TRIUNE PRODUCTS

Features

- Ultra-low nA operating current at light load
- Best-in-class quiescent current of 20nA at Iload=0
- Best-in-class quiescent current of 100pA in disable mode
- Output voltage options of $1.2 \mathrm{~V}-4.2 \mathrm{~V}$ in 100 mV steps (programmed at manufacturing)
- Accurate output regulation
- Over-current protection

Summary Specifications

- Low input operating voltage of 2.5 V to 5.5 V
- Packaged in a 8pin DFN (2x2)
- Product is lead-free, Halogen Free, RoHS / WEEE compliant

Description

The TS14002 linear regulator is an ultra-low-power circuit which draws low nA level quiescent current at light load, but has the capability to regulate current loads as high as 150 mA .

Applications

- Portable electronics
- RFID
- Industrial
- Medical
- Energy harvesting systems
- SmartCard

Typical Applications

Block Diagram

Pin Description

Pin \#	Pin Name	Pin Type ${ }^{(1)}$	Description
1	GND	P	Ground
2	$V_{\text {out }}$	O	Regulated Output Voltage
3	NC		No Connect (connect to GND or float)
4	NC	No Connect (connect to GND or float)	
5	NC	No Connect (connect to GND or float)	
6	FB	Feedback Input	
7	$V_{\text {cc }}$	P	Input Power
8	EN	I	Enable Input

(1) I = Input, $0=$ Output, $\mathrm{P}=$ Power

Absolute Maximum Rating

Over operating free-air temperature range unless otherwise noted ${ }^{(2,3,4)}$

Parameter	Value	Unit
$\mathrm{V}_{\text {cC }}, \mathrm{V}_{\text {our }}$, EN, FB	-0.3 to 6.0	V
Electrostatic Discharge (Human Body Model)	2	kV
Operating Junction Temperature Range, T_{J}	-40 to 85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range, $\mathrm{T}_{\text {sT }}$	-65 to 150	${ }^{\circ} \mathrm{C}$
Reflow Temperature (soldering, 10 seconds)	260	${ }^{\circ} \mathrm{C}$

(2) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(3) All voltage values are with respect to network ground terminal.
(4) ESD testing is performed according to the respective JESD22 JEDEC standard.

Thermal Characteristics

Package DFN	日JA $\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$ $($ See Note 5)	日JC $\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$ $($ See Note 6)
8 pin	73.1	10.7

(5) This assumes a FR4 board only.
(6) This assumes a 1 Oz. Copper JEDEC standard board with thermal vias - See Exposed Pad section and application note for more information.

Recommended Operating Conditions

Parameter	Min	Typ	Max	Unit
Unregulated Supply Input Voltage $\left(\mathrm{V}_{\text {cc }}\right)$	2.5		5.5	V
Enable Input (EN)	0		5	V
Regulated Supply Output Voltage $\left(\mathrm{V}_{\text {out }}\right.$) typical	1.2		4.2	V
Operating Ambient Temperature, TA (Note 7)	-40		55	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature, T_{J}	-40		85	${ }^{\circ} \mathrm{C}$
Input Bypass Capacitor $\left(\mathrm{C}_{\text {BY> }}\right)$		2.2		uF
Output Bypass Capacitor $\left(\mathrm{C}_{\text {out }}\right)$	1	2.2	4.7	uF

(7) T_{A} Max shown here is a guideline. Higher T_{A} can be tolerated if $T_{\text {, }}$ does not exceed the Absolute Maximum Rating.

