30V, 300mA Output Micropower Step-Down Switching Regulator

Features

- Input Voltage Range: 3V to 30 V
- Low Quiescent Current: Drawing $19 \mu \mathrm{~A}$ from $\mathrm{V}_{\text {IN }}$ when Stepping Down from 12 V to 3.3 V at No Load
- High Efficiency from 12 V Input to 5V Output $>80 \%$ at $650 \mu \mathrm{~A}$ $>85 \%$ at $10 \mathrm{~mA}-300 \mathrm{~mA}$
- Up to 300 mA Continuous DC Output Current
- Integrated Power Switch and Schottky Diodes
- Low Output Ripple
- $<1 \mu \mathrm{~A}$ Shutdown Current
- Hysteretic Current-Mode Control
- Cycle-by-Cycle Current Limiting
- Alternating Between Micropower Idling and Switching States at Light Loads to Conserve Power
- Output Short-Circuit Protection
- Solution Footprint as Small as $50 \mathrm{~mm}^{2}$
- Low-Profile $3 \mathrm{~mm} \times 2 \mathrm{~mm}$ MLPD 8-Lead Package

Applications

- Portable Equipment
- Notebook Computers
- Distributed Supplies
- Backup Power Supplies

Description

The SC4530 is a micropower hysteretic current-mode step-down switching regulator capable of providing up to 300 mA of output current from 3 V to 30 V input voltage range. It is designed to provide very high standby efficiency while simplifying design.

At light loads, the SC4530 switches only as needed to maintain regulation, while idling most of the time, to improve efficiency. Typical quiescent currents from $\mathrm{V}_{\text {IN }}$ and BIAS are $7 \mu \mathrm{~A}$ and $26 \mu \mathrm{~A}$ respectively. The control scheme produces less than 10 mV of FB voltage ripple at light loads. The SC4530 automatically switches to continuous-conduction mode at heavy loads.

The SC4530 has integrated power devices and on-chip control circuitry, simplifying design and enabling a solution footprint as small as $50 \mathrm{~mm}^{2}$. Only an inductor and a few passive components are needed to complete a DC-DC regulator. The inductor current hysteretic control of SC4530 makes it inherently short-circuit robust. The wide input voltage range enables the device to operate from a variety of input sources, including single- or multi-cell batteries, system rails and wall transformers.

Typical Application Circuit

Figure 1. 5V Output Step-Down Converter

Pin Configuration

Ordering Information

Device	Package
SC4530WLTRT $^{(1)(2)}$	MLPD-W-8 3x2
SC4530EVB	Evaluation Board

Notes:

(1) Available in tape and reel only. A reel contains 3,000 devices.
(2) Available in lead-free package only. Device is WEEE and RoHS compliant.

Marking Information

Absolute Maximum Ratings ${ }^{(1)}$
IN. -0.3 V to 32 V
$\mathrm{SW}^{(2)}$ -0.6 V to V_{IN} 42V
BST Above SW. 30 V

FB
-0.3 V to 1.9 V

BIAS
\qquad
-0.3 V to $\mathrm{V}_{\text {IN }}$

EN
\qquad
-0.3 V to $\mathrm{V}_{\text {IN }}$

ESD Protection Level ${ }^{(3)}$
2kV

Recommended Operating Conditions

Junction Temperature Range.

\qquad
$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$V_{\text {IN }}$ 3 V to 30 V

Output DC Current. up to 300 mA

Thermal Information

Thermal Resistance, Junction to Ambient ${ }^{(4)} \ldots80^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Junction Temperature $+150^{\circ} \mathrm{C}$

Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Peak IR Reflow Temperature (10s to 30s).................. $+260^{\circ} \mathrm{C}$

Exceeding the above specifications may result in permanent damage to the device or the device may malfunction. Operation outside of the parameters specified in the Electrical Characteristics section is not recommended.

NOTES:
(1) Unless noted otherwise, all voltage values in this section are with respect to ground.
(2) The transient negative voltage specification for the SW pin is -1 V for 100 ns .
(3) Tested according to JEDEC standard JS - 001- 2012.
(4) Calculated from package in still air, mounted to $3^{\prime \prime} \times 4.5^{\prime \prime}$, 4-layer FR4 PCB with thermal vias under the exposed pad, per JESD51 standards.

Electrical Characteristics

Unless otherwise noted, $T_{A}=25^{\circ} \mathrm{C}$ for typical values, $-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}<125^{\circ} \mathrm{C} . \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {EN }}=10 \mathrm{~V}, \mathrm{~V}_{\text {BST }}=15 \mathrm{~V}, \mathrm{~V}_{\text {BAS }}=3 \mathrm{~V}$.

Parameter	Name	Conditions	Min	Typ	Max	Units
$\mathrm{V}_{\text {IN }}$ Operating Range			3		30	V
$\mathrm{V}_{\text {IN }}$ Quiescent Supply Current		$\mathrm{V}_{\mathrm{EN}}=0.2 \mathrm{~V}$		0.1	0.5	$\mu \mathrm{A}$
		Not Switching		7	11	$\mu \mathrm{A}$
		Not Switching , $\mathrm{V}_{\text {BIAS }}=0$		34	50	$\mu \mathrm{A}$
BIAS Quiescent Supply Current		$\mathrm{V}_{\mathrm{EN}}=0.2 \mathrm{~V}$		0.1	0.6	$\mu \mathrm{A}$
		Not Switching		26	40	$\mu \mathrm{A}$
		Not Switching, $\mathrm{V}_{\text {BIAS }}=0$		0.1	1	$\mu \mathrm{A}$
EN Pin Input High Voltage			2			V
EN Pin Input Low Voltage					0.2	V
EN Pin Current		$\mathrm{V}_{\mathrm{EN}}=2.5 \mathrm{~V}$		1	2.5	$\mu \mathrm{A}$
Feedback Voltage		V_{FB} Falling	1.212	1.232	1.245	V
Feedback Voltage Line Regulation		$\mathrm{V}_{\text {IN }}=3 \mathrm{~V}$ to 30 V		0.01	0.02	\%/V
FB Pin Bias Current		$\mathrm{V}_{\mathrm{FB}}=1.25 \mathrm{~V}$		20	60	nA
Minimum Switch Off-time	$\mathrm{T}_{\text {OFF(MIN) }}$			530		ns
Maximum Switch Duty Cycle	$\mathrm{D}_{\text {max }}$		90	96		\%

