POWER MANAGEMENT

Description

The SC1101 is a versatile, low-cost, voltage-mode PWM controller designed for low output voltage DC/DC power supply applications. A simple, fixed-voltage buck regulator can be implemented using the SC1101 with a minimum of external components. Internal level shift and drive circuitry eliminates the need for an expensive p-channel, high-side switch. The small device footprint allows for compact circuit design.

SC1101 features include a temperature compensated voltage reference, triangle wave oscillator, current limit comparator, frequency shift over-current protection, and an internally compensated error amplifier. Pulse by pulse current limiting is implemented by sensing the differential voltage across an external resistor, or an appropriately sized PC board trace.

Features

- Low cost / small size
- Switch mode efficiency up to 95%
- 1\% reference voltage accuracy
- Over current protection
- 500 mA output drive
- 50-8 package

Applications

- Pentium® P55 Core Supply
- Low Cost Microprocessor Supplies
- Peripheral Card Supplies
- Industrial Power Supplies
- High Density DC/DC Conversion

The SC1101 operates at a fixed frequency of 200 kHz , providing an optimum compromise between efficiency, external component size, and cost.

Typical Application Circuit

POWER MANAGEMENT

Absolute Maximum Ratings

Exceeding the specifications below may result in permanent damage to the device, or device malfunction. Operation outside of the parameters specified in the Electrical Characteristics section is not implied.

Parameter	Symbol	Maximum	Units
Input Voltage	V_{CC} to GND	-0.3 to +7	V
Ground Differential	$\mathrm{P}_{\mathrm{GND}}$ to GND	± 1	V
Boost Input Voltage	BST to GND	-0.3 to +15	V
Operating Ambient Temperature Range	$\mathrm{T}_{\mathrm{AMB}}$	0 to +70	${ }^{\circ}$
Storage Temperature Range	$\mathrm{T}_{\mathrm{STG}}$	-45 to 125	${ }^{\circ} \mathrm{C}$
Maximum Junction Temperature	T_{J}	125	${ }^{\circ} \mathrm{C}$
Lead Temperature (Soldering) 10 Sec.	$\mathrm{T}_{\text {LEAD }}$	300	${ }^{\circ} \mathrm{C}$
Thermal Resistance Junction to Ambient	θ_{JA}	165	${ }^{\circ} \mathrm{C}$
Thermal Resistance Junction to Case	θ_{JC}	${ }^{\circ} \mathrm{C} / \mathrm{W}$	

Electrical Characteristics

Unless specified: $\mathrm{V}_{\mathrm{CC}}=4.75$ to $5.25, \mathrm{GND}=\mathrm{P}_{\mathrm{GND}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{BST}=12 \mathrm{~V}$.
Per test circuit, unless otherwise specified.

Parameter	Symbol	Conditions	Min	Typ	Max	Units
Reference	$V_{\text {REF }}$		1.238	1.250	1.263	V
		Over 0 to $125^{\circ} \mathrm{C}$ Temp. range	1.225	1.250	1.275	
Feedback Bias Current	$\mathrm{I}_{\text {FB }}$			2.0	8.0	uA
Quiescent Current	${ }_{\text {a }}$	Current into V_{cc} pin		5.0	8.0	mA
Load Regulation		$\mathrm{I}_{0}=1 \mathrm{~A}$ to 10 A		0.5	1.0	\%
Line Regulation		$\mathrm{I}_{0}=10 \mathrm{~A}$			0.5	\%
Current Limit Threshold		CS(+) to CS(-)	60	70	80	mV
Oscillator Frequency			170	200	230	kHz
Oscillator Frequency Shift		$\mathrm{V}_{\mathrm{FB}}<\mathrm{V}_{\text {REF }} / 2$		50		kHz
Max Duty Cycle			90	95		\%
DH Sink/Source Current	10	$\mathrm{V}_{\text {BST }}-\mathrm{V}_{\mathrm{DH}}=4.5 \mathrm{~V} / \mathrm{V}_{\text {DH }}-\mathrm{V}_{\text {PGND }}=2 \mathrm{~V}$	500			mA
UVLO Threshold	$\mathrm{V}_{\text {uvLo }}$			3.8		V

Note:
(1) This device is ESD sensitive. Use of standard ESD handling precautions is required.

Pin Configuration

(8 Lead Plastic SOIC)

Ordering Information

Device ${ }^{(1)}$	Package	Temp Range (T ${ }^{\prime}$)
SC1101CS.TR	SO-8	0° to $125^{\circ} \mathrm{C}$
SC1101CSTRT ${ }^{(2)}$		

Notes:
(1) Only available in tape and reel packaging. A reel contains 2500 devices.
(2) Lead free product. This product is fully WEEE and RoHS compliant.

Pin Descriptions

Pin Number	Pin Name	Pin Function
1	VCC	Device input voltage.
2	CS(-)	Current sense input (Negative) .
3	CS(+)	Current sense input (Positive) .
4	PGND	Device power ground .
5	DH	High side driver output .
6	BST	High side driver $V_{\text {CC }}$ (Boost) .
7	FB	Error amplifier input (-) .
8	GND	Signal ground .

