

TS80000

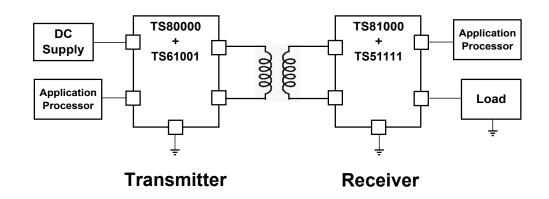
High Efficiency Transmitter Controller for Wireless Power Systems

POWER PRODUCTS

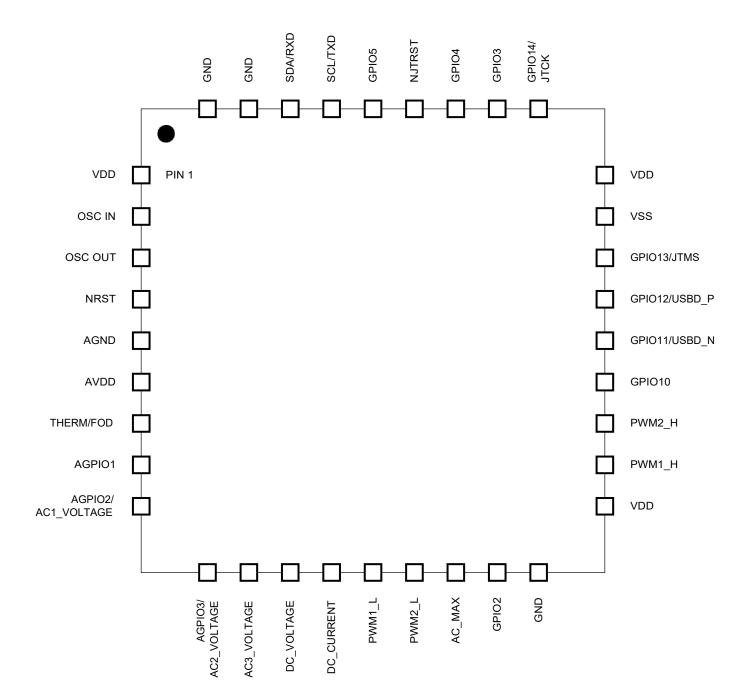
Features

- Supports Qi[®], PMA and proprietary charging applications
- Power outputs up to 40W+
- Support for single and multi-coil applications
- Support for half and full-bridge power sections
- Support for variable voltage, variable frequency and variable duty cycle architectures
- Integrated controller and flash for communications and control
- High precision data converters
- Precise control of bridge duty cycle and frequency
- Low external component count
- RISC-based controller core with flash and SRAM memory
- Two 12-bit A/D converters
- DMA controller
- Three 16-bit timers, each with up to 4 IC/OC/PWM or pulse counter
- Dual 16-bit PWM timers with dead-time generation
- 3 AGPIO and 5 GPIO for application customization
- I2C or UART interface
- USB interface
- 36 pin 6x6 QFN

Description

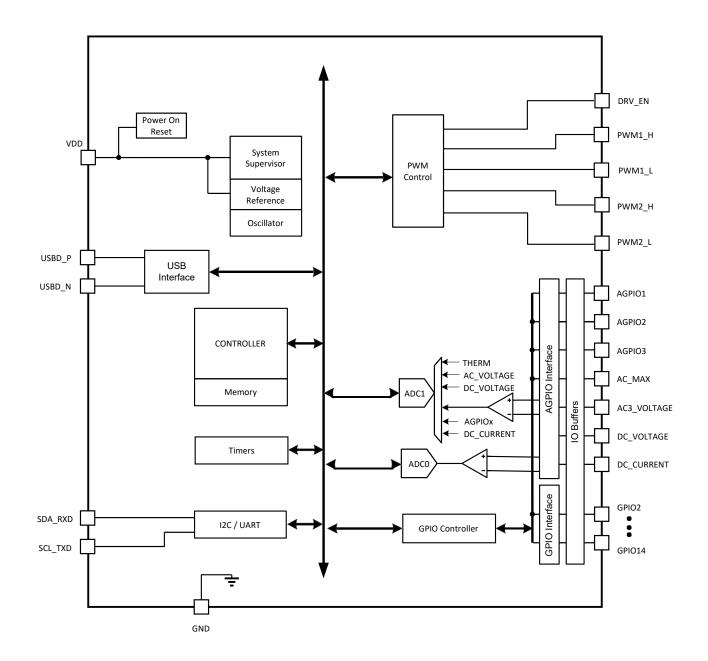

The TS80000 is a power transmitter communications and control unit for wireless charging applications. The TS80000 can support power outputs up to 40W+, and supports Qi[®] compliant, PMA compliant and proprietary applications. The TS80000 can be configured to drive single or multi-coil applications, in half and full-bridge systems.

The TS80000 performs the necessary decode of packets from the secondary side device and adjusts the control accordingly. An integrated PID filter provides the necessary compensation for the loop for high-precision control of duty cycle, frequency, and or bridge voltage.


Applications

- Qi[®] and non-standard wireless chargers for:
 - Cell Phones and Smartphones
 - GPS Devices
 - Digital Cameras
 - Tablets and eReaders
 - Portable Lighting
 - **0** Industrial applications

Typical Application Circuit


Pinout(TopView)

