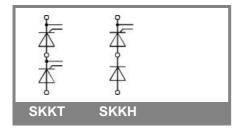
SKKT 57, SKKH 57, SKKT 57B

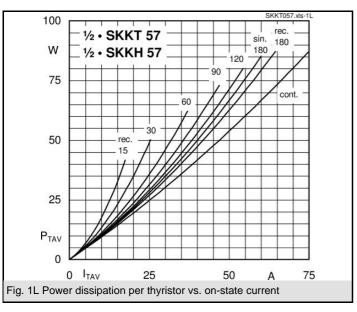
V _{RSM}	V_{RRM}, V_{DRM}	I _{TRMS} = 95 A (maximum value for continuous operation)			
V	V	I _{TAV} = 55 A (sin. 180; T _c = 80 °C)			
900	800	SKKT 57/08E	SKKT 57B08E	SKKH 57/08E	
1300	1200	SKKT 57/12E	SKKT 57B12E	SKKH 57/12E	
1500	1400	SKKT 57/14E	SKKT 57B14E	SKKH 57/14E	
1700	1600	SKKT 57/16E	SKKT 57B16E	SKKH 57/16E	
1900	1800	SKKT 57/18E	SKKT 57B18E	SKKH 57/18E	

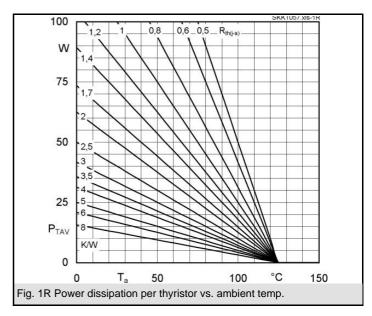
SEMIPACK[®] 1

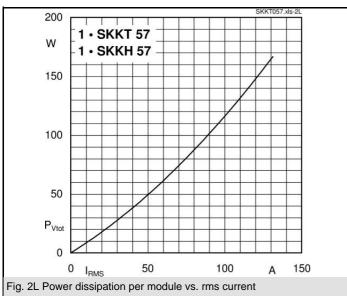
Thyristor / Diode Modules

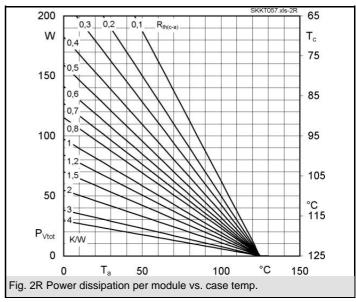
SKKT 57 SKKH 57 SKKT 57B

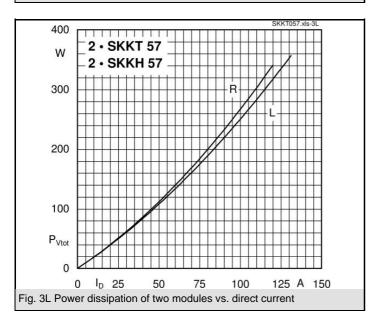

Features

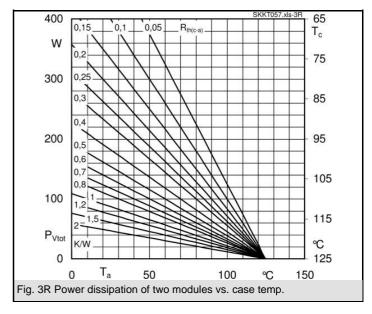

- Heat transfer through aluminium oxide ceramic isolated metal baseplate
- Hard soldered jounts for high reliability
- UL recognized, file no. E 63 532

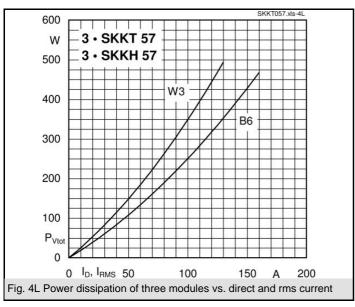

Typical Applications*

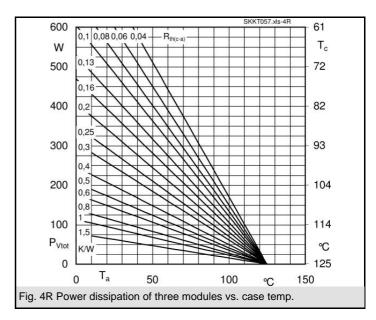

- DC motor control (e. g. for machine tools)
- · AC motor soft starters
- Temperature control (e. g. for ovens, chemical processes)
- Professional light dimming (studios, theaters)
- 1) See the assembly instructions