Characteristics

Electrical characteristics, $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25 \mathrm{C}, \mathrm{C}_{\text {OUT }}=2.2 \mathrm{uF}$ unless otherwise noted

Symbol	Parameter	Condition	Min	Typ	Max	Unit		
V_{cc}	Input Supply Voltage		2.5		5.5	V		
$\mathrm{Vil}_{\text {en }}$	Input Low Logic Level				$0.3{ }^{*} \mathrm{VCC}$	v		
$\mathrm{Vih}_{\text {EN }}$	Input High Logic Level		0.7*VCC			v		
$\mathrm{I}_{\text {q9 }}$	Quiescent Current (note 9)	$\begin{gathered} \mathrm{V}_{\text {cc }}=2.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{I}_{\text {out }}=0 \\ \text { (Note } 9) \end{gathered}$		20		nA		
$\mathrm{I}_{\text {qadidisable }}$	Quiescent Current: Disable Mode	$\mathrm{l}_{\text {OUT }}=0, \mathrm{EN}=0$		100		pA		
Op.gnd	Operating Current	$\begin{gathered} \mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\text {ccanv. }} \mathrm{I}_{\text {out }}=150 \mathrm{~mA} \\ \text { (Note 8) } \end{gathered}$		200		uA		
${ }^{\text {out }}$	Load Capability	Vout ${ }_{\text {nominal }}$ from 1.2 V to 3.5 V	0		150	mA		
		$\mathrm{Vout}_{\text {nominal }}>3.5 \mathrm{~V}$	0		100			
(8) If Vout \qquad $<2.5 \mathrm{~V}$, then $\mathrm{V}_{\text {cc_min }}=2.5 \mathrm{~V}$, otherwise $\mathrm{V}_{\text {cc_MIN }}=$ Vout (9) Not tested in production, but has been evaluated on samples								

Characteristics Continued

Electrical characteristics, $\mathrm{V}_{\mathrm{cc}}=2.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25 \mathrm{C}$, unless otherwise noted

Symbol	Parameter	Condition	Min	Typ	Max	Unit
$\mathrm{V}_{\text {Line }}$	DC Line Regulation	$\begin{gathered} \mathrm{V}_{\text {cc }}=\mathrm{V}_{\text {cc, MIN }} \text { to } \mathrm{V}_{\text {cC_max }} \\ \mathrm{V}_{\text {out }}=1.8 \mathrm{~V} \text { to } 4.2 \mathrm{~V}, \\ \mathrm{I}_{\text {out }}=50 \mathrm{~mA} \end{gathered}$		0.5	4	\%
		$\begin{gathered} \mathrm{V}_{\text {cC }}=\mathrm{V}_{\text {cC_MIN }} \text { to } \mathrm{V}_{\text {cC_MAX }} \\ \mathrm{V}_{\text {OUT }}<1.8 \mathrm{~V}, \\ \mathrm{I}_{\text {OUT }}=50 \mathrm{~mA} \end{gathered}$			4	\%
$\mathrm{V}_{\text {Load }}$	DC Load Regulation	$\begin{gathered} V_{\text {cc }}=V_{\text {cC NoM }} \\ \mathrm{I}_{\text {out }}=0.02 \mathrm{~mA} \text { to } 150 \mathrm{~mA}, \end{gathered}$		1	3	\%
$\mathrm{I}_{\text {limit }}$	Short circuit current limit	Vout forced to GND (Note 9)	185	200		mA

(9) Not tested in production, but has been evaluated on samples

Typical Characteristics

Dropout Voltage When $\mathrm{V}_{\text {out }}$ Drops By 3\%

Load Step Response

Load Step Response

Load Regulation Performance

Load Step Response

Line Step Response

Package Mechanical Drawings (all dimensions in mm)

Marking for the $2.0 \times 2.0 \mathrm{~mm}$ MLPD 8 Lead package:
nnn = Part Number (Example: TS4) - Reference Part No. Code for small MLP yw = Datecode (Reference Package Marking Design Guide lines, Appendix A)

$\oplus|0.10 \otimes| C|A| B$
$0.05(1)$ C
BOTTOM VIEW

	UnitsDimension Limits	MILLIMETERS		
		MIN	NOM	MAX
Number of Pins	N		8	
Pitch	e		0.50 BSC	
Overall Height	A	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3		0.20 REF	
Overall Length	D		2.00 BSC	
Exposed Pad Width	E2	0.75	0.90	1.00
Overall Width	E		2.00 BSC	
Exposed Pad Length	D2	1.55	1.70	1.80
Contact Width	b	0.18	0.25	0.30
Contact Length	L	0.20	0.30	0.40
Contact-to-Exposed Pad	K	0.20	-	-

Notes:
Dimensions and tolerances per ASME Y14.5M.
BSC: Basic Dimension. Theoretically exact values shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information only.

