8550

PNP Silicon Epitaxial Planar Transistor

for switching and amplifier applications. Especially suitable for AF-driver stages and low power output stages.

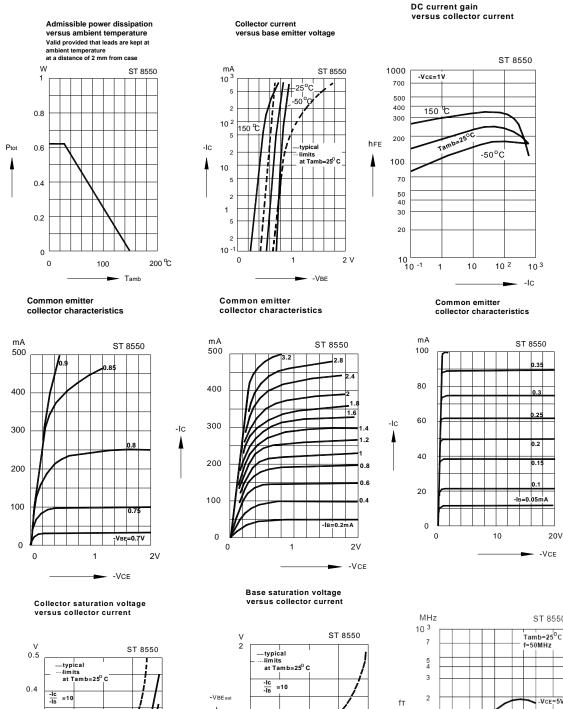
The transistor is subdivided into four groups, B, C, D and E, according to its DC current gain.

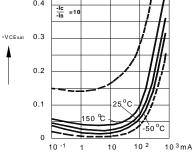
1. Emitter 2. Base 3. Collector TO-92 Plastic Package

Absolute Maximum Ratings (T_a = 25°C)

Parameter	Symbol	Value	Unit	
Collector Base Voltage	-V _{CBO}	40	V	
Collector Emitter Voltage	-V _{CEO}	25	V	
Emitter Base Voltage	-V _{EBO}	6	V	
Collector Current	-I _C	800	mA	
Base Current	-I _B	100	mA	
Power Dissipation	P _{tot}	625	mW	
Junction Temperature	Tj	150	°C	
Storage Temperature Range	T _{stg}	- 55 to + 150	C°	

Characteristics at T_a = 25°C


Parameter	Symbol	Min.	Тур.	Max.	Unit
DC Current Gain at $-V_{CE} = 1 \text{ V}, -I_C = 100 \text{ mA}$ Current Gain Group B C D E	h _{FE} h _{FE} h _{FE} h _{FE}	70 120 160 300	- - -	120 200 300 380	- - -
at $-V_{CE} = 1 \text{ V}, -I_{C} = 350 \text{ mA}$	h _{FE}	60	-	-	-
Collector Base Cutoff Current at $-V_{CB} = 35 \text{ V}$	-I _{CBO}	-	-	100	nA
Collector Base Breakdown Voltage at $-I_C = 10 \ \mu A$	-V _{(BR)CBO}	40	-	-	V
Collector Emitter Breakdown Voltage at $-I_c = 2 \text{ mA}$	-V _{(BR)CEO}	25	-	-	V
Emitter Base Breakdown Voltage at -I _E = 100 μA	-V _{(BR)EBO}	6	-	-	V
Collector Emitter Saturation Voltage at $-I_C = 500 \text{ mA}$, $-I_B = 50 \text{ mA}$	-V _{CE(sat)}	-	-	0.5	V
Base Emitter Saturation Voltage at $-I_{C} = 500 \text{ mA}$, $-I_{B} = 50 \text{ mA}$	-V _{BE(sat)}	-	-	1.2	V
Gain Bandwidth Product at $-V_{CE} = 5 V$, $-I_C = 10 mA$, f = 50 MHz	f _T	-	100	-	MHz
Collector Base Capacitance at $-V_{CB} = 10 \text{ V}, \text{ f} = 1 \text{ MHz}$	C _{ob}	-	12	-	pF



SEMTECH ELECTRONICS LTD.

-Ic

-Ic

0

10 ⁻¹ 1

1

-50 °C

50

10 ²

10 ³ m A

-Ic

10

\$ ISO14001 2004 IECQ QC 08000 ISO/TS Carificate 200 BS-OHSAS 18001 : 2007 Certificate No. 7116

10 ²

7

5 4

3

2

10

1 2

5 10 2

SEMTECH ELECTRONICS LTD. ®

Dated : 12/04/2016 Rev: 02

510²2

-Ic

20V

- -VCE

ST 8550

-VCE=5V

5 10 ³mA

1V

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by Semtech manufacturer:

Other Similar products are found below :

 619691C
 MCH4017-TL-H
 MMBT-2369-TR
 BC546/116
 BC557/116
 BSW67A
 NJVMJD148T4G
 NTE123AP-10
 NTE153MCP
 NTE16

 NTE195A
 NTE92
 C4460
 2N4401-A
 2N6728
 2SA1419T-TD-H
 2SA2126-E
 2SB1204S-TL-E
 2SC2712S-GR,LF
 2SC5488A-TL-H

 2SD2150T100R
 SP000011176
 2N2907A
 2N3904-NS
 2N5769
 2SC2412KT146S
 2SD1816S-TL-E
 CPH6501-TL-E
 MCH4021-TL-E

 MJE340
 US6T6TR
 NJL0281DG
 732314D
 CPH3121-TL-E
 CPH6021-TL-H
 873787E
 IMZ2AT108
 UMX21NTR
 MCH6102-TL-E

 NJL0302DG
 2N3583
 30A02MH-TL-E
 NSV40301MZ4T1G
 NTE13
 NTE26
 NTE323
 NTE350
 NTE81
 STX83003-AP