SEMTECH

Electrical Characteristics (continued)

Unless otherwise noted, $T_{A}=25^{\circ} \mathrm{C}$ for typical values, $-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}<125^{\circ} \mathrm{C} . \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {EN }}=10 \mathrm{~V}, \mathrm{~V}_{\text {BST }}=15 \mathrm{~V}, \mathrm{~V}_{\text {BAS }}=3 \mathrm{~V}$.

Parameter	Name	Conditions	Min	Typ	Max	Units
Switch Current Limit	I_{LM}	$\mathrm{V}_{\mathrm{FB}}=0$	0.39	0.50	0.66	A
Inductor Current Hysteresis ${ }^{(1)}$		$\mathrm{V}_{\mathrm{FB}}=0$		65		mA
Switch Saturation Voltage		$\mathrm{I}_{\mathrm{SW}}=-0.3 \mathrm{~A}$		200	300	mV
Switch Leakage Current	$\mathrm{V}_{\mathrm{SW}}=0$			2	$\mu \mathrm{~A}$	
Switch Minimum Bootstrap Voltage		$\mathrm{I}_{\mathrm{SW}}=-0.3 \mathrm{~A}$		1.7	2.2	V
BST Pin Current	$\mathrm{I}_{\mathrm{SW}}=-0.3 \mathrm{~A}$		7.1	12	mA	
Freewheeling Diode Forward Voltage	V_{D}	$\mathrm{I}_{\mathrm{SW}}=-0.3 \mathrm{~A}$	700		mV	
Freewheeling Diode Reverse Leakage		$\mathrm{V}_{\mathrm{SW}}=10 \mathrm{~V}$			15	$\mu \mathrm{~A}$
Bootstrap Diode Forward Voltage		$\mathrm{I}_{\mathrm{BST}}=40 \mathrm{~mA}$		700		mV
Bootstrap Diode Reverse Leakage		$\mathrm{V}_{\mathrm{SW}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{BIAS}}=0$			1	$\mu \mathrm{~A}$

Notes:
(1) The inductor current hysteresis is the difference between the switch current limit and the freewheeling diode valley current.

Pin Descriptions

Pin \#	Pin Name	Pin Function
1	FB	Inverting input of the error amplifier. The FB pin is tied to a resistive divider between the output and ground. The voltage divider sets the output voltage.
2	BIAS	Anode of the internal bootstrap diode. BIAS also powers the internal control circuit if $\mathrm{V}_{\text {BIAS }}>2.3 \mathrm{~V}$. Tie to the output of the DC-DC converter if $\mathrm{V}_{\text {out }}>2.5 \mathrm{~V}$. Tie BIAS to IN if $\mathrm{V}_{\text {out }}$ is set below 2.5 V .
3	BST	Power transistor driver supply. Connect an external bootstrap capacitor from the SW pin to this pin to generate a drive voltage higher than $\mathrm{V}_{\text {IN }}$ to fully saturate the internal power transistor.
4	SW	The power transistor emitter and the cathode of the freewheeling diode. The SW pin is connected to an inductor and a bootstrap capacitor.
5	GND	Connect this pin to the PC board power ground plane.
6	IN	Power supply to the SC4530. It must be closely bypassed to the ground pin.
7	NC	No Connection.
8	EN	The enable pin for the SC4530. Driving this pin below 0.2 V completely shuts off the SC4530. Applying more than 2 V to this pin enables the SC4530. If not driven from a control circuit, tie this pin to IN. This pin cannot be floated.
9	Exposed Pad	The exposed pad at the bottom of the package serves as a thermal contact to the circuit board. It is to be soldered to the ground plane of the PC board.

Block Diagram

Figure 2. SC4530 Block Diagram

Typical Characteristics

Notes:
(1) Circuit propagation delays and the error amplifier output voltage ripples may cause the actual inductor valley current to differ from its DC value.

Typical Characteristics (Continued)

Bootstrap Diode
Reverse Leakage Current

$V_{\text {IN }}$ Quiescent Current vs Temperature

Freewheeling Diode Reverse Leakage Current

Quiescent Currents vs BIAS Voltage

BIAS Quiescent Current vs Temperature

Quiescent Currents vs $\mathrm{V}_{\mathbf{I N}}$

Bootstrap Diode Forward Characteristics

EN Pin Current vs V_{EN}

General Description and Operation

The SC4530 is a micropower, hysteretic current-mode step-down switching regulator. As shown in the block diagram in Figure 2, the converter is controlled by an error amplifier EA and two current-sensing comparators IPK and IVLY. IPK and IVLY monitor the switch (Q_{1}) collector current and the freewheeling diode $\left(D_{1}\right)$ current respectively. The EA amplifies the differential voltage between the FB and the bandgap reference, and produces a current, $I_{\text {CNTL }}$ proportional to its output voltage. $\mathrm{I}_{\mathrm{CNTL}}$, in turn, adjusts the switching thresholds of both the peak and valley current comparators. The EA output voltage is high at heavy loads, as is the peak inductor current. The Zener diode D_{z} clamps the amplifier output and sets the switch peak current limit.

