

High Sensitive Hall Effect Bipolar Switches

Description

The SC1245 Hall-Effect switch, produced with high voltage Bipolar technology, has been designed specifically for automotive and industrial applications. New considerations are given not only to protect the IC from the high voltage transients, but also achieving a high degree of noise immunity.

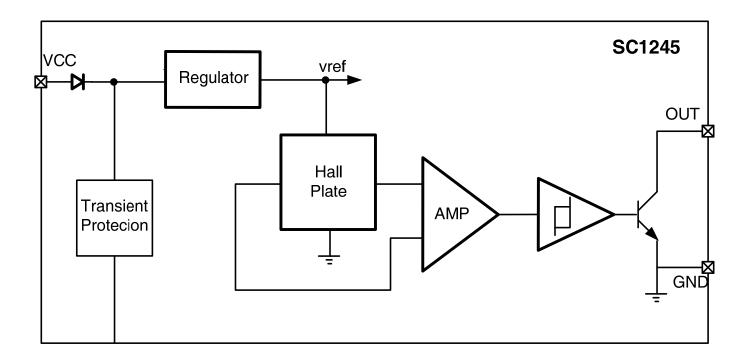
Each device includes a voltage regulator for operation with supply voltages of 3.8 to 40V volts, quadratic Hall-voltage generator, temperature compensation circuitry, small-signal amplifier, Schmitt trigger, and an open-collector output to sink up to 40mA.

Features and Benefits

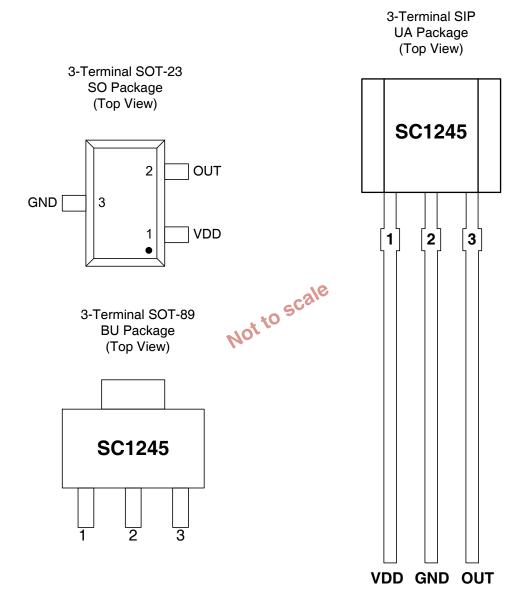
- 3.8 to 40V supply voltage
- High transient voltage protection
- 40mA sinking capability
- High ESD rating
- 3-pin SIP, SOT-23 and SOT-89 packages are available
- Operate/release points symmetrical around zero gauss
- RoHs compliant

Potential Applications

- Brushless DC motor
- Motor and fan control
- Automotive transmission position


Device Information

Part Number	Packing	Mounting	Ambient, T _A	Marking
SC1245UA	1000 pieces/Bag	SIP3	-40℃ to 150℃	1245
SC1245BU	1000 pieces/Reel	SOT-89	-40℃ to 150℃	1245
SC1245SO-N	3000 pieces/Reel	SOT-23	-40℃ to 150℃	1245


Function Description

The circuit includes Hall generator, amplifier and Schmitt-Trigger on one chip. The internal reference provides the supply voltage for the components. A magnetic field perpendicular to the chip surface induces a voltage at the Hall probe. This voltage is amplified and switches as a Schmitt-Trigger with open-collector output. A protection diode against reverse power supply is integrated.

Pin Description

Т	erminal				
Nome	Number		Type	Description	
Name	UA,BU	SO			
VDD	1	1	PWR	3.8 to 40 V power supply	
GND	2	3	Ground	Ground terminal	
OUT	3	2	Output	Open-collector output	

Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)

Parameter	Symbol	Min.	Max.	Units
Power supply voltage	Vcc	-40	60	V
Output terminal voltage	V _{OUT}	-0.5	60	V
Output terminal current sink	Isink	0	50	mA
Operating ambient temperature	T _A	-40	150	$^{\circ}$
Maximum junction temperature	TJ	-55	165	${\mathbb C}$
Storage temperature	T _{STG}	-65	175	${\mathbb C}$

⁽¹⁾Stresses above those listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD Protection