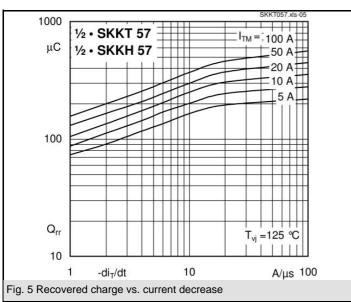

Symbol	Conditions	Values	Units
I _{TAV}	sin. 180; T _c = 85 (100) °C;	50 (35)	Α
I _D	P3/180; T _a = 45 °C; B2 / B6	57 / 68	Α
	P3/180F; T _a = 35 °C; B2 / B6	100 /130	Α
I_{RMS}	P3/180F; T _a = 35 °C; W1 / W3	130 / 3 x 100	Α
I _{TSM}	T _{vi} = 25 °C; 10 ms	1500	Α
	$T_{vi} = 125 ^{\circ}\text{C}; 10 \text{ms}$	1250	Α
i²t	T _{vj} = 25 °C; 8,3 10 ms	11000	A²s
	T _{vj} = 125 °C; 8,3 10 ms	8000	A²s
V _T	T _{vi} = 25 °C; I _T = 200 A	max. 1,65	V
$V_{T(TO)}$	T _{vi} = 125 °C	max. 0,9	V
r _T	T _{vj} = 125 °C	max. 3,5	mΩ
I_{DD} ; I_{RD}	T_{vj} = 125 °C; $V_{RD} = V_{RRM}$; $V_{DD} = V_{DRM}$	max. 15	mA
t _{gd}	T_{vj} = 25 °C; I_G = 1 A; di_G/dt = 1 A/ μ s	1	μs
t _{gr}	$V_{\rm D} = 0.67 * V_{\rm DRM}$	2	μs
(di/dt) _{cr}	T _{vi} = 125 °C	max. 150	A/µs
(dv/dt) _{cr}	T _{vi} = 125 °C	max. 1000	V/µs
t _q	T _{vi} = 125 °C ,	80	μs
I _H	T _{vj} = 25 °C; typ. / max.	150 / 250	mA
I_L	$T_{vj} = 25 {}^{\circ}\text{C}; R_{G} = 33 \Omega; \text{typ.} / \text{max.}$	300 / 600	mA
V _{GT}	T _{vi} = 25 °C; d.c.	min. 3	V
I _{GT}	$T_{vi} = 25 ^{\circ}\text{C}; \text{d.c.}$	min. 150	mA
V_{GD}	$T_{vj} = 125 ^{\circ}\text{C}; \text{d.c.}$	max. 0,25	V
I_{GD}	$T_{vj} = 125 ^{\circ}\text{C}; \text{d.c.}$	max. 6	mA
R _{th(j-c)}	cont.; per thyristor / per module	0,57 / 0,29	K/W
R _{th(j-c)}	sin. 180; per thyristor / per module	0,6 / 0,3	K/W
R _{th(j-c)}	rec. 120; per thyristor / per module	0,64 / 0,32	K/W
$R_{th(c-s)}$	per thyristor / per module	0,2 / 0,1	K/W
T_{vi}		- 40 + 125	°C
T _{stg}		- 40 + 125	°C
V _{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 min.	3600 / 3000	V~
M _s	to heatsink	5 ± 15 % ¹⁾	Nm
M_t	to terminals	3 ± 15 %	Nm
а		5 * 9,81	m/s²
m	approx.	95	g
Case	SKKT	A 46	
	SKKTB	A 48	
	SKKH	A 47	