When the switch Q_{1} is turned on, the current through Q_{1} ramps up until it reaches the peak threshold set by ${ }_{\text {cntu }}$. .he output of the IPK comparator, OC, goes high. This resets the latch and turns off the switch. With Q_{1} off, the inductor current ramps down through the freewheeling diode D_{1}. When D_{1} current ramps below the valley threshold established by $\mathrm{I}_{\text {CNTL }}$, the output of the IVLY comparator, UC, goes high. If Q_{1} has been turned off for more than 530 ns, then the latch will be set and Q_{1} will again turn on, starting a new cycle.

The inductor ripple current in continuous-conduction mode is independent of $\mathrm{I}_{\mathrm{CNTL}}$ and is primarily determined by V_{oS} and $\mathrm{V}_{\mathrm{HYS}}$. Continuous mode switching frequency, therefore, depends on $\mathrm{V}_{\mathbb{I N}^{\prime}} \mathrm{V}_{\text {out }}$, the inductance L and the propagation delay times of the current comparators. If the regulator output is shorted to ground, then the amplifier output will rise to D_{z} clamp voltage. Q_{1} turns off as the inductor current reaches the peak current limit. With the output shorted to ground, the inductor current ramps down at a slower rate through $\mathrm{D}_{1} . \mathrm{Q}_{1}$ turns on again when the inductor current crosses the valley threshold. Therefore, short-circuiting the output merely lowers the converter switching frequency. The inductor current remains bounded by the peak switch current limit.

The RUN/IDLE comparator, CMP, monitors the output of the error amplifier. If the EA output falls below the RUN/ IDLE threshold, then Q_{1} and all control circuits except the reference and EA will be shut off. The output capacitor will then supply the load, causing the output voltage to fall. When the EA output rises above the RUN/IDLE threshold, the control circuit wakes up and the part starts to switch, delivering power to the output. The offset voltage $\mathrm{V}_{\text {os }}$ at the input of the IPK comparator ensures that any current pulse delivered to the output has some minimum amplitude.

At very light loads, even a single minimum charge packet delivered to the output will cause the FB voltage to rise above the reference voltage. This causes the EA output voltage to fall and the part to idle. The part resumes switching when the output current discharges the FB voltage below the reference. At light loads, the part switches only as needed to keep the output in regulation. By reducing the supply current drawn when idling, high efficiency is maintained at light loads. At heavier loads, it may take a number of consecutive minimum pulses to bring the FB above the reference voltage. The part enters continuous conduction mode when the amplifier output never falls below the RUN/IDLE threshold.

Driving the base of the power transistor above the input power supply rail minimizes the power transistor turnon voltage and maximizes efficiency. A bootstrap circuit [formed by an internal bootstrap diode D_{2} (Figure 2) and an external capacitor connected between BST and SW] generates a voltage higher than V_{IN} at the BST pin. The bootstrapped voltage becomes the supply voltage of the power transistor driver.

The internal control circuit takes its power from either the input or from the BIAS pin if $\mathrm{V}_{\text {BIAS }}>2.3 \mathrm{~V}$. For applications with output voltage higher than 2.5 V , the BIAS pin should be tied to the regulator output to maximize efficiency.

Applications Information

Setting the Output Voltage

Figure 3. R_{1} and R_{2} Set the Output Voltage

The SC4530 output voltage is programmed using a resistive divider (Figure 3) with its center tap tied to the FB pin. For a given R_{2}, R_{1} can be determined:

$$
\begin{equation*}
\mathrm{R}_{1}=\mathrm{R}_{2} \cdot\left(\frac{\mathrm{~V}_{\mathrm{OUT}}}{1.232}-1\right) \tag{1}
\end{equation*}
$$

The percentage error due to the input bias current of the error amplifier is:

$$
\begin{equation*}
\frac{\Delta \mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\text {OUT }}}=\frac{20 \mathrm{nA} \cdot 100 \cdot\left(\mathrm{R}_{1} \| \mathrm{R}_{2}\right)}{1.232 \mathrm{~V}} \tag{2}
\end{equation*}
$$

Example: Determine the output voltage error caused by the amplifier input bias current in a 5 V output converter.

Assuming $\mathrm{R}_{2}=200 \mathrm{k} \Omega$ and using Equations (1) and (2),

$$
\begin{aligned}
& \mathrm{R}_{1}=200 \mathrm{k} \Omega \cdot\left(\frac{5}{1.232}-1\right) \approx 619 \mathrm{k} \Omega \\
& \frac{\Delta \mathrm{~V}_{\text {OUT }}}{\mathrm{V}_{\text {OUT }}}=\frac{20 \mathrm{nA} \cdot 100 \cdot(200 \mathrm{k} \| 619 \mathrm{k})}{1.232 \mathrm{~V}}=0.25 \%
\end{aligned}
$$

Using large R_{1} and R_{2} helps in maintaining light-load efficiency, since the current drawn by the feedback resistive divider is not delivered to the converter output. The simple calculation above shows that relatively large R_{1} and R_{2} can be used without introducing more error than that resulting from the tolerance of the standard 1% resistors.

Maximum Duty Cycle Limitation

The SC4530 is a non-synchronous, step-down switching regulator. Its duty cycle in continuous-conduction
mode (CCM) primarily depends on the input and output voltages:

$$
\begin{equation*}
D=\frac{V_{\text {OUT }}+V_{D}}{V_{\text {IN }}+V_{D}-V_{\text {CESAT }}} \tag{3}
\end{equation*}
$$

where $\mathrm{V}_{\text {CESAT }}=0.25 \mathrm{~V}$ is the switch saturation voltage and $V_{D}=0.6 \mathrm{~V}$ is the forward voltage drop of the freewheeling diode.