Block Diagram

POWER MANAGEMENT

Applications Information

Layout Guidelines

Careful attention to layout requirements are necessary for successful implementation of the SC1101 PWM controller. High currents switching at 200 kHz are present in the application and their effect on ground plane voltage differentials must be understood and minimized.
1). The high power parts of the circuit should be laid out first. A ground plane should be used, the number and position of ground plane interruptions should be such as to not unnecessarily compromise ground plane integrity. Isolated or semi-isolated areas of the ground plane may be deliberately introduced to constrain ground currents to particular areas, for example the input capacitor and bottom Schottky ground.
2). The loop formed by the Input Capacitor(s) (Cin), the Top FET (Q1) and the Schottky (D1) must be kept as small as possible. This loop contains all the high current, fast transition switching. Connections should be as wide and as short as possible to minimize loop inductance. Minimizing this loop area will reduce EMI, lower ground injection currents, resulting in electrically "cleaner" grounds for the rest of the system and minimize source ringing, resulting in more reliable gate switching signals.
3). The connection between the junction of Q1, D1 and the output inductor should be a wide trace or copper region. It should be as short as practical. Since this connection has fast voltage transitions, keeping this connection short will minimize EMI. The connection between the output inductor and the sense resistor should be a wide trace or copper area, there are no fast voltage or current transitions in this connection and length is not so important, however adding unnecessary impedance will reduce efficiency.
4) The Output Capacitor(s) (Cout) should be located as close to the load as possible, fast transient load cur-
rents are supplied by Cout only, and connections between Cout and the load must be short, wide copper areas to minimize inductance and resistance.
5) The SC1101 is best placed over an isolated ground plane area. GND and PGND should be returned to this isolated ground. This isolated ground area should be connected to the main ground by a trace that runs from the GND pin to the ground side of (one of) the output capacitor(s). If this is not possible, the GND pin may be connected to the ground path between the Output Capacitor(s) and the Cin, Q1, D1 loop. Under no circumstances should GND be returned to a ground inside the Cin, Q1, D1 loop.
6) Vcc for the SC1101 should be supplied from the 5 V supply through a 10Ω resistor, the Vcc pin should be decoupled directly to GND by a $0.1 \mu \mathrm{~F}$ ceramic capacitor, trace lengths should be as short as possible.
7) The Current Sense resistor and the divider across it should form as small a loop as possible, the traces running back to $\mathrm{CS}(+)$ and $\mathrm{CS}(-)$ on the $\mathrm{SC1101}$ should run parallel and close to each other.
8) To minimize noise pickup at the sensitive FB pin, the feedback resistors should both be close to the SC1101 with the bottom resistor (Rb) returned to ground at the GND pin.

Under Voltage Lockout

The under voltage lockout circuit of the SC1101 assures that the high-side MOSFET driver outputs remain in the off state whenever the supply voltage drops below set parameters. Lockout occurs if V_{cc} falls below 3.8 V . Normal operation resumes once $V_{c c}$ rises above 3.8 V .

POWER MANAGEMENT

Applications Information (Cont.)

Layout diagram for the SC1101
$\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\mathrm{REF}}(1+\mathrm{Ra} / \mathrm{Rb})$

Application Circuit

5V to 2.0V @ 10A (Bootstrapped)

R6 = R7 $\times($ Vout/1.25-1) rounded to nearest 1\%value

POWER MANAGEMENT

Typical Characteristics

Load Regulation

Error Amplifier, Gain and Phase

Line Regulation

$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V} ; \mathrm{I}_{0}=10 \mathrm{~A}$

$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$

Efficiency
$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$

Output Ripple Voltage
$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{o}}=3.3 \mathrm{~V} ; \mathrm{I}_{\mathrm{o}}=10 \mathrm{~A}$

POWER MANAGEMENT

Outline Drawing - SO-8

NOTES:

1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).
2. DATUMS -A- AND -B- TO BE DETERMINED AT DATUM PLANE-H-
3. DIMENSIONS "E1" AND "D" DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS
4. REFERENCE JEDEC STD MS-012, VARIATION AA.

Minimum Land Pattern - S0-8

Contact Information
THIS LAND PATTERN IS FOR REFERENCE PURPOSES ONLY. Consult your manufacturing group to ensure your
2. REFERENCE IPC-SM-782A, RLP NO. 300A.
Sug ing

Semtech Corporation
Power Management Products Division
200 Flynn Road, Camarillo, CA 93012
Phone: (805)498-2111 FAX (805)498-3804

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switching Controllers category:
Click to view products by Semtech manufacturer:
Other Similar products are found below :
LV5065VB-TLM-H LV5066V-TLM-H LV5725JAZ-AH 633888R MP2908AGF AZ7500EP-E1 NCP1012AP133G NCP1217P133G
NCP1218AD65R2G NCP1234AD100R2G NCP1244BD065R2G NCP1336ADR2G NCP1587GDR2G NCP6153MNTWG
NCP81005MNTWG NCP81101BMNTXG NCP81205MNTXG HV9123NG-G-M934 IR35207MTRPBF ISL6367HIRZ CAT874-80ULGT3
SJ6522AG SJE6600 TLE63893GV50XUMA1 IR35215MTRPBF SG3845DM NCP1216P133G NCP1236DD65R2G NCP1247BD100R2G
NCP1250BP65G NCP4202MNR2G NCP4204MNTXG NCP6132AMNR2G NCP81141MNTXG NCP81142MNTXG NCP81172MNTXG
NCP81203MNTXG NCP81206MNTXG NX2155HCUPTR UC3845ADM UBA2051C IR35201MTRPBF MAX8778ETJ+
MAX17500AAUB+T MAX17411GTM+T MAX16933ATIR/V+ NCP1010AP130G NCP1063AD100R2G NCP1216AP133G
NCP1217AP100G