Pin Description

Pin #	Pin Name	Pin Function	Description
1	VDD	Input power	Input power supply
2	OSC_IN	Oscillator input	Oscillator input
3	OSC_OUT	Oscillator output	Oscillator output
4	NRST	Reset	Reset input
5	AGND	Analog GND	Analog GND
6	AVDD	Analog power	Analog power supply
7	THERM/FOD	Thermistor/FOD	Thermistor input or FOD calibration input
8	AGPI01	Analog GPIO	Analog GPIO1
9	AGPIO2/ AC1_VOLTAGE	Analog GPIO	Analog GPIO2 or AC coil voltage for coil #1 in a three-coil system
10	AGPIO3/ AC2_VOLTAGE	Analog GPIO	Analog GPIO3 or AC coil voltage for coil #2 in a three-coil system
11	AC3_VOLTAGE	Analog GPIO	AC coil voltage for a single-coil system or AC coil voltage for coil #3 in a three-coil system
12	DC_VOLTAGE	Analog GPIO	DC input voltage measurement
13	DC_CURRENT	Analog GPIO	DC input current measurement
14	PWM1_L	PWM output	PWM1 low-side control
15	PWM2_L	PWM output	PWM2 low-side control
16	AC_MAX	Analog GPIO	Communication demodulator input
17	DRV_EN	Drive enable	FET driver enable
18	GND	Power GND	Power GND
19	VDD	Input power	Input power supply
20	PWM1_H	PWM	PWM1 high-side control
21	PWM2_H	PWM	PWM2 high-side control
22	GPIO10	GPIO	GPI010
23	GPIO11/USBD_N	GPIO/USB data	GPIO11 or USB data input (D-)
24	GPIO12/USBD_P	GPIO/USB data	GPIO12 or USB data input (D+)
25	GPIO13/JTMS	GPIO/JTAG	GPIO13 or JTAG state machine control
26	GND	Power GND	Power GND
27	VDD	Input power	Input power supply
28	GPIO14/JTCK	GPIO/JTAG	GPIO14 or JTAG clock
29	GPIO15	GPIO	GPI015
30	GPIO3	GPIO	GPIO3
31	GPIO4	GPIO	GPIO4
32	GPIO5	GPIO	GPIO5
33	SCL/TXD	I2C/UART	I2C clock or UART output
34	SDA/RXD	I2C/UART	I2C data or UART input
35	GND	Power GND	Power GND
36	GND	Power GND	Power GND

Functional Block Diagram

Absolute Maximum Rating

Over operating free-air temperature range unless otherwise noted (1,2,3)

Parameter	Min	Max	Unit
VDD, AVDD, GND, AGND (supply voltage)	-0.3	4.0	V
OSC_IN, OSC_OUT, DRV_EN, PWM1_H, PWM2_H, GPIO10, GPIO11/USBD_N, GPIO12/ USBD_P, GPIO13/JTMS, GPIO3, GPIO4, SCL/TXD, SDA/RXD	GND - 0.3	VDD + 4.0	v
NRST, THERM/FOD, AGPIO1, AGPIO2/AC1_VOLTAGE, AGPIO3/AC2_VOLTAGE, AC3_ VOLTAGE, DC_VOLTAGE, DC_CURRENT, PWM1_L, PWM2_L, AC_MAX, GPIO14/JTCK, GPIO15, GPIO5	GND - 0.3	4.0	v
Operating Junction Temperature Range, TJ	-40	125	°C
Storage Temperature Range, TSTG	-65	150	°C
Electrostatic Discharge – Human Body Model		±2k	V
IR Reflow Temperature (soldering, 10 seconds)		260	°C

Notes:

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values are with respect to network ground terminal.

(3) ESD testing is performed according to the respective JESD22 JEDEC standard.

Parameter	Symbol	Min.	Тур.	Max.	Units
Input Operating Voltage	VDD / AVDD	2.0	3.3	3.6	V
Oscillator Frequency	F _{osc}		8.0		MHz
			100		nF
Analog Supply decoupling capacitor values	AVDD		4.7		nF
			4.7		uF
			3 x 100		- 5
Digital Supply decoupling capacitor values	VDD		4.7		nF
Operating Free Air Temperature	T _A	-40			uF
		10		85	°C
Operating Junction Temperature	T,	-40		105	°C

Operating Conditions

Communication Interfaces

The Applications Processor can interrogate the TS8000x using the I2C or UART interface. The two interfaces share the same pins. Only one interface is active at any time.

I2C

I/O Pins

ALERT pin (optional):

- Driven high when an event is active in the internal STATUS register
- Driven low when all the internal events are cleared

Note: The ALERT pin is provided to help with I2C communication, i.e. to signal events to the App. MCU so the App. MCU can interrogate the TS80000 via I2C to see what changed on the wireless interface. The use of the ALERT pin is not mandatory in the application.

SCL pin:

- Clock pin for the I2C interface.
- Open-drain with weak pull-ups. Needs stronger external pull-ups for full-speed operation.

SDA pin:

- Data pin for the I2C interface.
- Open-drain with weak pull-ups. Needs stronger external pull-ups for full-speed operation.

Write Register Operations

I2C Protocol

The TS80000 Wireless Power Transmitter Controller acts as an I2C slave peripheral to allow communication with an application microcontroller. The slave address (7 bit) is 0x50. The Application MCU is an I2C master and initiates every data transfer.

The TS80000 implements a set of registers available from the I2C bus. It also implements a set of API functions that receive parameters and return values using the I2C bus. Four transfer types are possible:

- Write Register
- Read Register
- Run API Function
- Read API Function Return Buffer

Description

Description

START				Start of the I2C transfer.				
M→S	Slave Address (7 bits)	0 (1 bit)	Slave ACK	Slave address + R/nW bit (0xA0 as 8-bit)				
M→S	Register n address (8 bits)		Slave ACK	Address of the first register				
M→S	Register n Data (8 bits)		Slave ACK	Write the first register				
M→S	Register n+1 Data (8 bits)		Slave ACK	Optionally write the following registers				
M→S	Register n+k Data (8 bits)		Slave ACK					
STOP				Stop of the I2C transfer				

Read Register Operations

START				Start of the I2C transfer.				
M➔S	Slave Address (7 bits)	0 (1 bit)	Slave ACK	Slave address + 0 as R/nW bit (0xA0 as 8-bit)				
M → S	Register n address (8 bits)		Slave ACK	Address of the first register				
START				Repeated Start				
M➔S	Slave Address (7 bits)	1 (1 bit)	Slave ACK	Slave address + 1 as R/nW bit (0xA1 as 8-bit)				
S➔M	Register n Data (8 bits)		Master ACK	Read the first register				
S➔M	Register n+1 Data (8 bits)		Master ACK	Optionally read the following registers				
ѕ➔м	Register n+k Data (8 bits)	+k Data (8 bits) Master nACK		The master should send a nACK after the last data byte was received.				
STOP				Stop of the I2C transfer				