Recommeded PCB Land Pattern

RECOMMENDED
LAND PATTERN

DIMENSIONS IN MILLIMETERS

	UnitsDimension Limits	MILLIMETERS		
		MIN	NOM	MAX
Contact Pitch	E		. 50 BSC	
Optional Center Pad Width	W2	-	-	1.70
Optional Center Pad Length	T2	-	-	0.90
Contact Pad Spacing	C1	-	2.00	-
Contact Pad Spacing	C2	-	-	-
Contact Pad Width (X8)	X1	-	-	0.35
Contact Pad Length (X8)	Y1	-	-	0.65
Distance Between Pads	G	0.15	-	-

Ordering Information

TS14002--CvvvDFNR

Part Number	Description
vvv	Output Voltage*
012	1.2 V
015	1.5 V
018	1.8 V
020	2.0 V
023	2.3 V
025	2.5 V
028	2.8 V
030	3.0 V
033	3.3 V
042	4.2 V

* Custom values also available (1.2V - 4.2V typical in 100 mV increments)

IMPORTANT NOTICE

Information relating to this product and the application or design described herein is believed to be reliable, however such information is provided as a guide only and Semtech assumes no liability for any errors in this document, or for the application or design described herein. Semtech reserves the right to make changes to the product or this document at any time without notice. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. Semtech warrants performance of its products to the specifications applicable at the time of sale, and all sales are made in accordance with Semtech's standard terms and conditions of sale.

SEMTECH PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS, OR IN NUCLEAR APPLICATIONS IN WHICH THE FAILURE COULD BE REASONABLY EXPECTED TO RESULT IN PERSONAL INJURY, LOSS OF LIFE OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. INCLUSION OF SEMTECH PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE UNDERTAKEN SOLELY AT THE CUSTOMER'S OWN RISK. Should a customer purchase or use Semtech products for any such unauthorized application, the customer shall indemnify and hold Semtech and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs damages and attorney fees which could arise.

The Semtech name and logo are registered trademarks of the Semtech Corporation. All other trademarks and trade names mentioned may be marks and names of Semtech or their respective companies. Semtech reserves the right to make changes to, or discontinue any products described in this document without further notice. Semtech makes no warranty, representation or guarantee, express or implied, regarding the suitability of its products for any particular purpose. All rights reserved.
© Semtech 2016

Contact Information

Semtech Corporation
200 Flynn Road, Camarillo, CA 93012
Phone: (805) 498-2111, Fax: (805) 498-3804
www.semtech.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Linear Voltage Regulators category:
Click to view products by Semtech manufacturer:
Other Similar products are found below :
LV56831P-E LV5684PVD-XH MCDTSA6-2R L7815ACV-DG LV56801P-E TCR3DF13,LM(CT TCR3DF39,LM(CT TLE42794G L78L05CZ/1SX L78LR05DL-MA-E LM317T 636416C 714954EB BA033LBSG2-TR LV5680P-E L78M15CV-DG L79M05T-E TLS202A1MBVHTSA1 L78LR05D-MA-E NCV317MBTG NTE7227 LV5680NPVC-XH LT1054CN8 ME6208A50M3G SL7533-8 ME6231A50M3G ME6231A50PG ME6231C50M5G AMS1117S-3.3 AMS1117-5.0 AMS1117S-5.0 AMS1117-3.3 MD5118 MD5121 $\underline{M D 5127}$ MD5128 MD5130 MD5144 MD5150 MD5112 MD5115 MD5125 MD5133 MD5136 MD5140 MD5110 MD52E18WB6 MD52E33WB6 MD52E15QA3 MD52E21QA3

