BC807 / BC808-AH

PNP Silicon Epitaxial Planar Transistors

for switching, AF driver and amplifier applications

These transistors are subdivided into three groups -16, -25 and -40, according to their current gain. As complementary types the NPN transistors BC817 and BC818 are recommended.

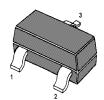
Features

- AEC-Q101 Qualified and PPAP Capable
- Halogen and Antimony Free(HAF), RoHS compliant

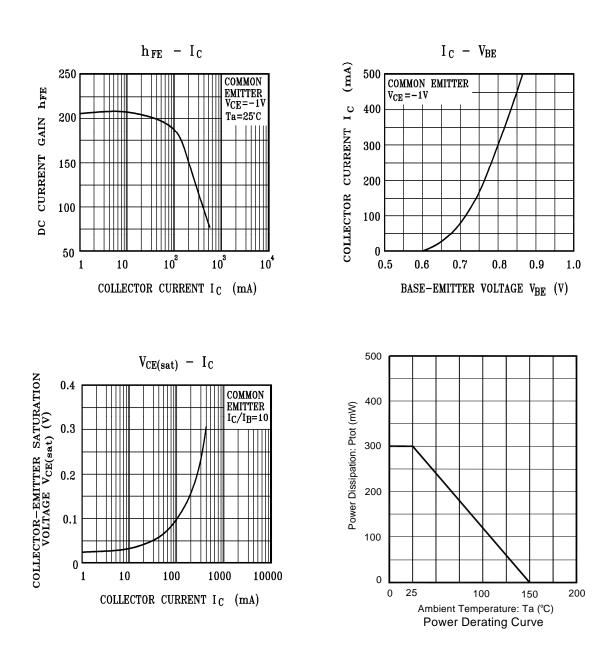
Absolute Maximum Ratings (T_a = 25 °C)

Parameter		Symbol	Value	Unit	
Collector Base Voltage	BC807 BC808	-V _{CBO}	50 30	V	
Collector Emitter Voltage	BC807 BC808	-V _{CEO}	45 25	V	
Emitter Base Voltage		-V _{EBO}	5	V	
Collector Current		-I _C	500	mA	
Power Dissipation		P _{tot}	300	mW	
Junction Temperature		Tj	150	°C	
Storage Temperature Range		T _{stg}	- 55 to + 150	٥C	

Electrical Characteristics at T_a = 25 °C


Parameter		Min.	Тур.	Max.	Unit
$ \begin{array}{c} \mbox{DC Current Gain} \\ \mbox{at -V}_{CE} = 1 \ \mbox{V}, \ \mbox{-I}_{C} = 100 \ \mbox{mA} \\ \mbox{-25} \\ \mbox{-40} \\ \mbox{at -V}_{CE} = 1 \ \mbox{V}, \ \mbox{-I}_{C} = 500 \ \mbox{mA} \\ \end{array} $	h _{FE} h _{FE} h _{FE} h _{FE}	100 160 250 40	- - - -	250 400 600 -	- - - -
Collector Base Cutoff Current at $-V_{CB} = 20 V$	-I _{CBO}	-	-	100	nA
Emitter Base Cutoff Current at $-V_{EB} = 5 V$	-I _{EBO}	-	-	100	nA
Collector Emitter Saturation Voltage at $-I_C = 500 \text{ mA}$, $-I_B = 50 \text{ mA}$	-V _{CE(sat)}	-	-	0.7	V
Base Emitter Voltage at $-I_c = 500 \text{ mA}, -V_{CE} = 1 \text{ V}$	-V _{BE(on)}	-	-	1.2	V
Transition Frequency at $-V_{CE} = 5$ V, $-I_C = 10$ mA, f = 50 MHz	f⊤	80	-	-	MHz
Collector Base Capacitance at $-V_{CB} = 10 \text{ V}, \text{ f} = 1 \text{ MHz}$	C _{cbo}	-	9	-	pF

SEMTECH ELECTRONICS LTD.



1.BASE 2.EMITTER 3.COLLECTOR TO-236 Plastic Package

Dated: 13/09/2016 Rev: 01

SEMTECH ELECTRONICS LTD.

Dated: 13/09/2016 Rev: 01

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by Semtech manufacturer:

Other Similar products are found below :

 619691C
 MCH4017-TL-H
 MMBT-2369-TR
 BC546/116
 BC557/116
 BSW67A
 NJVMJD148T4G
 NTE123AP-10
 NTE153MCP
 NTE16

 NTE195A
 NTE92
 C4460
 2N4401-A
 2N6728
 2SA1419T-TD-H
 2SA2126-E
 2SB1204S-TL-E
 2SC2712S-GR,LF
 2SC5488A-TL-H

 2SD2150T100R
 SP000011176
 2N2907A
 2N3904-NS
 2N5769
 2SC2412KT146S
 2SD1816S-TL-E
 CPH6501-TL-E
 MCH4021-TL-E

 MJE340
 US6T6TR
 NJL0281DG
 732314D
 CPH3121-TL-E
 CPH6021-TL-H
 873787E
 IMZ2AT108
 UMX21NTR
 MCH6102-TL-E

 NJL0302DG
 2N3583
 30A02MH-TL-E
 NSV40301MZ4T1G
 NTE13
 NTE26
 NTE323
 NTE350
 NTE81
 STX83003-AP