Run API Function

Description

START				Start of the I2C transfer
M➔S	Slave Address (7 bits)	0 (1 bit)	Slave ACK	Slave address + R/nW bit (0xA0 as 8-bit
M➔S	API number (8 bits)		Slave ACK	API number
M→S	API input buffer length m (8 bits)	Slave ACK	API input buffer length. Equal to 0 if no input buffer data is required by the API
M➔S	Input buffer data[0] (8 bits)		Slave ACK	First byte of the input buffer (optional)
M➔S	Input buffer data[1] (8 bits)		Slave ACK	Second byte of the input buffer (optional)
M➔S	Input buffer data[m-1] (8 bit	s)	Slave ACK	Last byte of the input buffer (optional)
STOP				Stop of the I2C transfer and execute the API function

Read API Function Return Buffer

Description

START				Start of the I2C transfer.					
M➔S	Slave Address (7 bits)	0 (1 bit)	Slave ACK	Slave address + 0 as R/nW bit (0xA0 as 8-bit)					
M➔S	API number (8 bits)		Slave ACK	API number.					
START				Repeated Start					
M → S	Slave Address (7 bits)	1 (1 bit)	Slave ACK	Slave address + 1 as R/nW bit (0xA1 as 8-bit)					
S➔M	API number (8 bits)		Master ACK	API number for the following return buffer					
S → M	API return buffer length n (8	bits)	Master ACK	API return buffer length					
S→M	Output buffer data[0] (8 bits)	Master ACK	Read the first byte in the output buffer					
S→M	Output buffer data[1] (8 bits)	Master ACK	Optionally read the following bytes					
ѕ➔м	Output buffer data[n-1] (8 bi	its)	Master nACK	The master should send a nACK after the last data byte was received.					
STOP				Stop of the I2C transfer					

Internal Registers

Addresss	Name	Туре	Access Mode (bits)	Description
General Regist	ers			•
0x00	BOOTFW_REV_L	R	8/16	Bootloader Firmware Revision (L)
0x01	BOOTFW REV H	R	8/16	Bootloader Firmware Revision (H)
0x02	FW_REV_L	R	8/16	Firmware Revision (L)
0x03	FW_REV_H	R	8/16	Firmware Revision (H)
0x04	MODE_L	R	8/16	Operating Mode (L)
0x05	MODE_H	R	8/16	Operating Mode (H)
0x06	RESET_L	R/W	8/16	Reset Register (L)
0x07	RESET_H	R/W	8/16	Reset Register (H)
0x08	STATUS0	R	8	Status0 Register
0x09 0x0A	STATUS1 STATUS2	R	8	Status1 Register Status2 Register
0x0A 0x0B	STATUS2 STATUS3	R	8	Status2 Register
0x0C	RESERVED	N	0	
Bootloader Mo				
0x0D 0x0E	BLOCK_SIZE	R	8 8 / 16	Block Size
0x0E 0x0F	FW_SIZE_L FW_SIZE_H	R	8/16	Firmware Size (L)
0x0F 0x10	CONFIG SIZE L	R	8/16	Firmware Size (H) Configuration Size (L)
0x10	CONFIG SIZE H	R	8/16	Configuration Size (H)
0x11	CALIBRATION SIZE L	R	8/16	Calibration Size (L)
0x12	CALIBRATION SIZE H	R	8/16	Calibration Size (H)
0x14	FW FLAGS L	R	8/16	Firmware Flags (L)
0x15	FW FLAGS H	R	8/16	Firmware Flags (H)
0x16-0x7F	RESERVED			
Transmitter Mod				1
0x0D	CHANNEL COUNT	R	8	Channel Count
0x0E	CHANNEL_SELECT	R/W	8	Channel Selection Register
0x0F	COIL_COUNT	R	8	Coil Count
0x10	FREQ_MIN_LIMIT_L	R/W	16	Limit for the Minimum Frequency (L)
0x11	FREQ_MIN_LIMIT_H	R/W	16	Limit for the Minimum Frequency (H)
0x12	FREQ_MAX_LIMIT_L	R/W	16	Limit for the Maximum Frequency (L)
0x13	FREQ_MAX_LIMIT_H	R/W	16	Limit for the Maximum Frequency (H)
0x14	DC_CURRENT_LIMIT_L	R/W	16	DC Current Limit (L)
0x15	DC_CURRENT_LIMIT_H	R/W	16	DC Current Limit (H)
0x16		R/W	16	AC Voltage Limit (L)
0x17	AC_VOLTAGE_LIMIT_H	R/W R/W	16 16	AC Voltage Limit (H) Coil Temperature Limit (L)
0x18 0x19	TEMP_COIL_LIMIT_L TEMP_COIL_LIMIT_H	R/W	16	Coil Temperature Limit (L)
0x1A	TEMP DIE LIMIT L	R/W	16	Die Temperature Limit (L)
0x1A 0x1B		R/W	16	Die Temperature Limit (H)
0x1C	FAN TEMP MIN	R/W	8	Minimum Temperature for Fan Control
0x1D	FAN TEMP MAX	R/W	8	Maximum Temperature for Fan Control
0x1E	FAN DTC MIN	R/W	8	Minimum Duty Cycle for Fan Control
0x1F	FAN_DTC_MAX	R/W	8	Maximum Duty Cycle for Fan Control
0x20	SUPPORTED_STANDARDS	R/W	8	Supported Standards
0x21	MAX_POWER_WPC	R/W	8	Maximum Power in WPC Mode
0x22	MAX_POWER_PMA	R/W	8	Maximum Power in PMA Mode
0x23	MAX_POWER_A4WP	R/W	8	Maximum Power in A4WP Mode
0x24-0x3F	RESERVED			
0x40	ACTIVE_COIL	R	8	Active Coil
0x41	POWER_STATE_TX	R	8	Transmitter Power State
0x42	STANDARD	R	8	Wireless Power Standard
0x43	POWER_LEVEL	R	8	Power Level
0x44	FOD_TYPE	R	8	Foreign Object Detection Type

