2N4400 / 2N4401

NPN Epitaxial Silicon Transistor

General purpose transistor

On special request, these transistors can be manufactured in different pin configurations.

 Emitter 2. Base 3. Collector TO-92 Plastic Package

Absolute Maximum Ratings (T_a = 25 °C)

Parameter	Symbol	Value	Unit
Collector Base Voltage	V _{CBO}	60	V
Collector Emitter Voltage	V _{CEO}	40	V
Emitter Base Voltage	V _{EBO}	6	V
Collector Current	I _C	600	mA
Power Dissipation	P _{tot}	625	mW
Junction Temperature	T _j	150	°C
Storage Temperature Range	T_{stg}	- 55 to + 150	°C

Dated: 12/08/2016 Rev: 01

Characteristics at T_a = 25 °C

Characteristics at 1 _a = 25 °C		Cumbal	Min	Mov	Linit
Parameter		Symbol	Min.	Max.	Unit
DC Current Gain	0114404		00		
at $V_{CE} = 1 \text{ V, } I_C = 0.1 \text{ mA}$	2N4401	h _{FE}	20	-	-
at $V_{CE} = 1 \text{ V}, I_C = 1 \text{ mA}$	2N4400	h _{FE}	20	-	-
-(1)	2N4401	h _{FE}	40	-	-
at $V_{CE} = 1 \text{ V}, I_C = 10 \text{ mA}$	2N4400	h _{FE}	40	-	-
	2N4401	h _{FE}	58	-	-
at $V_{CE} = 1 \text{ V}, I_{C} = 150 \text{ mA}$	2N4400	h _{FE}	50	150	-
	2N4401	h _{FE}	100	300	-
at $V_{CE} = 2 \text{ V}$, $I_C = 500 \text{ mA}$	2N4400	h _{FE}	20	-	-
	2N4401	h _{FE}	40	-	-
Collector Base Cutoff Current		1	_	100	nA
at $V_{CB} = 35 \text{ V}$		I _{CBO}	_	100	ПА
Emitter Base Cutoff Current				400	
at V _{EB} = 5 V		I _{EBO}	-	100	nA
Collector Base Breakdown Voltage					
at I _C = 100 µA		$V_{(BR)CBO}$	60	-	V
Collector Emitter Breakdown Voltage		$V_{(BR)CEO}$	40	_	V
at $I_C = 1 \text{ mA}$		- (BK)CEO			-
Emitter Base Breakdown Voltage		\/	6		V
at I _E = 100 μA		$V_{(BR)EBO}$	6	-	V
Collector Emitter Saturation Voltage					
at $I_C = 150 \text{ mA}$, $I_B = 15 \text{ mA}$		$V_{CE(sat)}$	-	0.4	V
at $I_C = 500$ mA, $I_B = 50$ mA		V CE(sat)	_	0.75	V
				0.7.0	
Base Emitter Saturation Voltage			0.75	0.05	
at $I_C = 150$ mA, $I_B = 15$ mA		$V_{BE(sat)}$	0.75	0.95	V
at $I_C = 500 \text{ mA}, I_B = 50 \text{ mA}$			-	1.2	
Gain Bandwidth Product	2N4400		200	-	NAL I
at $V_{CE} = 10 \text{ V}$, $I_{C} = 20 \text{ mA}$, $f = 100 \text{ MHz}$	2N4401	f⊤	250	-	MHz
Collector Output Capacitance	- '				
l		C_ob	-	12	pF
at $V_{CB} = 5 \text{ V}, f = 100 \text{ MHz}$					
Turn On Time		t _{on}	_	35	ns
at $V_{CC} = 30 \text{ V}$, $V_{BE} = 2 \text{ V}$, $I_C = 150 \text{ mA}$, $I_{B1} = 15 \text{ mA}$	١	-311			
Turn Off Time		+		255	
at $V_{CC} = 30 \text{ V}$, $I_C = 150 \text{ mA}$, $I_{B1} = I_{B2} = 15 \text{ mA}$		t_{off}	-	255	ns
				<u> </u>	