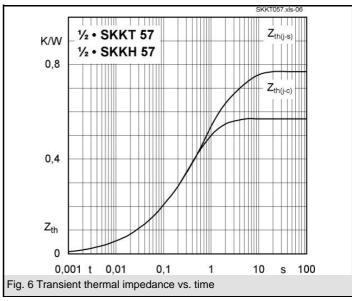


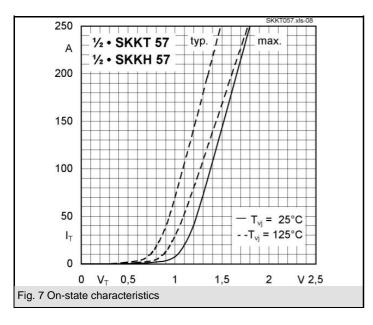


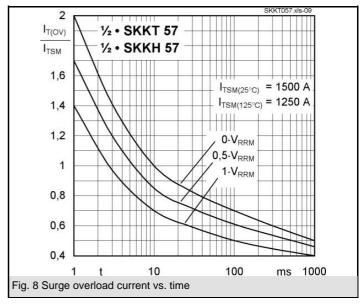


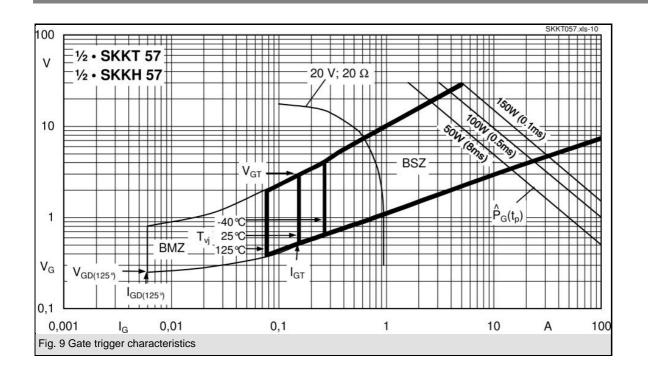


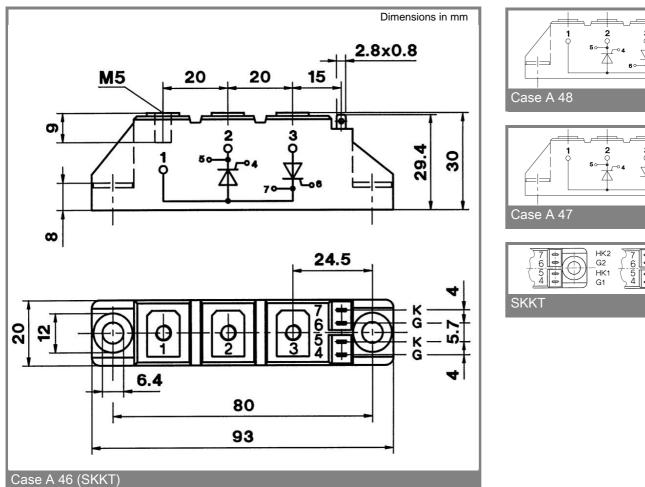


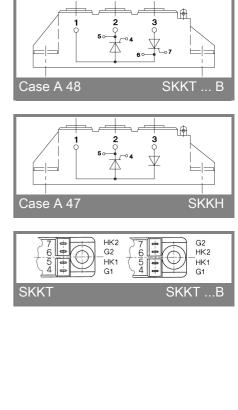



SKKT 57, SKKH 57, SKKT 57B









05-04-2011 GIL © by SEMIKRON

^{*} The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our staff.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Discrete Semiconductor Modules category:

Click to view products by Semikron manufacturer:

Other Similar products are found below:

M252511FV DD260N12K-A DD285N02K DD380N16A DD89N1600K-A APT2X21DC60J APT58M80J B522F-2-YEC MSTC90-16
ND104N16K 25.163.0653.1 25.163.2453.0 25.163.4253.0 25.190.2053.0 25.194.3453.0 25.320.4853.1 25.320.5253.1 25.326.3253.1
25.326.3553.1 25.330.1653.1 25.330.4753.1 25.330.5253.1 25.334.3253.1 25.334.3353.1 25.350.2053.0 25.352.4753.1 25.522.3253.0
T483C T484C T485F T485H T512F-YEB T513F T514F T554 T612FSE 25.161.3453.0 25.179.2253.0 25.194.3253.0 25.325.1253.1
25.326.4253.1 25.330.0953.1 25.332.4353.1 25.350.1653.0 25.350.2453.0 25.352.1653.0 25.352.2453.0 25.352.5453.1
25.522.3353.0