High Sensitivity Omnipolar Hall-effect Sensor

Features

- Digital Omni-polar Hall-Effect sensor
- High chopping frequency
- Very high sensitivity
- Superior temperature stability
- Supports a wide voltage range

$$
-\quad 2.5 \text { to } 24 \mathrm{~V}
$$

- Operating from unregulated supply
- Reverse battery protection (up to 28 V)
- Over-voltage protection at all pins
- Robust EMC performance
- Solid-state reliability
- Small package
- 3-pin SIP
- 3-pin SOT-23

Output State

Applications

- Flow meters
- Magnetic encoding
- Proxmimity sensing
- Garage door openers
- Power sliding doors
- Sunroofs motor

Description

The SC246X family, produced with BiCMOS technology, is a chopper-stabilized Hall Effect Sensor that offers a magnetic sensing solution with superior sensitivity stability over temperature and integrated protection features.

Superior high-temperature performance is made possible through dynamic offset cancellation, which reduces the residual offset voltage normally caused by device over molding, temperature dependencies, and thermal stress.
Each device includes on a single silicon chip a voltage regulator, Hall-voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, and an open-drain output to sink up to 20 mA .

An onboard regulator permits with supply voltages of 2.5 to 24 V which makes the device suitable for a wide range of industrial and atuomotive applications

The device is available in a 3-pin SIP and a plastic SOT23-3 surface mount package. Both packages are lead(Pb) free, with 100% matte tin leadframe plating.

Device Information

Part Number	Packing	Mounting	Ambient, TA	Bop(Typ.)	BRP(Typ.)
SC2462UA	Bulk, 1000 pieces/bag	SIP3			
SC2462SO	Reel, 3000pieces/reel	SOT-23	$-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	$\pm 2.5 \mathrm{mT}$	$\pm 1.5 \mathrm{mT}$
SC2464UA	Bulk, 1000 pieces/bag	SIP-3			
SC2464SO	Reel, 3000pieces/reel	SOT-23	$-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	$\pm 6.0 \mathrm{mT}$	$\pm 5.0 \mathrm{mT}$

Terminal configuration and functions

3-Terminal SIP
UA Package
(Top View)

3-Terminal SOT-23
SO Package
(Top View)

Terminal			Type	Description
Name	Number			
	UA	SO		
VDD	1	1	PWR	2.5 to 24 V power supply
GND	2	3	Ground	Ground terminal
OUT	3	2	Output	Output terminal

Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)

Parameter	Symbol	Min.	Max.	Units
Power supply voltage	V_{DD}	$-28^{(2)}$	28	V
Output terminal voltage	$\mathrm{V}_{\text {OUT }}$	-0.5	28	V
Output terminal current sink	$\mathrm{I}_{\text {SINK }}$	0	30	mA
Operating ambient temperature	T_{A}	-40	150	${ }^{\circ} \mathrm{C}$
Maximum junction temperature	T_{J}	-55	165	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {STG }}$	-65	175	${ }^{\circ} \mathrm{C}$

${ }^{(1)}$ Stresses above those listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{(2)}$ Ensured by design.

ESD Protection

Human Body Model (HBM) tests according to: standard AEC-Q100-002

Parameter	Symbol	Min.	Max.	Units
ESD-Protection	$\mathrm{V}_{\text {ESD }}$	-4	4	KV

Thermal Characteristics

Symbol	Parameter	Test Conditions	Rating	Units
$R_{J A}$	UA Package thermal resistance	Single-layer PCB, with copper limited to solder pads	166	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$R_{J A}$	SO Package thermal resistance	Single-layer PCB, with copper limited to solder pads	228	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Electrical Characteristics

over operating free-air temperature range ($\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, unless otherwise noted)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Units
$V_{\text {DD }}$	Operating voltage ${ }^{(1)}$	$\mathrm{T}_{\mathrm{J}}<\mathrm{T}_{\text {(Max.) }}$	2.5	--	24	V
$\mathrm{V}_{\text {DDR }}$	Reverse supply voltage		-28	--	--	V
$I_{\text {DD }}$	Operating supply current	$\mathrm{V}_{\mathrm{DD}}=2.5$ to $24 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.8	1.6	2.0	mA
		$\mathrm{V}_{\mathrm{DD}}=2.5$ to $24 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	0.8	1.7	2.0	mA
$\mathrm{t}_{\text {on }}$	Power-on time		--	35	50	$\mu \mathrm{S}$
$\mathrm{l}_{\text {QL }}$	Off-state leakage current	Output Hi-Z	--	--	3	$\mu \mathrm{A}$
$\mathrm{R}_{\text {DS(on) }}$	FET on-resistance	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{l}_{0}=10 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	--	20	--	Ω
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	--	30	--	Ω
t_{d}	Output delay time	$B=B_{\text {RP }}$ to $B_{\text {OP }}$	--	15	25	$\mu \mathrm{S}$
t_{r}	Output rise time (10\% to 90\%)	R1=1Kohm Co=50pF	--	--	0.5	$\mu \mathrm{S}$
t_{f}	Output fall time (90\% to 10\%)	$\mathrm{R} 1=1 \mathrm{Kohm} \mathrm{Co=50pF}$	--	--	0.2	$\mu \mathrm{S}$

(1) Maximum voltage must be adjusted for power dissipation and junction temperature, see Thermal Characteristics