Human Body Model (HBM) tests according to: standard EIA/JESD22-A114-B HBM

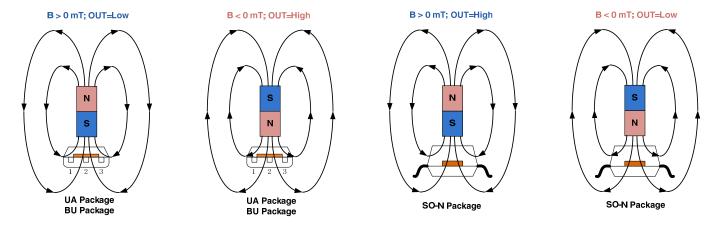
Parameter	Symbol	Min.	Max.	Units
ESD-Protection	V _{ESD}	-2	2	ΚV

Electrical and magnetic Specifications

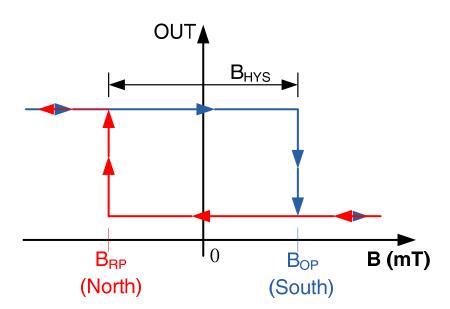
over operating free-air temperature range (Vcc =5V, unless otherwise noted)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units	
Vcc	Operating voltage ⁽¹⁾	T _J < T _{J (Max.)}	3.8	1	40	V	
Icc	Operating supply current	Vcc=3.8 to 40 V, T _A =25°C	1	4.0	10	mA	
IQL	Off-state leakage current	Output Hi-Z	1	1	3	uA	
V _{SAT}	Output saturation voltage	I _Q =20mA, T _A =25℃	1	1	300	mV	
t _r	Output rise time	R1=1Kohm Co=20pF		-	1.5	uS	
t f	Output fall time	R1=1Kohm Co=20pF	1	0.5	1.5	uS	
Magnetic Characteristics							
f _{BW}	Bandwidth		-	-	100	kHz	
Вор	Operated point		0.5	+5.0	9.5	mT ⁽²⁾	
BRP	Release point	T _A =25℃	-9.5	-5.0 ⁽³⁾	-0.5	mT	
B _{HYS}	Hysteresis			10.0		mT	

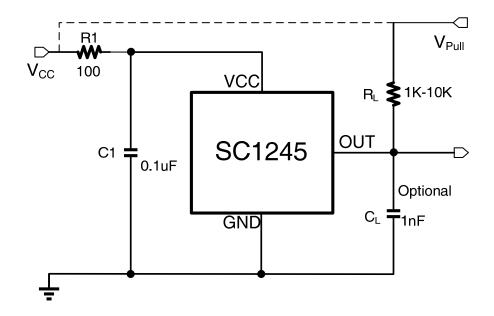
⁽¹⁾ Maximum voltage must be adjusted for power dissipation and junction temperature, see Thermal Characteristics


^{(2) 1}mT=10Gs

⁽³⁾ Magnetic flux density, B, is indicated as a negative value for North-polarity magnetic fields, and as a positive value for South-polarity magnetic fields.


Field Direction Definition

A positive magnetic field is defined as a South pole near the marked side of the package.


Transfer Function

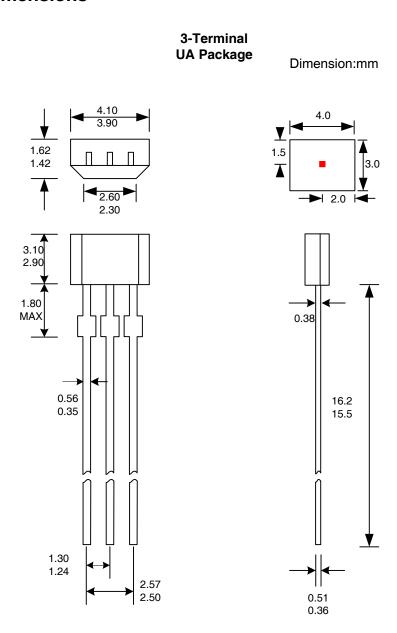
Powering-on the device in the hysteresis region, less than B_{OP} and higher than B_{RP} , allows an indeterminate output state. The correct state is attained after the first excursion beyond B_{OP} or B_{RP} . If the field strength is greater than B_{OP} , then the output is pulled low. If the field strength is less than B_{RP} , the output is released.