Whenever the power switch is turned off, it is kept off for at least 530 ns . Moreover, the control circuit prevents the power transistor from turning on for more than $13.5 \mu \mathrm{~s}$. The inductor current pulls the SW node low as the power switch turns off, allowing the inductor current to charge the bootstrap capacitor. The maximum on-time ensures that the bootstrap capacitor gets replenished after a long switch-on interval. The minimum off-time, together with the maximum on-time, put an upper limit on the achievable duty cycle (≈ 0.96). From Equation (3), the minimum $V_{\text {in }}$ to avoid dropout is:

$$
\begin{equation*}
\mathrm{V}_{\text {IN(MIN) }}=\frac{\mathrm{V}_{\text {OUT }}+\mathrm{V}_{\mathrm{D}}}{0.96}+\mathrm{V}_{\text {CESAT }}-\mathrm{V}_{\mathrm{D}} \tag{4}
\end{equation*}
$$

If $V_{\text {IN }}$ falls below this minimum, then the regulator will not be able to attain its set output voltage regardless load. Using Equation (4), the input supply voltage must be at least 5.5 V in order to generate a 5 V output.

Inductor Selection

The SC4530 uses a hysteretic current-mode control topology. The peak-to-peak inductor ripple current, $\Delta L_{L^{\prime}}$ is theoretically constant. However, propagation delays of the current comparators (IPK and IVLY in Figure 2), as well as the error amplifier (EA) output ripples, will cause the actual inductor ripple current to vary depending on the input voltage and the duty cycle. The inductor should be chosen so that the valley current comparator, not the minimum off-time, determines the switch turn-on instant. To simplify inductance calculation, we will assume that ΔI_{L} is constant and equal to 150 mA . Furthermore, we will use 1.5 times the typical $\mathrm{t}_{\text {off(MIN) }}$, to allow for tolerance and temperature variation.

$$
\begin{equation*}
\mathrm{L}_{\text {MIN }}=\frac{\left(\mathrm{V}_{\text {OUT }}+\mathrm{V}_{\mathrm{D}}\right) \cdot 1.5 \mathrm{t}_{\text {OFF(MIN) }}}{\Delta \mathrm{I}_{\mathrm{L}}} \tag{5}
\end{equation*}
$$

Applications Information (Continued)

For a given V_{IN} and inductance L , the continuousconduction switching frequency is:

$$
\begin{equation*}
f=\frac{\left(V_{\text {OUT }}+V_{D}\right)(1-D)}{L \cdot \Delta I_{L}}=\frac{\left(V_{\text {OUT }}+V_{D}\right)\left(V_{\text {IN }}-V_{\text {OUT }}-V_{\text {CESAT }}\right)}{L\left(V_{\text {IN }}+V_{D}-V_{\text {CESAT }}\right) \Delta I_{L}} \tag{6}
\end{equation*}
$$

The minimum inductance is first found using Equation (5). Next the switching frequencies are estimated at $\mathrm{V}_{\text {IN }}$ extremes using Equation (6). The inductance is then adjusted for achieving desired switching frequency. The resulting switch on-time at the maximum $\mathrm{V}_{\text {IN }}$ must exceed the minimum controllable switch on-time, which can be as high as 180 ns . This prevents the inductor current from running away when the output is shorted to ground.

Example: Select the inductor for a 3.3V output regulator, with input voltage ranging from 10 V to 26 V . The desired switching frequency is about 600 kHz .

The minimum inductance is found using Equation (5):

$$
\mathrm{L}_{\text {MIN }}=\frac{(3.3+0.6) \times 0.53 \times 1.5}{0.15} \approx 22 \mu \mathrm{H}
$$

Duty cycles and switching frequencies at the input voltage extremes can be found using Equations (3) and (6) respectively. The results for $22 \mu \mathrm{H}$ and $33 \mu \mathrm{H}$ are tabulated (Table 1).

Table 1. Estimated Switching Frequencies for 3.3V Output

Input Voltage $V_{\text {IN }}(\mathrm{V})$	Duty Cycle $\mathrm{D}(\%)$	Switching Frequency $\mathrm{f}(\mathrm{kHz})$	
		$\mathrm{L}=22 \mu \mathrm{H}$	$\mathrm{L}=33 \mu \mathrm{H}$
10	37.7	740	490
26	14.8	1000	670

The $33 \mu \mathrm{H}$ inductance will be chosen, as it gives the desired switching frequency range.

The resulting switch on-time is checked against the minimum controllable switch on-time. The switch ontime can be calculated using Equation (7) below:

$$
\begin{equation*}
\mathrm{t}_{\mathrm{ON}}=\frac{\mathrm{L} \cdot \Delta \mathrm{I}_{\mathrm{L}}}{\mathrm{~V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{CESAT}}-\mathrm{V}_{\mathrm{OUT}}} \tag{7}
\end{equation*}
$$

With $L=33 \mu \mathrm{H}$, the switch on-time at 10 V and $26 \mathrm{~V} \mathrm{~V}_{\text {IN }}$ are 770 ns and 220 ns respectively, above the 180 ns minimum controllable on-time.

Table 2 lists some recommended inductor values for various output voltages.

Table 2. Recommended Inductor Values

Output Voltage $\mathrm{V}_{\text {out }}(\mathrm{V})$	Inductor Value $(\mu \mathrm{H})$	
	$\mathrm{V}_{\mathbb{I N}}=16 \mathrm{~V}$	$\mathrm{~V}_{\mathbb{I N}}=30 \mathrm{~V}$
1.8	22	-
2.5	22	33
3.3	22	33
5.0	33	33
12	68	68
18	-	100

Low-cost inductors with powder iron cores are not suitable for high-frequency switching due to their high core losses. Inductors with ferrite cores are recommended for high efficiency.

