Galvanic Isolated Blocking 56V Power Load Switch

TRIUNE PRODUCTS

Features

- Low Quiescent Operating Currents
- 2uA in OFF state
- 15uA in ON state
- +/- 2KV galvanic isolation from primary to secondary sides of the device
- Single control signal for on/off input (CLK)
- Operation from 2.9 V to 5.5 V compatible with standard microcontrollers
- Switch Characteristics
- High voltage switch with bi-directional blocking in OFF state
- Single switch device
- 56 V switch and 110 mohm Rdson
- Over current shutoff
- 5.5Amp typical, 6.6Amp maximum, 4.4Amp minimum -10C to 65C

Specification

- Junction operating temperature $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
- Packaged in a 20pin QFN (4x4)

Description

The TS13001 is a galvanic isolated 56 V power switch device with bi-directional blocking. The device includes a single integrated 110 mOhm high voltage FET allowing high efficiency switching of power loads or other high current applications. The input pin, CLK, controls the turn on/off of the switch.

The TS13001 includes several protection features. Each FET has an integrated over-current shut-down to prevent device damage during short-circuit or other unusually high load conditions. If an over-current event is detected for a time the FET is latched off until the CLK pin is held off and turned on again. While the CLK pin is active after an over-current event or in the event of an incorrect turn-on sequence, the DATA pin is toggled at $1 / 4$ the CLK frequency.

Applications

- Power load/rail switching
- Input supply muxing
- Isolated power supplies
- Solid state relays
- HVAC control

Typical Application Circuit

Pin Description

Pin \#	Pin Name	Pin Function	Description
1	SW2	Switch Output Node 2	
2	SW1	Switch Output Node 1	
3	SW1	Switch Output Node 1	
4	SW2	Switch Output Node 2	
5	SW2	Switch Output Node 2	
6	SW1	Switch Output Node 1	
7	SW1	Switch Output Node 1	
8	SW2	Switch Output Node 2	
9	SW2	Switch Output Node 2	
10	DATA	Data Output	AC Coupled Data Output
11	CLK	Clock Input	AC Coupled Clock and Power Input
12	CPP	Charge Pump Cap	Additional Cap used for lower voltage Clock drive
13	VDD1	Internal Supply 1	Bypass Capacitor for Internal Supply
14	VDD2	Internal Supply 2	Bypass Capacitor for Internal Supply
15	SRC	GND	
16	SUB	GND2	
17	SW2	Switch Output Node 2	
18	SW1	Switch Output Node 1	
19	SW1	Switch Output Node 1	
20	SW2	Switch Output Node 2	
PAD	PAD	Power PAD	Must be floating or connected to SUB

Functional Block Diagram

Figure 1: TS13001 Block Diagram

Absolute Maximum Rating

Over operating free-air temperature range unless otherwise noted ${ }^{(1,2,3)}$

Parameter	Range	UNIT
SW1, SW2	-60 to 60	V
CLK, DATA, VDD1, VDD2, CPP	-0.3 to 5.5	V
SUB	-60 to 0.3	V
Operating Junction Temperature Range, TJ	-40 to 125	${ }^{\circ} \mathrm{C}$
Storage Temperature Range, TSTG	-65 to 150	${ }^{\circ} \mathrm{C}$
Electrostatic Discharge - Human Body Model	$\pm 2 \mathrm{k}$	V
Electrostatic Discharge - Machine Model	$+/-200$	V
Electrostatic Discharge - IEC Contact (SW1 and SW2 pins)	$\pm 8 \mathrm{k}$	V
Electrostatic Discharge - IEC Air Discharge (SW1 and SW2 pins)	$\pm 15 \mathrm{k}$	V
Lead Temperature (soldering, 10 seconds)	260	${ }^{\circ} \mathrm{C}$

Notes:
(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltage values are with respect to SRC terminal.
(3) ESD testing is performed according to the respective JESD22 JEDEC standard.

Thermal Characteristics

Electrical Characteristics, $\mathrm{TJ}=-40 \mathrm{C}$ to 125C (unless otherwise noted)

Symbol	Parameter	Value	Units
Θ_{JA}	Thermal Resistance Junction to Air (Note 1)	34.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Θ_{JC}	Thermal Resistance Junction to Case (Note 1)	2.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{T}_{\mathrm{STG}}$	Storage Temperature Range	-65 to 150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{JMAX}}$	Maximum Junction Temperature	150	${ }^{\circ} \mathrm{C}$
T_{J}	Operating Junction Temperature Range	-40 to 125	${ }^{\circ} \mathrm{C}$

Note 1: Assumes 16LD 3x3 QFN with hi-K JEDEC board and 13.5 inch2 of 1 oz Cu and 4 thermal vias connected to PAD