Internal Registers

Addresss	Name	Туре	Access Mode (bits)	Description
Transmitter Ma	ode continues	1		
0x45	POWER STATE RX	R	8	Receiver Power State
0x46	PWM FREQUENCY L	R	16	PWM Frequency (L)
0x47	PWM FREQUENCY H	R	16	PWM Frequency (H)
0x48	PWM DTC L	R	16	PWM Duty Cycle (L)
0x49	PWM DTC H	R	16	PWM Duty Cycle (H)
0x4A	DC VOLTAGE L	R	16	Bridge DC Voltage (L)
0x4B	DC VOLTAGE H	R	16	Bridge DC Voltage (H)
0x4C	DC CURRENT L	R	16	Bridge DC Current (L)
0x4D	DC CURRENT H	R	16	Bridge DC Current (H)
0x4E	AC VOLTAGE L	R	16	Coil AC voltage (L)
0x4F	AC VOLTAGE H	R	16	Coil AC Voltage (H)
0x50	AC CURRENT L	R	16	Coil AC Current (L)
0x51	AC CURRENT H	R	16	Coil AC Current (H)
0x52	TEMP_COIL_L	R	16	Temperature at the Coil Thermistor (L)
0x53	TEMP COIL H	R	16	Temperature at the Coil Thermistor (H)
0x54	TEMP DIE L	R	16	Die Temperature (L)
0x55	TEMP DIE H	R	16	Die Temperature (H)
0x56	POWER DC IN L	R	16	DC Power at the Bridge Input (L)
0x57	POWER DC IN H	R	16	DC Power at the Bridge Input (H)
0x58	POWER TX L	R	16	TX Power into the Magnetic Field (L)
0x59	POWER TX H	R	16	TX Power into the Magnetic Field (H)
0x5A	POWER RX L	R	8	Received Power Reported by the RX (L)
0x5B	POWER RX H	R	8	Received Power Reported by the RX (H)
0x5C	BATT CHARGE LEVEL RX	R	8	Receiver Battery Charge Level
0x5D	LED STATE	R	8	LED State
0x5E	ERROR L	R	16	Error Code and Parameter (L)
0x5F	ERROR H	R	16	Error Code and Parameter (H)
0x60-0x6F	RESERVED			
0x70	CONTROL POWER L	R/W	16	Power Control Register (L)
0x71	CONTROL POWER H	R/W	16	Power Control Register (H)
0x72	CONTROL DEBUG L	R/W	16	Debug Control Register (L)
0x73	CONTROL DEBUG H	R/W	16	Debug Control Register (H)
0x74	DEBUG MASKO	R/W	8	Debug Mask Register 0
0x75	DEBUG MASK1	R/W	8	Debug Mask Register 1
0x76	DEBUG MASK2	R/W	8	Debug Mask Register 2
0x77	 DEBUG_MASK3	R/W	8	Debug Mask Register 3
0x78	INTERRUPT MASKO	R/W	8	Interrupt Mask Register 0
0x79	INTERRUPT MASK1	R/W	8	Interrupt Mask Register 1
0x7A	INTERRUPT MASK2	R/W	8	Interrupt Mask Register 2
0x7B	INTERRUPT MASK3	R/W	8	Interrupt Mask Register 3
0x7C-0x7F	RESERVED			

Bootloader Firmware Revision Register (BOOTFW_REV_H:BOOTFW_REV_L)

Address:

0x00

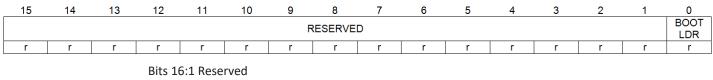
Reset value: Major and Minor version number of the bootloader firmware

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			REV_	H[7:0]							REV_	L[7:0]			
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

Bits 15:8 REV_H[7:0]: Major Bootloader Firmware Revision These bits contain the major version number of the bootloader firmware. Bits 7:0 REV_L[7:0]: Minor Bootloader Firmware Revision

These bits contain the minor version number of the bootloader firmware.

Firmware Revision Register (FW_REV_H:FW_REV_L)


Address:	0x02
Reset value:	Major and Minor version number of the transmitter firmware

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	REV_H[7:0]						REV_L[7:0]								
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

Bits 15:8 REV_H[7:0]: Major Firmware Revision These bits contain the major version number of the transmitter firmware. Bits 7:0 REV_L[7:0]: Minor Firmware Revision These bits contain the minor version number of the transmitter firmware.

Operating Mode Register (MODE_H:MODE_L)

Address:0x04Reset value:Depends on the bootloader mode and the firmware type

Bit 0 BOOTLDR: Bootloader mode

0: The transmitter firmware is running

1: The controller is in bootloader mode

Reset Register (RESET_H:RESET_L)

Address Reset va		0x06 0x00													
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							RESET_	<ey[15:0]< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></ey[15:0]<>							
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 15:0 RESET_KEY[15:0]: Reset Key

0xAA55: generate a system reset

0xA5A5: generate a system reset and enter bootloader mode

Any other value: a system reset is not generated

The reset sequence takes about 20 milliseconds. During this time the communication interfaces are not available.

After reset the MODE register can be used to check if the system is in bootloader mode or is running the transmitter firmware.

Status0 Register(STATUS0)

