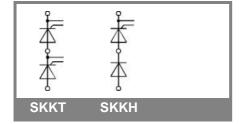
SKKT 273; SKKH 273

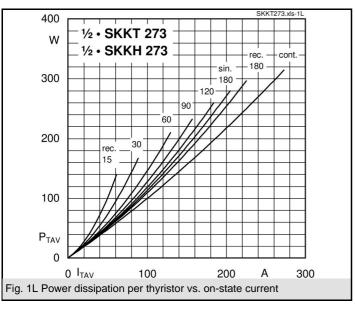
SEMIPACK[®] 3

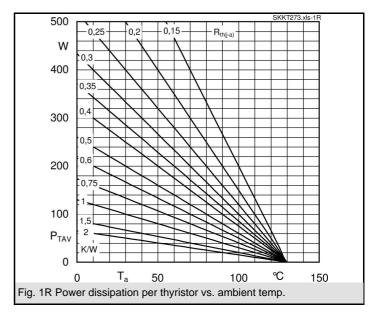
Thyristor / Diode Modules

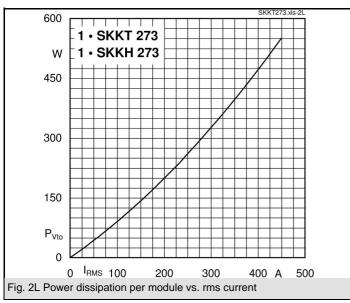
SKKT 273 SKKH 273

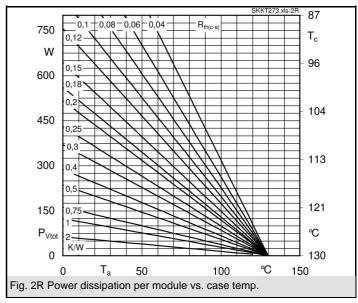
Features

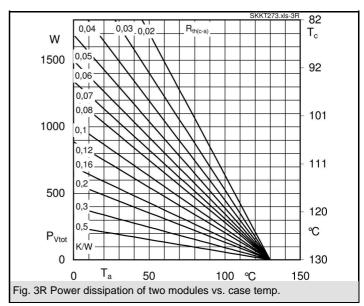

- Industrial standard package
- · Electrically insulated base plate
- Heat transfer through aluminum oxide ceramic insulated metal base plate
- Chip soldered on direct copper bonded Al₂O₃ ceramic
- Thyristor with center gate
- UL recognition applied for file no. E63532

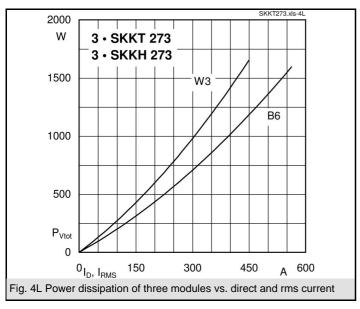

Typical Applications*

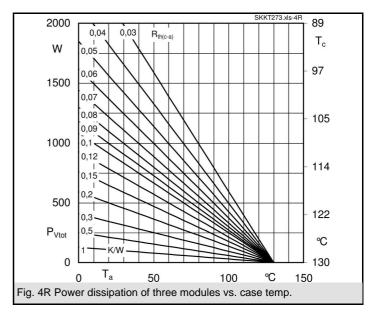

- · DC motor control (e. g. for machine tools)
- Temperature control (e. g. for ovens, chemical processes)
- · Professional light dimming (studios, theaters)
- 1) See the assembly instructions

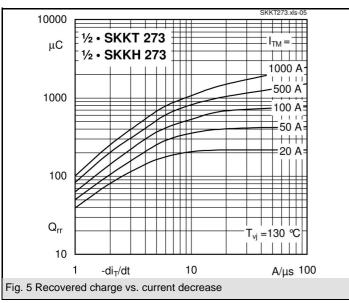

V _{RSM}	V_{RRM}, V_{DRM}	I _{TRMS} = 450 A (maximum value for continuous operation)		
V	V	I _{TAV} = 273 A (sin. 180; T _c = 85 °C)		
1300	1200	SKKT 273/12E	SKKH 273/12E	
1700	1600	SKKT 273/16E	SKKH 273/16E	
1900	1800	SKKT 273/18E	SKKH 273/18E	