Recommended Operating Conditions

Symbol	Parameter	Min	Typ	Max	Unit
$\mathrm{V}_{\text {SW }}$	AC Switch Voltage	-24		24	V
$\mathrm{C}_{\text {DATA }}$	Data Isolation Capacitor		100		pF
$\mathrm{C}_{\text {ISO }}$	Clock Isolation Capacitor		680		pF
C_{CP}	Charge Pump Capacitor		100		pF
$\mathrm{C}_{\text {VDD } 1}$	VDD1 Bypass Capacitor		10		nF
$\mathrm{C}_{\text {VDD2 }}$	VDD2 Bypass Capacitor		1		uF
$\mathrm{C}_{\text {SUB }}$	Sub Capacitor		100		nF

Electrical Characteristics

Electrical Characteristics, $\mathrm{T}_{1}=-40 \mathrm{C}$ to $125 \mathrm{C}, \mathrm{VCC}=12 \mathrm{~V}$ (unless otherwise noted)

Symbol	Parameter	Condition	Min	Typ	Max	Unit
VCLK Supply Voltage						
$\mathrm{V}_{\text {cIK }}$	Clock Drive Voltage				5.5	v
	Quiescent current	$\mathrm{V}_{\text {CIK }}=5.0 \mathrm{~V}, \mathrm{~F}_{\text {cIK }}=500 \mathrm{KHz}$	2.9	15		uA
Іскпогм	Normal Mode	$\mathrm{V}_{\text {cIK }}=3.0 \mathrm{~V}, \mathrm{~F}_{\text {cIK }}=1000 \mathrm{KHz}$		50		uA
${ }^{\text {CLIKStiby }}$	Quiescent current	$\mathrm{V}_{\text {cIK }}=0 \mathrm{~V}$			3	uA

VCLK Drive

$\mathrm{F}_{\text {CLK }}$	Clock Frequency to Turn on Switch		300		2000	KHz
$\mathrm{F}_{\text {DATA }}$	Data Frequency during Current Shutdown			$\mathrm{F}_{\mathrm{CLK}} / 4$		KHz
$\mathrm{N}_{\text {CLKon-INIT }}$	Number of CLK pulses to initialize Turn On		3		8	
$\mathrm{T}_{\text {LOW-ON }}$	CLK Low time during Turn On Sequence		10		20	uS
$\mathrm{N}_{\text {cLKoN }}$	CLK Pulses to Turn on SW After $\mathrm{T}_{\text {Low-on }}$			15		
$\mathrm{T}_{\text {FASTOFF-INIT }}$	CLK Low time to Initialize Fast TurnOff		10		20	uS
$\mathrm{N}_{\text {CLK-FOEN }}$	CLK Pulses to Enable Fast Turn-Off After T^{\prime} FASTOFF-NIT		6		13	
$\mathrm{T}_{\text {OfF-FAST }}$	Time for Turn Off	Fast Mode	4		10	uS
$\mathrm{T}_{\text {OFF-NORM }}$	Time for Normal Turn Off	lout < $\mathrm{I}_{\text {OFF-TH }}$	60		120	uS
$\mathrm{N}_{\text {CLK-OFFDET }}$	CLK Pulses to Detect Incorrect Turn-On Sequence	Resets with $\mathrm{T}_{\text {Low-ON }}$		19		

Output Switch

$\mathrm{R}_{\text {on }}$	On Resistance	Tj=-10C to 65C	75	105	150	$\mathrm{m} \Omega$
$\mathrm{R}_{\text {on }}$	On Resistance	$\mathrm{Tj}=25 \mathrm{C}$	90	105	130	$\mathrm{m} \Omega$
$\mathrm{I}_{\text {OFF }}$	Off State Leakage				3	uA
$\mathrm{IOUT}_{\text {oc }}$	Output Over Current Shutdown	Tj=-40C to 125C	4.0		7.2	A
$\mathrm{IOUT}_{\text {oc }}$	Output Over Current Shutdown	$\mathrm{Tj}=-10 \mathrm{C}$ to 65C	4.4	5.5	6.6	A
$\mathrm{OC}_{\text {FLIT }}$	Output Over Current Deglitch			25		uS
$\mathrm{I}_{\text {turn-OFF }}$	Switch Current for Normal Turn-Off		-275		275	mA
$\mathrm{I}_{\text {OFF-TH }}$	Normal Turn-Off Current Threshold	Switch will turn off if absolute value of current is below this threshold after CLK stops	125	200	275	mA

Application Waveforms

Figure 2: Clock Turn-on Sequence

Figure 3: High-speed Turn-off Mode

Figure 4: Over-current Shut-down and Restart

Package Mechanical Drawings

| | Units | MILLIMETERS | | |
| :--- | ---: | ---: | :---: | :---: | :---: |
| | Dimension Limits | MIN | NOM | MAX |
| Number of Pins | N | | 20 | |
| Pitch | e | | 0.50 BSC | |
| Overall Height | A | 0.80 | 0.90 | 1.00 |
| Standoff | A 1 | 0.00 | 0.02 | 0.05 |
| Contact Thickness | A 3 | | 0.20 REF | |
| Overall Length | D | | 4.00 BSC | |
| Exposed Pad Width | E 2 | | 2.70 | 2.80 |
| Overall Width | E | 2.55 | 4.00 BSC | |
| Exposed Pad Length | D 2 | | 2.70 | 2.80 |
| Contact Width | b | 2.55 | 0.25 | 0.30 |
| Contact Length | L | 0.20 | 0.40 | 0.50 |
| Contact-to-Exposed Pad | K | 0.30 | - | - |