Address:	0x08						
leset value:	0xC0						
7	6	5	4	3	2	1	0
CTS	CTS_API	CTS_IF	CTS_API_IF	STATUS3	STATUS2	STATUS1	Res
r	r	r	r	r	r	r	
	Bit 7	CTS: Clear T	o Send				
		This bit	indicates if a new	v read/write reg	ister access can l	be issued to the co	ontroller. This b
			eset by hardware				
			-		vious register ac	ccess. New comma	ands should not
			to the controller.		-		
		1:The	controller can acc	ept a new regist	er access comm	and over the com	munication
		interfa					
	Bit 6	CTS API: Cle	ar to Send for API				
		_		API call or API	read request car	be issued to the	controller. This
			ot reset by hardwa		·		
			-		vious API call. N	ew API calls shoul	d not be sent to
		the cor					
		1: The	controller can ac	cept a new API	call over the co	mmunication inte	erface.
	Bit 5		To Send Event In	-			
		0: No e	vent is signaled fo	or the CTS bit or	the correspondi	ng bit in the INTEF	RUPT_MASKO
		registe	r is cleared.		-	-	_
		1: The	CTS bit has been s	et and the corre	sponding bit in t	the INTERRUPT_M	IASK0 register i
		set. Re	set to 0 by hardwa	are when the ST	ATUS0 register is	s read.	
	Bit 4	CTS_API_IF:	Clear to Send for A	API Event Interru	upt Flag		
		0: No e	vent is signaled fo	or the CTS_API b	it.		
		1: The	CTS_API bit has be	en set and the o	corresponding bi	it in the INTERRUP	T_MASK0
		registe	r is set. Reset to 0	by hardware wi	nen the STATUS	O register is read.	
	Bit 3	STATUS3_IF:	STATUS1 Event Ir	nterrupt Flag			
		0: No e	vent is signaled in	the STATUS3 re	gister or the cor	rresponding bit in	the INTERRUP
		MASK) register is cleare	ed.			
		1: An e	vent is signaled in	the STATUS3 re	gister and the co	orresponding bit ir	the
		INTERR	UPT_MASK3 regist	er is set. Reset to	o 0 by hardware v	when the STATUS3	register is read.
	Bit 2	STATUS2_IF:	STATUS2 Event Ir	nterrupt Flag			
		0: No e	vent is signaled in	the STATUS2 re	gister or the cor	rresponding bit in	the INTERRUP
		MASK) register is cleare	ed.			
		1: An e	vent is signaled in	the STATUS2 re	gister and the co	prresponding bit ir	the
		INTERR	UPT_MASK2 regist	er is set. Reset to	o 0 by hardware v	when the STATUS2	register is read.
	Bit 1	STATUS1_IF:	STATUS1 Event Ir	nterrupt Flag			
		0: No e	vent is signaled in	the STATUS1 re	gister or the cor	rresponding bit in	the INTERRUP
		MASK) register is cleare	ed.			
		1: An e	vent is signaled in	the STATUS1 re	gister and the co	prresponding bit in	the
		INTERR	UPT_MASK1 regist	er is set. Reset to	o 0 by hardware v	when the STATUS1	register is read.
	Bit 0	Reserved					

Status1 Register(STATUS1)

Address: Reset value:	0x09 0x00							
7		6	5	4	3	2	1	0
	Res	_	RX_EOC	RX_CHG	RX_CONFIG	RX_ID	RX_RMV	RX_DET
			ſ	r	r	r	r	r
		Bits 7:4	Reserved					
		Bit 5	RX_EOC: RX I	End of Charge R	eceived			
			0: No RX End	of Charge comm	and has been rece	ived since the	last read.	
			1: The RX End	of Charge comm	nand has been reco	eived. Reset to	0 by hardware w	hen read.
		Bit 4	RX_CHG: RX C	Charge Level Rec	eived			
			0: No RX char	ge level has beer	n received since th	e last read.		
			1: The RX cha	rge level has bee	en received. Reset	to 0 by hardwa	are when read.	
		Bit 3	RX_CONFIG:	RX Configuratio	n Received			
			0: No RX con	figuration data	has been received	since the last	read.	
			1: The RX con	figuration phase	has completed. Re	eset to 0 by ha	rdware when read	d.
		Bit 2	RX_ID: RX Ide	ntification Recei	ved			
			0: No RX iden	tification data ha	as been received si	ince the last rea	ad.	
			1: The RX ider	ntification phase	has completed. Re	eset to 0 by hai	rdware when read	d.
		Bit 1	RX RMV: RX I			-		
			0: No RX remo	oval event has o	ccurred since the la	ast read.		
			1: The RX dev	ice has been ren	noved from the TX	surface. Reset	to 0 by hardware	when read.
		Bit 0	RX_DET: RX D					
			—		occurred since the	last read.		
			1: A RX device	e has been detec	ted on the transm	itter surface. R	eset to 0 by hard	ware when rea

Status2 Register(STATUS2)

Address: Reset value:	0x0A 0x00						
7	6	5	4	3	2	1	0
		D	es			LED	ERROR
		N	53			r	r

TS80000 Final Datasheet April 23, 2018	Rev1.5		www.sem	itech.com			12 of
		1: A debug eve	ent has occurred	. Reset to 0 by h	ardware when re	ead.	
			vent has occurre				
	Bit 0	DEBUG: Debug					
		1: A test event	has occurred. R	eset to 0 by hard	dware when read	d.	
		0: No test eve	nt has occurred s	ince the last rea	ıd.		
	Bit 1	TEST: Test Eve	nt				
	Bits 7:2	Reserved					
		Re	:5			r	r
1	5	Re		5	2	LED	ERROR
7	6	5	4	3	2	1	0
eset value:	0x00						
ddress:	0x0B						
status3 Reg	ister(STATUS3)						
		1: An error ha	s occurred. Reset	to 0 by hardwa	re when read.		
		0: No error ha	s occurred since	the last read.			
	Bit 0	-	Condition Detect		,		
		-	n the LED state h the LED state ha			are when read.	
	Bit 1	LED: LED State			a the last read		
		Reserved					

Block Size Register(BLOCK_SIZE)

Address: Reset value:	0x0D 0x40						
7	6	5	4	3	2	1	0
			BLOCK	SIZE[7:0]			
r	r	r	r	r	r	r	r

Bits 7:0 BLOCK_SIZE[7:0]: FLASH Block Size

This field reports the length of the FLASH block size in bytes.

The following FLASH API functions should use a BLOCK_DATA field with a size that is equal to BLOCK_SIZE (or optionally for USB communication, a multiple of BLOCK_SIZE):

- BOOTLOADER_WRITE_BLOCK
- BOOTLOADER_WRITE_CONFIGURATION
- BOOTLOADER READ CONFIGURATION
- BOOTLOADER_WRITE_CALIBRATION
- BOOTLOADER READ CALIBRATION
- BOOTLOADER TRIM
- BOOTLOADER_READ_TRIM

Firmware Size Register (FW_SIZE_H:FW_SIZE_L)

Address: 0x0E

Reset value: Size of the firmware image segment (unit: number of blocks)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							FW_SI2	ZE[15:0]							
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

Bits 15:0 FW_SIZE[15:0]: Size of the firmware image segment (blocks) These bits contain size of the firmware image segment in FLASH measured as a number of BLOCK_SIZE byte long blocks.

Example: if BLOCK_SIZE = 64 and the firmware image segment is 51KB (52224 bytes) then FW_SIZE is 52224 / 64 = 816.