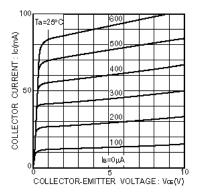


Fig.1 Grounded emitter output characteristics

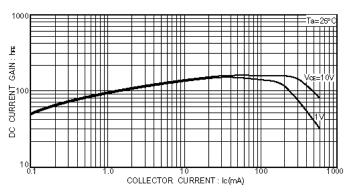


Fig.3 DC current gain vs. collector current(I)

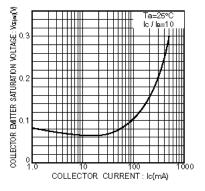


Fig.2 Collector-emitter saturation voltage vs. collector current

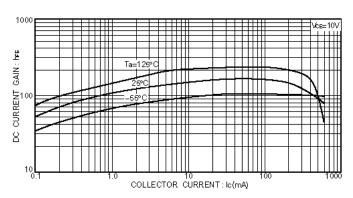


Fig.4 DC current gain vs. collector current(II)

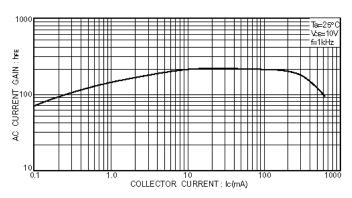


Fig.5 AC current gain vs. collector current

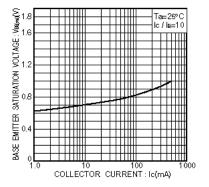


Fig.6 Base-emitter saturation voltage vs. collector current

SEMTECH ELECTRONICS LTD.

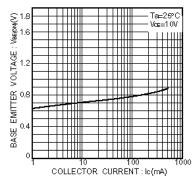


Fig.7 Grounded emitter propagation characteristics

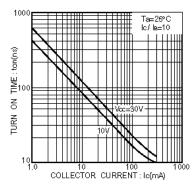


Fig.8 Turn-on time vs. collector current

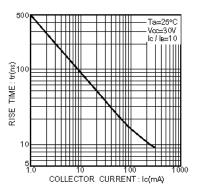


Fig.9 Rise time vs. collector current

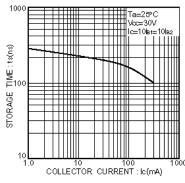


Fig.10 Storage time vs. collector current

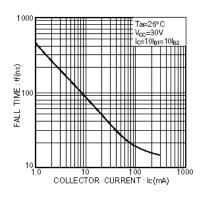


Fig.11 Fall time vs. collector current

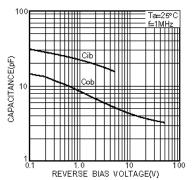


Fig.12 Input / output capacitance vs. voltage

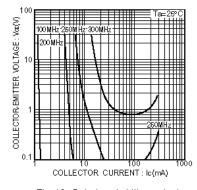


Fig.13 Gain bandwidth product

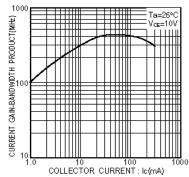


Fig.14 Gain bandwidth product vs. collector current

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by Semtech manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H MMBT-2369-TR BC546/116 BC557/116 BSW67A NJVMJD148T4G NTE123AP-10 NTE153MCP NTE16

NTE195A NTE92 C4460 2N4401-A 2N6728 2SA1419T-TD-H 2SA2126-E 2SB1204S-TL-E 2SC2712S-GR,LF 2SC5488A-TL-H

2SD2150T100R SP000011176 2N2907A 2N3904-NS 2N5769 2SC2412KT146S 2SD1816S-TL-E CPH6501-TL-E MCH4021-TL-E

MJE340 US6T6TR NJL0281DG 732314D CPH3121-TL-E CPH6021-TL-H 873787E IMZ2AT108 UMX21NTR MCH6102-TL-E

NJL0302DG 2N3583 30A02MH-TL-E NSV40301MZ4T1G NTE13 NTE26 NTE282 NTE323 NTE350 NTE81 STX83003-AP