It should be noted that the inductor saturation current should be designed based on the inductor peak current in output short circuit and startup instead of the nominal output current. If output short circuit protection or fast $\mathrm{dVIN} / \mathrm{dt}(>100 \mathrm{~V} / \mathrm{ms})$ at startup $(\mathrm{EN}=\mathrm{VIN})$ is required at high VIN (up to 30 V), at least a $33 \mu \mathrm{H}$ inductor with a minimum 900 mA saturation current is needed. If output short circuit does not exist and the dVIN/dt at power on (EN = VIN) is less than $100 \mathrm{~V} / \mathrm{ms}$, inductors with 600 mA or more saturation current may be used. Please check with the inductor manufacturers for the saturation current at the maximum inductor temperature in the real application.

Input Capacitor Selection

A step-down regulator draws pulse current from the input power supply. A capacitor placed between the supply and the converter filters the AC current and keeps the current drawn from the supply to a DC constant. The input capacitance should be high enough to filter the pulse input current. Its equivalent series resistance (ESR) should be low so that power dissipated in the capacitor does not result in significant temperature rise and degrade reliability.

Multi-layer ceramic capacitors, which have very low ESR (a few $\mathrm{m} \Omega$) and can easily handle high RMS ripple current, are the ideal choice. A single $4.7 \mu \mathrm{~F}$ (X5R or X7R) ceramic capacitor should be enough for most applications. Using a larger capacitor (for example, $10 \mu \mathrm{~F}$) will reduce SW node jitters if the minimum input voltage is less than 0.7 V above the output voltage. For applications with high input voltage, a small ($1 \mu \mathrm{~F} \sim 2.2 \mu \mathrm{~F}$) ceramic capacitor can be placed in parallel with a low ESR electrolytic capacitor to satisfy both the ESR and bulk capacitance requirements.

Output Capacitor Selection

The output ripple voltage $\Delta \mathrm{V}_{\text {out }}$ of a step-down regulator in continuous conduction can be expressed as:

$$
\begin{equation*}
\Delta \mathrm{V}_{\text {OUT }}=\Delta \mathrm{I}_{\mathrm{L}}\left(\mathrm{ESR}+\frac{\mathrm{t}_{\text {ON }}+\mathrm{t}_{\text {OFF }}}{8 \mathrm{C}_{\text {OUT }}}\right) \tag{8}
\end{equation*}
$$

where $\mathrm{C}_{\text {out }}$ is the output capacitance.
The first term in Equation (8) results from the equivalent series resistance (ESR) of the output capacitor while the rest is due to the charging and discharging of $\mathrm{C}_{\text {OUT }}$ by the inductor ripple current.

Substituting $\Delta \mathrm{I}_{\mathrm{L}}=150 \mathrm{~mA}, \mathrm{t}_{\text {ON }}+\mathrm{t}_{\text {OfF }}=2 \mu \mathrm{~s}, \mathrm{C}_{\text {OUT }}=22 \mu \mathrm{~F}$ and ESR $=3 \mathrm{~m} \Omega$ in Equation (8), we get:

$$
\begin{aligned}
\Delta \mathrm{V}_{\text {OUT }} & =0.15 \mathrm{~A} \cdot(3 \mathrm{~m} \Omega+11.4 \mathrm{~m} \Omega) \\
& =0.45+1.7=2.2 \mathrm{mV}
\end{aligned}
$$

Depending on the switching period and the type of the capacitor used, the output voltage ripple resulting from charging/discharging of $\mathrm{C}_{\text {out }}$ may be higher than the ripple due to the ESR. The example above also shows that the output voltage ripple in continuous mode is very low.

The SC4530 relies on fast amplifier response to reduce the output voltage overshoot during power-up. Neither the error amplifier output nor the reference is ramped during start-up. The Zener diode D_{z} (refer to page 5) clamps the amplifier output, while the regulator output voltage ramps up. As a result, the switch Q_{1} is turned off every cycle at the switch current limit, $\mathrm{I}_{\text {LIM }}$ (typically 0.5A). The regulator thus delivers about 0.5 A to its output until $\mathrm{V}_{\text {out }}$ rises to its set value. If the load is light, then the amplifier output voltage will fall below the RUN/IDLE threshold
following regulation. This causes the regulator to idle. However the energy previously stored in the inductor still flows to the output, causing the output voltage to rise above its regulation level. The minimum output capacitance required to keep the overshoot to less than 1% of the nominal output voltage is:

$$
\begin{equation*}
\mathrm{C}_{\text {OUT }}>\frac{50 \mathrm{~L} \mathrm{I}_{\text {LIM }}^{2}}{\mathrm{~V}_{\text {OUT }}\left(\mathrm{V}_{\text {OUT }}+\mathrm{V}_{\mathrm{D}}\right)} \tag{9}
\end{equation*}
$$

The minimum output capacitance for various output voltages can be estimated from Equation (9) using the inductances given in Table 2. The results are shown in Table 3. Smaller output capacitors may also be used if higher output voltage overshoot is acceptable.

Table 3. Calculated Minimum Output Capacitance for 1\% $\mathrm{V}_{\text {out }}$ Overshoot during Start-up

$\mathrm{V}_{\text {out }}(\mathrm{V})$	Minimum $\mathrm{C}_{\text {out }}(\mu \mathrm{F})$	
	$\mathrm{V}_{\text {IN }}=16 \mathrm{~V}$	$\mathrm{~V}_{\text {IN }}=30 \mathrm{~V}$
1.8	64	-
2.5	36	53
3.3	22	33
5.0	15	15
12	5.6	5.6
18	-	3.7

Ceramic capacitors are the best choice for most applications. Sanyo TPE series polymer capacitors in Bcase, which offer large capacitors ($>100 \mu \mathrm{~F}$) with slightly higher ESR, are also good alternatives. Ripple current in the output capacitor is not a concern because the inductor current of a step-down converter directly feeds $\mathrm{C}_{\text {out }}$ resulting in very low ripple current. Avoid using Z5U or Y5V ceramic capacitors because these types of capacitors have high temperature and high voltage coefficients.