Notes:
RR = Revision number
YWW = Year Calendar Week

Package Mechanical Drawings

Units		MILLIMETERS		
	Dimension Limits	MIN	NOM	MAX
Contact Pitch	E		0.50 BSC	
Optional Center Pad Width	W2	-	-	2.70
Optional Center Pad Length	T2	-	-	2.70
Contact Pad Spacing	C1	-	4.00	-
Contact Pad Spacing	C2	-	4.00	-
Contact Pad Width X20	X1	-	-	0.35
Contact Pad Length X20	Y1	-	-	0.35
Distance Between Pads	G	0.15	-	-

Notes:

Dimensions and tolerancing per ASME Y14.5M
REF: Reference Dimension, usually without tolerance, for information only.
BSC: Basic Dimension, Theorically exact value shown with tolerances.

Ordering Information

Part Number	Description
TS13001-QFNR	Non-Latching Galvanic Isolated Switch

RoHS and Reach Compliance

Triune Systems is fully committed to environmental quality. All Triune Systems materials and suppliers are fully compliant with RoHS (European Union Directive 2011/65/EU), REACH SVHC Chemical Restrictions (EC 1907/2006), IPC-1752 Level 3 materials declarations, and their subsequent amendments. Triune Systems maintains certified laboratory reports for all product materials, from all suppliers, which show full compliance to restrictions on the following:

- Cadmium (Cd)
- Chlorofluorocarbons (CFCs)
- Chlorinate Hydrocarbons (CHCs)
- Halons (Halogen free)
- Hexavalent Chromium (CrVI)
- Hydrobromofluorocarbons (HBFCs)
- Hydrochlorofluorocarbons (HCFCs)
- Lead (Pb)
- Mercury (Hg)
- Perfluorocarbons (PFCs)
- Polybrominated biphenyls (PBB)
- Polybrominated Diphenyl Ethers (PBDEs)

SSEMTECH

IMPORTANT NOTICE

Information relating to this product and the application or design described herein is believed to be reliable, however such information is provided as a guide only and Semtech assumes no liability for any errors in this document, or for the application or design described herein. Semtech reserves the right to make changes to the product or this document at any time without notice. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. Semtech warrants performance of its products to the specifications applicable at the time of sale, and all sales are made in accordance with Semtech's standard terms and conditions of sale.

SEMTECH PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS, OR IN NUCLEAR APPLICATIONS IN WHICH THE FAILURE COULD BE REASONABLY EXPECTED TO RESULT IN PERSONAL INJURY, LOSS OF LIFE OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. INCLUSION OF SEMTECH PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE UNDERTAKEN SOLELY AT THE CUSTOMER'S OWN RISK. Should a customer purchase or use Semtech products for any such unauthorized application, the customer shall indemnify and hold Semtech and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs damages and attorney fees which could arise.

The Semtech name and logo are registered trademarks of the Semtech Corporation. All other trademarks and trade names mentioned may be marks and names of Semtech or their respective companies. Semtech reserves the right to make changes to, or discontinue any products described in this document without further notice. Semtech makes no warranty, representation or guarantee, express or implied, regarding the suitability of its products for any particular purpose. All rights reserved.
© Semtech 2015

Contact Information

Semtech Corporation

200 Flynn Road, Camarillo, CA 93012
Phone: (805) 498-2111, Fax: (805) 498-3804
www.semtech.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Switch ICs - Power Distribution category:
Click to view products by Semtech manufacturer:
Other Similar products are found below :
TCK111G,LF(S FPF1018 DS1222 TCK2065G,LF SZNCP3712ASNT3G MIC2033-05BYMT-T5 MIC2033-12AYMT-T5 MIC2033-05BYM6-T5 SLG5NT1437VTR SZNCP3712ASNT1G DML1008LDS-7 KTS1670EDA-TR KTS1640QGDV-TR KTS1641QGDV-TR NCV459MNWTBG FPF2260ATMX U6513A U6119S MIC2012YM-TR MAX14919ATP+ MC33882PEP TPS2021IDRQ1 TPS2104DBVR MIC2098-1YMT-TR MIC94062YMT TR MP6231DN-LF MIC2075-2YM MIC2095-2YMT-TR MIC94068YML-TR SIP32461DB-T2-GE1 NCP335FCT2G TCK105G,LF(S AP2151DSG-13 MIC94094YC6-TR MIC94064YC6-TR MIC2505-1YM MIC94305YMT-TR MIC94081YFT-TR MIC94042YFL-TR MIC94041YFL-TR MIC2005-1.2YM6-TR TPS2032QDRQ1 SIP32510DT-T1GE3 NCP333FCT2G NCP331SNT1G TPS2092DR TPS2063DR TPS2042P MIC2008YML-TR MIC2040-1YMM