Typical Application

The SC1245 contains an on-chip voltage regulator and can operate over a wide supply voltage range. In applications that operate the device from an unregulated power supply, transient protection must be added externally. For applications using a regulated line, EMI/RFI protection may still be required. R1 is for improved CI performance, and could be 100 or 200 Ω typically.

The SC1245 device output stage uses an open-drain NPN transistor, and it is rated to sink up to 40mA of current. For proper operation, calculate the value of the pull-up resistor R_L is required. The size of R_L is a tradeoff between OUT rise time and the load capacity when OUT is pulled low. A lower current is generally better, however faster transitions and bandwidth require a smaller resistor for faster switching.

Select a vaule for C_L based on the system bandwidth specifications as:


$$2 \times f(Hz) = \frac{1}{2\pi \times R \times C}$$

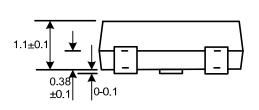
Most applications do not require this C_L filtering capacitor.

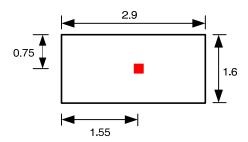
V_{PULL} is not restricted to V_{CC}, and could be connected to other voltage reference. The allowable voltage range of this terminal is specified in the Absolute Maximum Ratings.

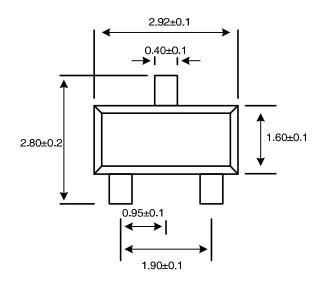
Mechanical Dimensions

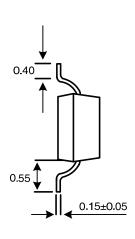
Notes:

- 1. Exact body and lead configuration at vendor's option within limits shown.
- 2. Height does not include mold gate flash.


Where no tolerance is specified, dimension is nominal.



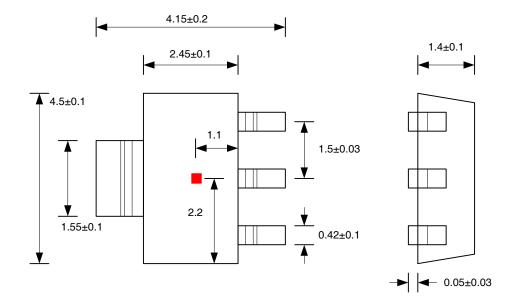

Mechanical Dimensions


3-Terminal SO Package

Dimension:mm

Notes:

- 1. Exact body and lead configuration at vendor's option within limits shown.
- 2. Height does not include mold gate flash.


Where no tolerance is specified, dimension is nominal.

Mechanical Dimensions

3-Terminal BU Package

Dimention: mm

Notes:

- 1. Exact body and lead configuration at vendor's option within limits shown.
- 2. Height does not include mold gate flash.

Where no tolerance is specified, dimension is nominal.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Board Mount Hall Effect/Magnetic Sensors category:

Click to view products by Semiment manufacturer:

Other Similar products are found below:

HGPRDT005A AH277AZ4-AG1 AV-10379 AV-10448 SS41C AH1894-Z-7 TLE4917 50017859-003 TY-13101 TLE4976L SS85CA
BU52002GUL-E2 BU52003GUL-E2 AH277AZ4-BG1 TLE49614MXTSA1 AH211Z4-AG1 AH3360-FT4-7 TLE4941-1 SS460S100SAMPLE 50065820-03 AH374-P-A AH3372-P-B AH1806-P-A TLE49595UFXHALA1 SS460P-T2 AH1913-W-7 AH3373-P-B
TLE9852QXXUMA1 TLE5046ICAKLRHALA1 AH1903-FA-EVM AH49FNTR-EVM AH8502-FDC-EVM AH3774-P-EVM
TLE4998S3XALA1 TLE5011FUMA1 TLE5027CE6747HAMA1 TLE5109A16E1210XUMA1 TLI4966GHTSA1 TLI4906KHTSA1
MA710GQ-P S-57K1NBL2A-M3T2U S-57P1NBL9S-M3T4U S-576ZNL2B-L3T2U S-576ZNL2B-A6T8U S-57P1NBL0S-M3T4U S-57A1NSL1A-M3T2U S-57K1RBL1A-M3T2U S-57P1NBH9S-M3T4U S-57P1NBH0S-M3T4U S-57A1NSH1A-M3T2U