Bootstrapping the Power Transistor

To reduce the switch on-state voltage and maximize efficiency, the base of the power transistor should be driven from a power supply higher in voltage than $\mathrm{V}_{\text {IN }}$. The required driver supply voltage (at least 2.2 V higher than the SW) is generated with a bootstrap capacitor C_{3} connected between the BST and the SW nodes (Figure

Applications Information (Continued)

1) and the bootstrap diode D_{2} (Figure 2). The D_{2} anode is connected to the BIAS pin.

During startup, the power transistor in the SC4530 is first switched on so the current flows through to the inductor. When the transistor is switched off, the inductor current pulls the SW voltage low, allowing C_{3} to be charged through the internal bootstrap diode D_{2}. When the power switch is turned on again, the SW voltage goes high. This brings the BST voltage to $\mathrm{V}_{\mathrm{Sw}}+\mathrm{V}_{\mathrm{C}^{\prime}}$ thus back-biasing D_{2}. The C_{3} voltage increases with each subsequent switching cycle, as does the bootstrapped voltage at the BST pin. After a number of switching cycles, C_{3} will be fully charged to a voltage approximately equal to that applied to the anode of D_{2}. The minimum BST to SW voltage required to fully saturate the power transistor is shown in the Typical Characteristics (pages 6-7). This difference voltage must be at least 1.72 V at room temperature. This is also specified in the Electrical Characteristics (pages 3-4) as the Minimum Bootstrap Voltage. The minimum required $V_{c 3}$ increases as temperature decreases. The bootstrap
circuit reaches equilibrium when the base charge drawn from C_{3} during transistor on-time is equal to the charge replenished during the off interval.

Figure 4 summarizes various ways of bootstrapping the SC4530. In Figure 4(a) the BIAS pin is connected to the converter output. The bootstrap charge is obtained from the output of the step-down converter. The inputreferred charge is reduced by the step-down ratio. This is the most efficient configuration and it also results in the least voltage stress at the BST pin. The maximum BST pin voltage is about $\mathrm{V}_{\text {IN }}+\mathrm{V}_{\text {out }}$. If the output voltage is between 2.5 V and 3 V , then a $0.33-0.47 \mu \mathrm{~F}$ bootstrap capacitor may be needed to reduce droop. In most other cases, a $0.22 \mu \mathrm{~F}$ ceramic capacitor is adequate.

Figure 4(b) shows the SC4530 can also be bootstrapped from the input. This way it is not as efficient as the configuration shown in Figure 4(a). However this may be only option if the output voltage is less than 2.5 V and there is no other supply with voltage higher than 2.5 V .

Figure 4. Methods of Bootstrapping the SC4530

Applications Information (Continued)

Voltage stress at the BST pin can be somewhat higher than $2 \mathrm{~V}_{\mathbb{1}}$. The BST pin voltage should not exceed its absolute maximum rating of 42V. Figure 4(c) shows how to bootstrap the SC4530 from an independent power supply V_{s} with its voltage $>2.5 \mathrm{~V}$.

Figure 5. Switching Waveforms of a 10 V to 5 V Regulator
(a) Sufficient Bootstrap Voltage Drives the Power Transistor into Saturation, Minimizing Power Loss.
(b) Excessive Droop in Bootstrap Capacitor Voltage fails to keep the Power Transistor Saturated near the End of its Conduction Cycles, Causing Jitters and Low Efficiency.

To demonstrate the effect of an under-sized bootstrap capacitor, C_{3} (Figure 1, page 1) is deliberately reduced to 10nF. The BIAS pin istied to an external power supply similar to Figure 4(c). By adjusting the external supply voltage $\mathrm{V}_{\mathrm{s}^{\prime}}$, the bootstrap voltage can be varied. Figure 5(a) shows the switching waveforms of a correctly bootstrapped 10 V to 5 V regulator with $\mathrm{V}_{\mathrm{s}}=2.5 \mathrm{~V}$. All three traces share the
same ground level. When the power transistor is turned on, V_{SW} should come within a few hundred millivolts of $\mathrm{V}_{\text {IN }}$ and $\mathrm{V}_{\text {BST }}$ should have at least 2.2 V of headroom above $\mathrm{V}_{\text {SW }}$. As V_{s} is reduced to 1.9 V , excessive $\mathrm{V}_{\text {BST }}$ droop decreases transistor driver headroom, as shown in Figure 5(b). The power transistor can no longer be fully saturated (as evidenced by the round V_{sw} turn-off corners), resulting in high power dissipation. When bootstrapping from a lowvoltage output or supply, checking the bootstrap voltage is a good precaution.

Since the inductor current charges C_{3}, the bootstrap circuit requires some minimum load current to function. Figures 6(a) and 6(b) show the minimum input voltage required to saturate the power transistor and to produce a regulated output as a function of the load current. Once started, the bootstrap circuit is able to sustain itself down to zero load.

Feed-Forward Compensation

A feed-forward capacitor C_{4} (connected across the upper feedback resistor R_{1}) is needed for stability. An initial estimate of C_{4} can be found using Equation (10) below:

$$
\begin{equation*}
C_{4}=\frac{6.8 \times 10^{-6}}{R_{1}} \tag{10}
\end{equation*}
$$

The value of C_{4} can be optimized empirically by observing the inductor current and the output voltage during load transient. Starting with the initial estimate, C_{4} is tuned until there is no excessive ringing or overshoot in the inductor current or the output voltage during load transient.