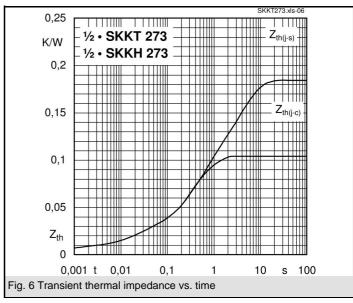

Symbol	Conditions	Values	Units
I _{TAV}	sin. 180; T _c = 85 (100) °C;	273 (202)	Α
I _{TSM}	T _{vi} = 25 °C; 10 ms	9000	Α
	T _{vi} = 130 °C; 10 ms	8000	Α
i²t	T _{vj} = 25 °C; 8,3 10 ms	405000	A²s
	T _{vj} = 130 °C; 8,3 10 ms	320000	A²s
V _T	T _{vi} = 25 °C; I _T = 750 A	max. 1,6	V
$V_{T(TO)}$	T _{vi} = 130 °C	max. 0,9	V
r _T	$T_{vj} = 130 ^{\circ}\text{C}$	max. 0,92	$m\Omega$
I_{DD} ; I_{RD}	T_{vj} = 130 °C; V_{RD} = V_{RRM} ; V_{DD} = V_{DRM}	max. 100	mA
t _{gd}	$T_{vi} = 25 \text{ °C}; I_G = 1 \text{ A}; di_G/dt = 1 \text{ A/}\mu\text{s}$	1	μs
t _{gr}	V _D = 0,67 * V _{DRM}	2	μs
(di/dt) _{cr}	T _{vi} = 130 °C	max. 130	A/µs
(dv/dt) _{cr}	T _{vi} = 130 °C	max. 1000	V/µs
t _q	T_{vj}^{3} = 130 °C ,typ.	150	μs
IH	T_{vj} = 25 °C; typ. / max.	150 / 500	mA
IL	T_{vj} = 25 °C; R_G = 33 Ω ; typ. / max.	300 / 2000	mA
V_{GT}	T _{vj} = 25 °C; d.c.	min. 2	V
I_{GT}	$T_{vj} = 25 ^{\circ}\text{C}; \text{d.c.}$	min. 150	mA
V_{GD}	$T_{vj} = 130 ^{\circ}\text{C}; \text{d.c.}$	max. 0,25	V
I_{GD}	T _{vj} = 130 °C; d.c.	max. 10	mA
R _{th(j-c)}	cont.; per thyristor / per module	0,104 / 0,052	K/W
R _{th(j-c)}	sin. 180; per thyristor / per module	0,108 / 0,054	K/W
R _{th(j-c)}	rec. 120; per thyristor / per module	0,122 / 0,061	K/W
$R_{th(c-s)}$	per thyristor / per module	0,08 / 0,04	K/W
T_{vj}		- 40 + 130	°C
T_{stg}		- 40 + 125	°C
V _{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 min.	3600 / 3000	V~
M_s	to heatsink	5 ± 15 % ¹⁾	Nm
M_t	to terminals	9 ± 15 %	Nm
а		5 * 9,81	m/s²
m	approx.	410	g
Case	SKKT	A 43a	
	SKKH	A 56a	
	ı	· ·	

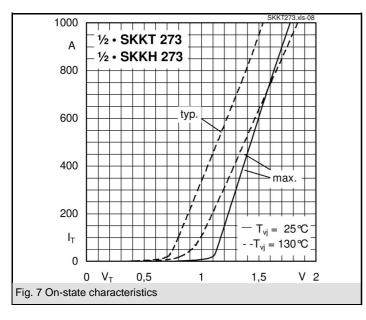


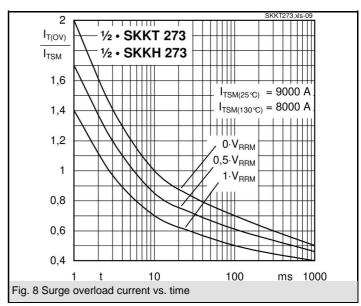


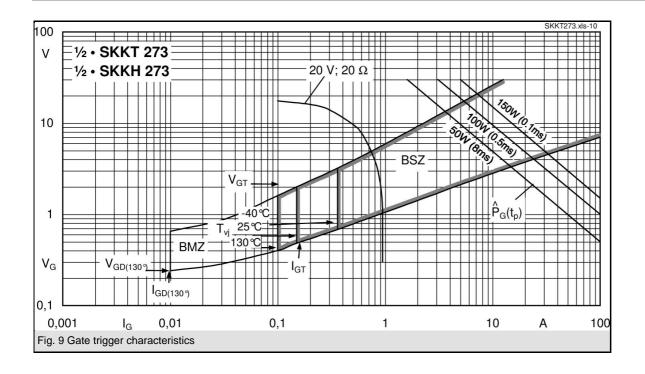


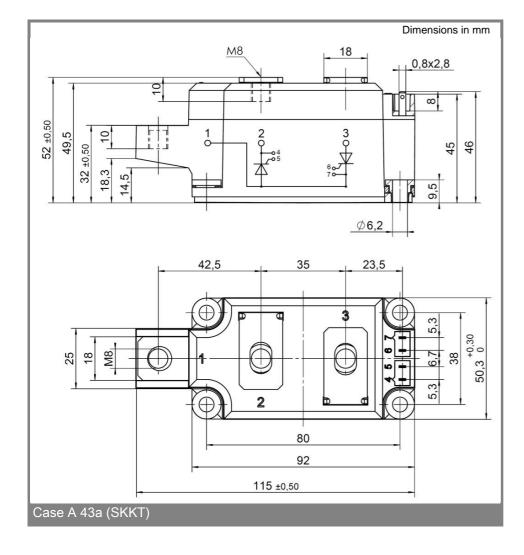


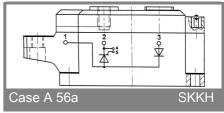



SKKT 273; SKKH 273









^{*} The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We

SKKT 273; SKKH 273

therefore strongly recommend prior consultation of our personal.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for SCR Modules category:

Click to view products by Semikron manufacturer:

Other Similar products are found below:

DT430N22KOF T1401N42TOH T1851N60TOH T390N14TOF T420N12TOF T470N16TOF T640N16TOF T901N36TOF TD140N18KOF

TD142N16KOF TD162N16KOF-A TD250N12KOF TD330N16AOF TT215N22KOF TZ310N20KOF TZ425N12KOF TZ500N12KOF

T300N14TOF T3710N06TOF VT T390N16TOF T460N24TOF T501N70TOH T560N16TOF T640N14TOF TD250N14KOF

TT600N16KOF TZ500N16KOF TZ240N36KOF TT210N12KOF NTE5710 TD180N16KOF TT240N28KOF TZ425N14KOF

T1081N60TOH TT61N08KOF TD251N18KOF TT162N08KOF TZ430N22KOF TT180N12KOF T2001N34TOF VS-ST230S16P0PBF

TD140N22KOF MDMA200P1600SA TT180N16KOF VS-ST333C08LFM0 VS-ST180C14COL T1080N02TOF TD320N16SOF

T360N22TOF TZ810N22KOF