Magnetic Characteristics

over operating free-air temperature range (unless otherwise noted)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Units
f_{BW}	Bandwidth		20	--	--	kHz
SC2462 $\pm 2.5 / \pm 1.5 \mathrm{mT}$						
Bop	Operated point	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1.5	2.5	3.5	mT
BRP	Release point		0.5	1.5	2.5	mT
B Hys	Hysteresis		--	1.0	--	mT
SC2464 $\pm 6.0 / \pm 5.0 \mathrm{mT}$						
Bop	Operated point	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	5.0	6.0	7.0	mT
$\mathrm{B}_{\text {RP }}$	Release point		4.0	5.0	6.0	mT
B Hys	Hysteresis		--	1.0	--	mT

$1 m T=10 G s$
Magnetic flux density, B, is indicated as a negative value for North-polarity magnetic fields, and as a positive value for South-polarity magnetic fields.

Characteristic Data

$V_{Q(\text { sat })}$ vs T_{A}

Characteristic Data (Continued)

SC2462
$B_{O P}$ and $B_{R P}$ vs T_{A}

SC2464
$B_{o P}$ and $B_{R P}$ vs T_{A}

SC2462
$B_{\text {Hys }}$ vs T_{A}

SC2464
$B_{\text {Hys }}$ vs T_{A}

Functional Block Diagram

The SC246X device is a chopper-stabilized Hall sensor with a digital latched output for magnetic sensing applications. The device can be powered with a supply voltage between 2.5 and 24 V , and continuously survives continuous -28 V reverse-battery conditions. The device does not operate when -28 to 2.2 V is applied to the VDD terminal (with respect to the GND terminal). In addtion, the device can withstand voltages up to 40 V for transient durations.

The output of SC246X switches low (turns on) when a magnetic field (South or North polarity) perpendicular to the Hall element exceeds the operate point threshold, Bop. After turn-on, the output is capable of sinking 20 mA and the output voltage is $\mathrm{V}_{\mathrm{Q}(\text { sat) }}$. When the magnetic field is reduced below the release point, B_{RP}, the device output goes high (turns off). The difference in the magnetic operate and release points is the hysteresis, Bhys, of the device. This built-in hysteresis allows clean switching of the output even in the presence of external mechanical vibration and electrical noise.

An external output pull-up resistor is required on the OUT terminal. The OUT terminal can be pulled up to $V_{D D}$ or to a different voltage supply. This allows for easier interfacing with controller circuits.

Field Direction Definition

A positive magnetic field is defined as a South pole near the marked side of the package.
OUT=Low

UA Package
OUT=High

UA Package

SO Package

SO Package

Transfer function

The SC246X exhibits "Omnipolar" magnetic characteristics. It means the device reacts to both North and South magnetic pole. The purpose is to detect the presence of any magnetic field applied on the device. This mode of operation simplifies customer production processes by avoiding the need to detect the Hall sensor pole active on the magnet used in the application. Therefore, the "Omnipolar" magnetic behaviour helps customers by removing the need of magnet pole detection system during production phase.

Powering-on the device in the hysteresis region, less than $B_{o p}$ and higher than $B_{R P}$, allows an indeterminate output state. The correct state is attained after the first excursion beyond $B_{O P}$ or $B_{R P}$. If the field strength is greater than $B_{O p}$, then the output is pulled low. If the field strength is less than $B_{R P}$, the output is released.

Mechanical Dimensions

3-Terminal UA Package
 Dimension:mm

Notes:

1. Exact body and lead configuration at vendor's option within limits shown.
2. Height does not include mold gate flash.

Where no tolerance is specified, dimension is nominal.

Mechanical Dimensions

3-Terminal SO Package

Dimension:mm

Notes:

1. Exact body and lead configuration at vendor's option within limits shown.
2. Height does not include mold gate flash.

Where no tolerance is specified, dimension is nominal.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Industrial Hall Effect/Magnetic Sensors category:
Click to view products by Semiment manufacturer:
Other Similar products are found below :
GT-13013 GT-13040 GT-14114 DRR-129(62-68) ATS682LSHTN-T SR4P2-C7 GT-13012 GT-14049 GT-14067 GT-14132 GT-18030 103FW12-R3 A1155LLHLT-T SMSA2P30CG P2D-000 GN 55.2-SC-15-3 GN 55.2-SC-5-3 MZA70175 103FW41-R1 KJR-D100AN-DNA-VE KJR-D100AN-DNIA-V2 SR-10018 115L 14E 502 W06017 ATS128LSETN-T TLE4906LHALA1 TLE49452LHALA1 BU52013HFV-TR MRMS591A 103SR14A-1 MZT7-03VPS-KR0 MZT7-03VPS-KW0 MZT8-03VPS-KW0 MZT8-28VPS-KP0 A1326LLHLX-T A1326LLHLT-T A1156LLHLT-T ACS770LCB-100U-PFF-T ATS617LSGTN-T AH49ENTR-G1 SS360PT SS311PT GN 55.2-ND-15-3 GN 55.2-ND-18-3 GN 55.2-ND-4-3 GN 55.2-ND-8-3 GN 55.2-SC-10-3 GN 55.4-ND-10-7,5-2 GN 55.4-ND-12-9,5-2,5 GN 55.4-ND-26-20,3-5 GN 55.4-ND-7,5-4-1,5