Minimum Input Voltage

(a)

Applications Information (Continued)

(b)

Figure 6. The Minimum Input Voltage Required to Start and to Operate Before Dropout
(a) $\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$
(b) $\mathrm{V}_{\text {OUT }}=3.3 \mathrm{~V}$

(a) $\mathrm{C}_{4}=10 \mathrm{pF}, \mathrm{C}_{5}$ not Placed $\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=174 \mathrm{~mA}$ CCM Onset $\mathrm{I}_{\text {OUT }}=176 \mathrm{~mA}$

(b) $\mathrm{C}_{4}=10 \mathrm{pF}, \mathrm{C}_{5}=33 \mathrm{pF}$
$\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=110 \mathrm{~mA}$
CCM Onset $\mathrm{I}_{\text {OUT }}=126 \mathrm{~mA}$
Figure 7. Switching Waveforms of a 28 V to 5 V Converter Just Before It Enters ContinuousConduction Mode

Mode Transition and the FB Pin

If the upper feedback resistor R_{1} (Figure 3, page 9) is large and is about the same magnitude as R_{2}, then fast switching transients may couple into the FB pin, disturbing or delaying the transition from light-load operating mode to continuous-conduction mode (CCM). As described previously, the output ripple voltage is very low in continuous-conduction mode. Delayed CCM transition extends the load range in which the converter produces larger output voltage ripples. This disturbance becomes more pronounced when $\mathrm{V}_{\text {IN }}$ is increased above 21 V and when large feedback resistors are used. The regulator becomes insensitive to switching disturbances after it enters continuous-conduction mode.

(a) $\mathrm{C}_{4}=22 \mathrm{pF}, \mathrm{C}_{5}$ not Placed $\mathrm{V}_{\text {OUT }}=3.3 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=145 \mathrm{~mA}$ CCM Onset $\mathrm{I}_{\text {OUT }}=150 \mathrm{~mA}$

(b) $\mathrm{C}_{4}=22 \mathrm{pF}, \mathrm{C}_{5}=47 \mathrm{pF}$ $\mathrm{V}_{\text {OUT }}=3.3 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=118 \mathrm{~mA}$ CCM Onset $\mathrm{I}_{\text {OUT }}=121 \mathrm{~mA}$
Figure 8. Switching Waveforms of a 28 V to 3.3 V Converter Just Before It Enters ContinuousConduction Mode

Applications Information (Continued)

The operating mode transition can be significantly smoothed by filtering the FB node. A capacitor between FB pin and ground (Capacitor $\mathrm{C}_{5^{\prime}}$ as shown in Figures 13(a), page 18) serves this purpose. It should be chosen so that it improves mode transition without significantly slowing down load transients. Switching waveforms of a 5 V output regulator (Figure 13(a), page 18) immediately before it enters continuous-conduction mode are shown in Figure 7. The inductor current waveform appears to be more jagged without filtering. Moreover, transition to CCM occurs at an output current of 176 mA , instead of 126 mA with FB filtering. Figure 8 compares the corresponding switching waveforms of an output 3.3V (Figure 14(a), page 19) regulator.

If the converter output voltage is 1.8 V or less, or if R_{2} is reduced to below $2 \mathrm{k} \Omega$, then C_{5} will not be necessary. C_{5} is also optional in Figures 13(a) and 14(a) if the maximum $\mathrm{V}_{\mathbb{N}}$ never exceeds 21 V . Bench testing shows that removing C_{5}
from these converters still results in acceptable transitional behavior, provided that $\mathrm{V}_{\text {IN }}<21 \mathrm{~V}$.
C_{5} can be estimated using the following empirical equation:

$$
\begin{equation*}
\mathrm{C}_{5}=\frac{8 \times 10^{-6}}{\mathrm{R}_{1} \| \mathrm{R}_{2}}-\mathrm{C}_{4} \tag{11}
\end{equation*}
$$

FB filtering has no significant impact on the output ripple voltage. However, it improves the converter efficiency by 0.25% to 0.5% around the mode transition point (Figure 9). Regulator efficiencies are slightly lower ($<0.25 \%$) at light loads when filtering the FB voltage. Positive values in Figure 9 imply that FB filtering improves efficiency compared to no filtering.

Reverse Input Protection

Consider a circuit board where the input power source supplies several DC-DC converters, including an SC4530

Figure 9. Effect of FB Filtering on Converter Efficiency ($\mathrm{V}_{\mathrm{iN}}=28 \mathrm{~V}$) Plotted Efficiency = the Efficiency of a FB-Filtered Converter the Efficiency of the Same Converter without FB-Filtering

Applications Information (Continued)

regulator with a large output capacitor. During poweroff, the SC4530 regulator output may be held high by its output capacitor, while $\mathrm{V}_{\text {IN }}$ is discharged rapidly by other $\mathrm{DC}-\mathrm{DC}$ converters. If $\mathrm{V}_{\text {iN }}$ falls to two diode voltages below $\mathrm{V}_{\text {out }}$ then the parasitic junction diodes inside the SC4530 (see Figure 2, page 5) will draw current from the output through the SW pin to the input. If the load is light and the output capacitor is large, then high reverse current will flow, or even damage the internal circuits.

Figure 10 shows two protection schemes. In Figure 10(a), a Schottky diode D_{4} placed at the input blocks the reverse

Figure 10. Reversed Input Protection Schemes
(a) D_{4} Blocks the Reverse Current
(b) D_{4} Shunts the Reverse Current from the Part During Power-off.
current. This method has the disadvantage that it lowers the converter efficiency. A PN junction diode placed from the converter output to the input [(as shown in Figure 10(b)] shunts the reverse current away from the part, thus protecting the part. This scheme is not suitable in a power supply system where a backup battery is diode OR-ed with the SC4530 regulator output and with the SC4530 input grounded.