Configuration Size Register (CONFIG_SIZE_H:CONFIG_SIZE_L)

Address	5:	0x10													
Reset va	alue:	Size of	the con	figuratio	on image	e segme	nt (unit:	number	ofblock	(s)					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							CONFIG_	SIZE[15:0]]						
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	-

Bits 15:0 CONFIG_SIZE[15:0]: Size of the configuration image segment (blocks)

These bits contain size of the configuration image segment in FLASH measured as a number of BLOCK_SIZE byte long blocks (see the FW_SIZE for details).

Calibration Size Register (CAL_SIZE_H:CAL_SIZE_L)

Address	s:	0x12													
Reset v	alue:	Size of	the con	figuratio	on image	e segme	nt (unit:	number	of block	<s)< td=""><td></td><td></td><td></td><td></td><td></td></s)<>					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							CAL_SI	ZE[15:0]							
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
							C . 1								

Bits 15:0 CAL_SIZE[15:0]: Size of the calibration image segment (blocks)

These bits contain size of the calibration image segment in FLASH measured as a number of BLOCK_SIZE byte long blocks (see the FW_SIZE for details).

Firmware Flags Register (FW_FLAGS_H:FW_FLAGS_L)

	Address Reset va		0x14 Firmwa	are flags												
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[R	es							
	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
_					Bits 1	15:0 Rese	erved									

ChannelCountRegister(CHANNEL_COUNT)

Address: 0x0D Reset value: From the configuration data

7	6	5	4	3	2	1	0
			CHANNEL	COUNT[7:0]			
r	r	r	r	r	r	r	r

Bits 7:0 CHANNEL_COUNT[7:0]: Number of independent transmitter channels

A transmitter has multiple channels if it can transfer power through multiple coils at the same time.

Channel Selection Register (CHANNEL_SELECT)

Address:	0x0E
Reset value:	0x00

_	7	6	5	4	3	2	1	0					
[CHANNEL SELECT[7:0]												

Bits 7:0 CHANNEL_SELECT[7:0]: Number of independent transmitter channels For transmitters with a single channel this register has no effect. For transmitters with more than one channel this field associates all the other registers with one of the channels: 0x00: Channel 0 selected 0x01: Channel 1 selected 0x02: Channel 2 selected

CoilCountRegister(COIL_COUNT)

Address:	0x0F
Reset value:	From the configuration data

7	6	5	4	3	2	1	0			
			CHANNEL	COUNT[7:0]						
r r r r r r r										

Bits 7:0 COIL_COUNT[7:0]: Number of coils in the transmitter channel:

0x01: 1 coil 0x02: 2 coils 0x07: 7 coils

Limitfor the Minimum Frequency Register (FREQ_MIN_LIMIT_H: FREQ_MIN_LIMIT_L)

Address: 0x10 Reset value: From the configuration data

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	FREQ_MIN_LIMIT[15:0]														
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 15:0 FREQ_MIN_LIMIT[15:0]: Minimum frequency allowed for the transmitter channel (100 Hz) The transmitter doesn't allow its operating frequency to go below this limit. The unit is 100 Hz.

> If a value higher than the transmitter operating frequency is written to this register, the transmitter adjusts its operating frequency so it falls within the correct boundaries. This mechanism can be used for automotive applications to force the transmitter to avoid certain frequency ranges when other wireless devices are used.

Example: To limit the transmitter frequency to 150 kHz or higher, a value of 1500 is written to the FREQ_MIN_LIMIT register.

Limit for the Maximum Frequency Register (FREQ_MAX_LIMIT_H:FREQ_MAX_LIMIT_L)

Address:	0x12
Reset value:	From the configuration data

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	FREQ MIN LIMIT[15:0]														
rw r															

Bits 15:0 FREQ_MAX_LIMIT[15:0]: Maximum frequency allowed for the transmitter channel (100 Hz) The transmitter doesn't allow its operating frequency to go above this limit. The unit is 100 Hz.

If a value lower than the transmitter operating frequency is written to this register, the transmitter adjusts its operating frequency so it falls within the correct boundaries.

Example: To limit the transmitter frequency to 180 kHz or lower, a value of 1800 is written to the FREQ_MAX_LIMIT register.

DCCurrentLimitRegister(DC_CURRENT_LIMIT_H:DC_CURRENT_LIMIT_L)

Address	:	0x14													
Reset va	alue:	Fromt	om the configuration data												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						DC	CURREN	IT_LIMIT[15:0]						
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 15:0 DC_CURRENT_LIMIT[15:0]: Maximum DC current allowed into the transmitter bridge (mA) The transmitter stops the power transfer and reports an error if the bridge current goes above this limit.

A value of 0x0000 disables the limit checking.

Example: To limit the bridge current to 2A, a value of 2000 is written to the DC_CURRENT_LIMIT register.

AC Voltage Limit Register (AC_VOLTAGE_LIMIT_H:AC_VOLTAGE_LIMIT_L)

Address:		0x16													
Reset valu	ie:	From th	ne config	guration	data										
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						AC	VOLTAG	E_LIMIT	15:0]						
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
Bits 15:0		The trai point of	nsmitter f the AC r	stops the resonant	e power t circuit g	imum AC transfer a oes above limit che	nd repo e this lim	rts an err	or if the	AC voltag					ing

Example: To limit the AC voltage amplitude to 200V, a value of 20000 is written to the AC_VOLTAGE_LIMIT register.

CoilTemperatureLimitRegister(TEMP_COIL_LIMIT_H:TEMP_COIL_LIMIT_L)

Address	:	0x18													
Reset va	alue:	Fromt	he confi	guratior	n data										
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						TE	EMP_COI	L_LIMIT[1	5:0]						
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
Bits 15:0 TEMP_COIL_LIMIT[15:0]: Maximum coil temperature allowed (degree The transmitter stops the power transfer and reports an error if the co external thermistor goes above this limit.								•		ture me	asured b	y an opf	tional		

A value of 0x0000 disables the limit checking.

Example: To limit the coil temperature to 85 degrees C, a value of 85 is written to the TEMP_ COIL_LIMIT register.

