W1T4_B3
 FP100R07N3E4

 FP100R07N3E4_B11
 FP10R12W1T4_B11
 FP10R12YT3
 FP10R12YT3_B4
 FP150R07N3E4
 FP15R12KT3

 FP15R12W2T4
 F
 FF150R12W1T4_B11
 FF10R12YT3
 FP10R12YT3_B4
 FP150R07N3E4
 FP15R12KT3