Board Layout Considerations

In a step-down switching regulator, the input bypass capacitor, the main power switch and the freewheeling power diode carry pulse current with high di/dt (Figure 11). To minimize jittering, the size of the loop formed by these components must be minimized. Since the main power switch and the freewheeling diode are already integrated inside the part, connecting the input bypass capacitor close to the ground pin minimizes size of the switched current loop.

Figure 11. Heavy Lines Show the Fast Switching Current Paths in a Step-down Converter. The Input Capacitor Should be Placed Close to the Part for Improved Switching Performance.

Applications Information (Continued)

Shortening the traces at the SW and BST nodes reduces the parasitic trace inductance at these nodes. This not only reduces EMI , but also decreases switching voltage spikes at these nodes. Shielding the FB trace from the SW and the BST nodes with ground traces is a good precaution in mitigating switching transient disturbance.

Figure 12 shows an example of external component placement around the SC4530. The exposed pad should be soldered to a large power ground plane as the ground copper acts as a heat sink for the device.

Figure 12. Suggested PCB Layout for the SC4530

Typical Application Circuits

(a)

Figure 13. (a) 5V Output Step-Down Converter
(b) Switching Waveforms of the Figure 13(a) Circuit. $\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=10 \mu \mathrm{~A}$
(c) $\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=60 \mathrm{~mA}$
(d) $\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=300 \mathrm{~mA}$
(e) Load Transient. $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{I}_{\text {OUT }}$ is Switched Between 0 and 300 mA

Typical Application Circuits (Continued)

(a)

Figure 14. (a) 3.3V Output Step-Down Converter
(b) Switching Waveforms of the Figure 14(a) Circuit. $\mathrm{V}_{\text {IN }}=24 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=100 \mu \mathrm{~A}$
(c) $\mathrm{V}_{\text {IN }}=24 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=60 \mathrm{~mA}$
(d) $\mathrm{V}_{\text {IN }}=24 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=300 \mathrm{~mA}$
(e) Load Transient. $\mathrm{V}_{\text {IN }}=24 \mathrm{~V}$, $\mathrm{I}_{\text {oUT }}$ is Switched Between 0 and 300 mA

Typical Application Circuits (Continued)

Figure 15. 1.23V Output Step-Down Converter

L1: Coilcraft LPS6225
C. Murata GRM21BR60J476M C2: Murata GRM32ER71H106K

Figure 17. 2.5V Output Step-Down Converter

L1: Coilcraft LPS6225
C1: Murata GRM31CR60G107M C2: Murata GRM31CR71H475K

Figure 16. 1.8V Output Step-Down Converter

L1: Coilcraft LPS6225

C1: Murata GRM31CR61C106K
C2: Murata GRM31CR71H475K

Figure 18. 9V Output Step-Down Converter

Figure 19. 12V Output Step-Down Converter

Outline Drawing - MLPD-W-8 3x2

NOTES:

1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).
2. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS TERMINALS.

Land Pattern - MLPD-W-8 3x2

DIMENSIONS	
DIM	MILLIMETERS
C	(1.85)
G	1.10
H	0.60
K	2.20
P	0.50
X	0.30
Y	0.75
Z	2.60

NOTES:

1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).
2. THIS LAND PATTERN IS FOR REFERENCE PURPOSES ONLY. CONSULT YOUR MANUFACTURING GROUP TO ENSURE YOUR COMPANY'S MANUFACTURING GUIDELINES ARE MET.
3. THERMAL VIAS IN THE LAND PATTERN OF THE EXPOSED PAD SHALL BE CONNECTED TO A SYSTEM GROUND PLANE. FAILURE TO DO SO MAY COMPROMISE THE THERMAL AND/OR FUNCTIONAL PERFORMANCE OF THE DEVICE.
© Semtech 2014
All rights reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights. Semtech assumes no responsibility or liability whatsoever for any failure or unexpected operation resulting from misuse, neglect improper installation, repair or improper handling or unusual physical or electrical stress including, but not limited to, exposure to parameters beyond the specified maximum ratings or operation outside the specified range.
SEMTECH PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED OR WARRANTED TO BE SUITABLE FOR USE IN LIFESUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF SEMTECH PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE UNDERTAKEN SOLELY AT THE CUSTOMER'S OWN RISK. Should a customer purchase or use Semtech products for any such unauthorized application, the customer shall indemnify and hold Semtech and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs damages and attorney fees which could arise.
Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Contact Information

Semtech Corporation
Power Management Products Division
200 Flynn Road, Camarillo, CA 93012
Phone: (805) 498-2111 Fax: (805) 498-3804

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Switching Voltage Regulators category:
Click to view products by Semtech manufacturer:
Other Similar products are found below :
FAN53610AUC33X FAN53611AUC123X FAN48610BUC33X FAN48610BUC45X FAN48617UC50X R3 430464BB KE177614
FAN53611AUC12X MAX809TTR NCV891234MW50R2G NCP81103MNTXG NCP81203PMNTXG NCP81208MNTXG NCP81109GMNTXG SCY1751FCCT1G NCP81109JMNTXG AP3409ADNTR-G1 NCP81241MNTXG LTM8064IY LT8315EFE\#TRPBF LTM4664EY\#PBF LTM4668AIY\#PBF NCV1077CSTBT3G XCL207A123CR-G MPM54304GMN-0002 MPM54304GMN-0004 MPM54304GMN-0003 AP62300Z6-7 MP8757GL-P MIC23356YFT-TR LD8116CGL HG2269M/TR OB2269 XD3526 U6215A U6215B U6620S LTC3412IFE LT1425IS MAX25203BATJA/VY+ MAX77874CEWM+ XC9236D08CER-G MP3416GJ-P MP5461GC-Z MPQ4590GS-Z MAX38640BENT18+T MAX77511AEWB+ MAX20406AFOD/VY+ MAX20408AFOC/VY+