Die Temperature Limit Register (TEMP_DIE_LIMIT_H:TEMP_DIE_LIMIT_L)

Address	5:	0x1A													
Reset value: From the configuration data															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						T	EMP_DIE	LIMIT[15	:0]						
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 15:0 TEMP_DIE_LIMIT[15:0]: Maximum die temperature allowed (0.01 degrees C) The transmitter stops the power transfer and reports an error if the TS80000 die temperature measured internally goes above this limit. The unit is 0.01 deg. C. A value of 0x0000 disables the limit checking.

Example: To limit the die temperature to 85 degrees C, a value of 8500 is written to the TEMP_DIE_LIMIT register.

Minimum Temperature for Fan Control Register (FAN_TEMP_MIN)

Address: Reset value:	0x1C From the configu	uration data						
7	6	5	4	3	2	1	0	
			Re	es]
rw	rw	rw	rw	rw	rw	rw	rw]
Bits 7:0	Reserved							
TS80000 Final Datasheet April 23, 2018	Rev1.5		www.sen	ntech.com			16 of	37

Maximum Te	emperature for	Fan Control Reg	gister (FAN_T	EMP_MAX)			
Address:	0x1D						
Reset value:	From the confi	iguration data					
7	6	5	4 Re	3	2	1	0
rw	rw	rw	rw	rw	rw	rw	rw
Rite 7:0 Record							
Bits 7:0 Reserve	20						
Minimum Du	ty Cycle for Fa	n Control Regis	ter (FAN_DTC	_MIN)			
Address:	0x1E						
Reset value:	From the confi	iguration data					
-				0	0		
7	6	5	4 Re	3	2	1	0
rw	rw	rw	rw	rw	rw	rw	rw
Bits 7:0 Reserve	2 0						
	ut Cuele for Er		ANT CAN DIC				
		an Control Regis	Ter (FAN_DIC	_MAX)			
Address:	0x1F						
Reset value:	From the confi	iguration data					
7	6	5	4	3	2	1	0
			Re	es			

Bits 7:0 Reserved

rw

rw

rw

rw

rw

rw

rw

rw

ddress:	0x20														
Reset value:	Fromth	e configuration data													
7	6	5	4	3	2	1	0								
	Re	S	A4WP	PMA rw	WPCRES rw	WPCMP rw	WPC rw								
	D:1 7 5		111			iw.									
		Reserved	ant Taskus alasu												
	Bit 4	A4WP: A4WP Reson Read:	iant rechnology												
			ot supported by hai	dware											
		1: A4WP su		uware.											
		Write:	apporteu.												
		0: A4WP is not allowed.													
		1: A4WP is allowed if supported by the hardware.													
	Bit 3														
		Read:													
		0: PMA not	supported by hard	lware.											
		1: PMA sup													
		Write:													
		Write: 0: PMA is not allowed.													
		1: PMA is allowed if supported by the hardware.													
	Bit 2	NPCRES: WPC 1.2 Resonant Technology													
		Read:													
			not supported by h	nardware.											
			supported.												
		Write:													
			is not allowed.												
	D:+ 4		is allowed if suppo		dware.										
	Bit 1	WPCMP: WPC Medi	um Power Inductiv	e rechnology											
		Read:	dium Power not su	pported by bar	dwaro										
			dium Power suppo		uware.										
		Write:		rteu.											
			dium Power is not	allowed											
			dium Power is allow		d by the hardwar	٩									
	Bit 0	WPC: WPC Inductive			a by the hardware										
		Read:													
		0: WPC not	supported by hard	ware.											
		1: WPC sup													
		Write:													
		0: WPC is n	ot allowed.												
		1: WPC is a	llowed if supported	d by the hardwa	ire.										

TS80000 Final Datasheet April 23, 2018	Rev1.5		www.sen	ntech.com			18 of 37						
		Write:	Maximum power in WPC mode supported by the hardware. Write: Maximum power in WPC mode that is to be allowed.										
	Bits 7:0	MAX_POWER[7:0]: Maximum power in WPC mode (W) Read: Maximum power in WPC mode supported by the bardware											
rw	rw	ſW	rw	rw	ſW	ſW	rw						
	1		MAX_PO	WER[7:0]									
7	6	5	4	3	2	1	0						
Reset value:	From the configuration data												
Address:	0x21												

Address:	0x22						
Reset value:	From the cor	nfiguration data					
7	6	5	4	3	2	1	0
rw	ſW	rw	MAX_PO	WER[7:0] rw	rw	rw	rw
l vv	IW	ĨŴ	IVV	ĨŴ	IVV	IVV	IW
	Bits 7:0 MAX		aximum power in F	PMA mode (W))		
		Read:					
		Maximum p Write:	ower in PMA mod	e supported by	y the hardware.		
			ower in PMA mode	a that is to bo	llowed		
		Maximum p					
A any time time D		Made Dest-t-					
waximum Po	ower in A4WP	mode kegiste	er (MAX_POWER	_A4WP)			
Address:	0x23						
		nfiguration data					
		nfiguration data 5	4	3	2	1	0
Reset value: 7	From the cor	5	MAX_PC	WER[7:0]		-	1
Reset value:	From the cor	-			2 rw	1 rw	0 rw
Reset value: 7	From the cor 6 rw	5	MAX_PC	WER[7:0] rw	rw	-	1
Reset value: 7	From the cor 6 rw	5	MAX_PC	WER[7:0] rw	rw	-	1
Reset value: 7	From the cor 6 rw	5 	MAX_PC	0WER[7:0] w A4WP mode (V	rw V)	-	1
Reset value: 7	From the cor 6 rw	5 	MAX_PC w aximum power in A	0WER[7:0] w A4WP mode (V	rw V)	-	1
Reset value: 7	From the cor 6 rw	5 POWER[7:0]: M Read: Maximum p Write:	MAX_PC w aximum power in A	WER[7:0] www.www.www.www.www.www.www.www.www.ww	v) by the hardware.	-	1
Reset value: 7	From the cor 6 rw	5 POWER[7:0]: M Read: Maximum p Write:	MAX_PC rw aximum power in A power in A4WP mo	WER[7:0] www.www.www.www.www.www.www.www.www.ww	v) by the hardware.	-	1
Reset value: 7 rw	From the cor 6 rw	5 POWER[7:0]: M Read: Maximum p Write: Maximum p	MAX_PC rw aximum power in A power in A4WP mo	WER[7:0] www.www.www.www.www.www.www.www.www.ww	v) by the hardware.	-	1
rw	From the cor 6 RW Bits 7:0 MAX	5 POWER[7:0]: M Read: Maximum p Write: Maximum p	MAX_PC rw aximum power in A power in A4WP mo	WER[7:0] www.www.www.www.www.www.www.www.www.ww	v) by the hardware.	-	1
Reset value: 7 rw Active Coil R Address:	From the cor 6 Bits 7:0 MAX	5 POWER[7:0]: M Read: Maximum p Write: Maximum p	MAX_PC rw aximum power in A power in A4WP mo	WER[7:0] www.www.www.www.www.www.www.www.www.ww	v) by the hardware.	-	1
Active Coil R Address: Reset value:	From the cor 6 Bits 7:0 MAX	5 POWER[7:0]: M Read: Maximum p Write: Maximum p	MAX_PC rw aximum power in A power in A4WP mo ower in A4WP mod	WER[7:0] rw A4WP mode (V de supported de that is to be	v) by the hardware.	-	rw
Reset value: 7 rw Active Coil R	From the cor 6 Bits 7:0 MAX	5 POWER[7:0]: M Read: Maximum p Write: Maximum p	MAX_PC rw aximum power in A power in A4WP mo	WER[7:0] rw A4WP mode (V de supported de that is to be	v) by the hardware.	-	1

