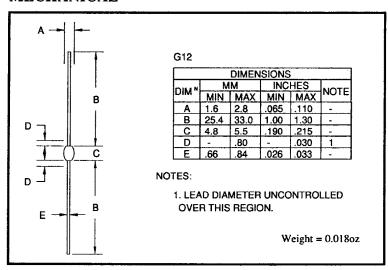
January 7, 1998

TEL:805-498-2111 FAX:805-498-3804 WEB:http://www.semtech.com

AXIAL LEADED HERMETICALLY SEALED HIGH VOLTAGE FAST RECTIFIER DIODE

- · Low reverse recovery time
- High thermal shock resistance
- Hermetically sealed with Metoxilite metal oxide
- Low switching losses
- Soft, non-snap off, recovery characteristics

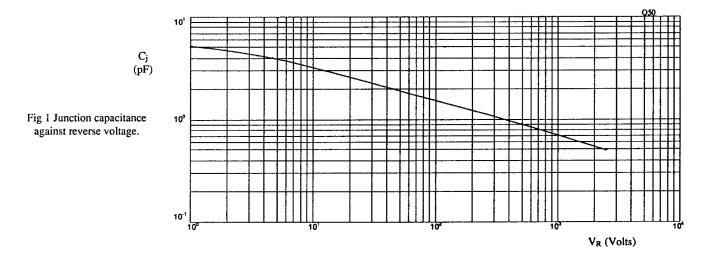

QUICK REFERENCE DATA

- $V_R = 1500 2500V$
- $I_F = 0.5A$
- $t_{rr} = 300 nS$
- $I_R = 1 \mu A$

ABSOLUTE MAXIMUM RATINGS (@ 25°C unless otherwise specified)

	Symbol	S15F S20F S25F	Unit
Working reverse voltage	V _{RWM}	1500 2000 2500	V
Repetitive reverse voltage	V _{RRM}	1500 2000 2500	V
Average forward current (@ 55°C in oil)	I _F (AV)	← 0.5 ←	A
Repetitive surge current (@ 55°C in oil)	IFRM	← 2.5 →	A
Non-repetitive surge current (tp = 8.3mS, @ VR & Tjmax)	I _{FSM}	←10.0	A
Storage temperature range	TSTG	← -65 to +175→	°C
Operating temperature range	TOP	← -65 to +175	°C

MECHANICAL



These products are available in Europe to DEF STAN 59-61 (PART 80)/034 to F and FX levels.

January 7, 1998

CHARACTERISTICS (@ 25°C unless otherwise specified)

	Symbol	S15F S20F S25F	Unit
Average forward current max. (pcb mounted; $T_A = 55^{\circ}C$) for sine wave for square wave (d = 0.5)	If(AV) If(AV)	← 0.23 ← → 0.24 ←	A A
Average forward current max. (unstirred oil at 55°C) for sine wave for square wave I ² t for fusing (t = 8.3mS) max.	I _{F(AV)} I _{F(AV)} I ² t	← 0.50 ← 0.50 ← 0.4 ← 0	A A A ² S
Forward voltage drop max. @ $I_F = 0.10A$, $T_j = 25^{\circ}C$	V _F	← 5.0 ←	v
Reverse current max. @ V_{RWM} , $T_j = 25^{\circ}C$ @ V_{RWM} , $T_j = 100^{\circ}C$	I _R I _R	1.0 ————————————————————————————————————	μΑ μΑ
Reverse recovery time max. 50mA I _F , 100mA I _R , Recover to 25mA I _{RR} .	t _{rr}	→ 300 →	nS
Junction capacitance typ. @ $V_R = 5V$, $f = 1MHz$	Cj	4.0	ρF
Thermal resistance - junction to oil Stirred oil Unstirred oil	R _{0JO} R _{0JO}	18	°C/W °C/W
Thermal resistance - junction to amb. on 0.06" thick pcb. 1oz copper.	R _{θЈА}	← 90 →	°C/W

January 7, 1998

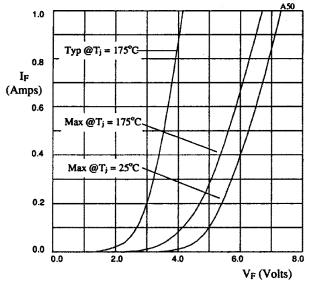


Fig 1. Forward voltage drop as a function of forward current.

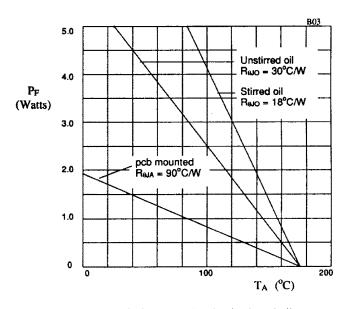


Fig 2. Power derating in air and oil.

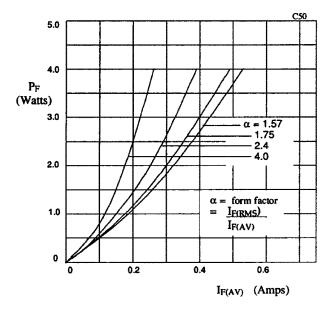


Fig 3. Forward power dissipation as a function of forward current, for sinusoidal operation.

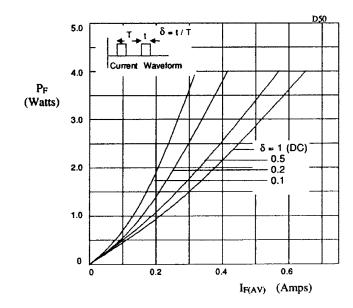


Fig 4. Forward power dissipation as a function of forward current, for square wave operation.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Rectifiers category:

Click to view products by Semtech manufacturer:

Other Similar products are found below:

70HFR40 RL252-TP 150KR30A 1N5397 NTE5841 NTE6038 SCF5000 1N4002G 1N4005-TR JANS1N6640US 481235F

RRE02VS6SGTR 067907F MS306 70HF40 T110HF60 T85HFL60S02 US2JFL-TP A1N5404G-G CRS04(T5L,TEMQ) ACGRA4007-HF

ACGRB207-HF CLH03(TE16L,Q) ACGRC307-HF ACEFC304-HF NTE6356 NTE6359 NTE6002 NTE6023 NTE6039 NTE6077

85HFR60 40HFR60 1N1186RA 70HF120 85HFR80 D126A45C SCF7500 D251N08B SCHJ22.5K SM100 SCPA2 SCH10000 SDHD5K

VS-12FL100S10 ACGRA4001-HF D1821SH45T PR D1251S45T NTE5990 NTE6358