0x06: Coil 6 is active

Transmitter Power State Register (POWER_STATE_TX)

.....

Address: Reset value:	0x41 0x00						
7	6	5	4	3	2	1	0
			ACTIVE	COIL[7:0]			
r	r	r	r	r	r	r	r
	Bits 7:0 POW	0x01: Test mc 0x02: Hardwa 0x03: Selectio	y (low-power mo ode re Error (voltage n (pinging, sear cation (receiver	ode, no pinging) e, current, tempe ching for a receiv	erature, self-test ver) ng power transfer	·	

0x06: End of Charge (power stopped, waiting for the RX to be removed)

Wireless Pow	er Standard	Register (STAND	ARD)				
Address:	0x42						
Reset value:	0x00						
7	6	5	4	3	2	1	0
			STANDA	\RD[7:0]			
r	r	r	r	r	r	r	r
	Bits 7:0 STAN	DARD[7:0]: Wireless 0x00: Not deter 0x01: WPC 1.0. 0x02: WPC Med 0x03: WPC 1.2	rmined 3 or WPC 1.1.2		er transfer		

Power Level Register (POWER_LEVEL)

Address: Reset value:	0x43 0x00						
7	6	5	4	3	2	1	0
			POWER_I	LEVEL[7:0]			
r	r	r	r	r	r	r	r

Bits 7:0 POWER_LEVEL[7:0]: Maximum power for the current operating mode (W) These bits contain the maximum power level that was negotiated with the receiver when the power transfer was initiated.

Foreign Object Detection Type Register (FOD_TYPE)

0x04: PMA 0x05: A4WP

Address:	0x44
Reset value:	0x00

7	6	5	4	3	2	1	0
	D	00		ANALOG	TEMP	FOD_RX	PMOD_RX
	r.	es		r	r	r	r

Bits 7:4 Reserved

Bit 3 ANALOG: Analog methods

0: No analog methods are used for FOD.

1: Foreign objects are detected using analog methods based on voltages and currents.

Bit 2 TEMP: Surface temperature

0: The surface temperature is not used for FOD.

1: The surface temperature is used for FOD.

Bit 1 FOD_RX: Received Power packets from the RX

0: Received Power packets from the RX are not used for FOD.

1: Received Power packets from the RX are used for FOD (WPC 1.1.2, WPC Medium Power, WPC

1.2, PMA).

Bit 0 PMOD_RX: Parasitic Metal Object Detection

0: Rectified Power Packets from the RX are not used for FOD.

1: Rectified Power Packets from the RX are used for FOD (WPC 1.0.3).

Receiver Power State Register (POWER_STATE_RX) AAddress: 0x45 0x00 Reset value: 7 6 5 2 0 4 3 Res r Bits 7:0 Reserved PWM Frequency Register (PWM_FREQUENCY_H:PWM_FREQUENCY_L) 0x46 Address: 0x0000 Reset value: 15 14 13 12 11 10 9 8 6 0 PWM FREQUENCY[15:0] r r r r r r r r Bits 15:0 PWM_FREQUENCY[15:0]: Operating frequency (100 Hz) Transmitter operating frequency. The unit is 100 Hz. Example: If the transmitter is operating at 145640 kHz, a value of 1456 is read from the PWM_FREQUENCY

PWM Duty Cycle Register(PWM DTC H:PWM DTC L)

register.

Address Reset va		0x48 0x0000)												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							PWM_D	TC[15:0]							
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
		Bits 15	:0	Trans	smitter o	perating	g duty cy	uty cycle cle. The u ridge mo	unit is 0.	01%. In		-			S

Example: If the transmitter is operating at 50% duty cycle, a value of 5000 is read from the PWM_DTC register.

Bridge DC Voltage Register (DC_VOLTAGE_H:DC_VOLTAGE_L)

Address Reset va		0x4A 0x0000	D												
15	14	13	12	11	10	9	8 DC VOLT	7	6	5	4	3	2	1	0
-					. r	r		AGE[15.0		r					
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	
		BBits 1	.5:0	DC_V	/OLTAGE	[15:0]:	Bridge vo	ltage me	asureme	ent (mV)					

5:0 DC_VOLTAGE[15:0]: Bridge voltage measurement (mV) DC voltage measurement across the bridge.

Bridge DC Current Register (DC_CURRENT_H:DC_CURRENT_L) Address: 0x4C 0x0000 Reset value: 15 9 14 13 12 11 10 8 1 0 3 2 DC CURRENT[15:0] Bits 15:0 DC CURRENT[15:0]: Bridge current measurement (mA) DC current flowing into the bridge. Coil AC Voltage Register (AC_VOLTAGE_H:AC_VOLTAGE_L) 0x4E Address:

Reset va	lue:	0x0000)												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							AC_VOLT	AGE[15:0							
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
		Bits 15	:0				-	e ampliti cross the			•	V)			

Example: If the coil peak voltage is 80V, a value of 8000 is read from the AC_VOLTAGE register.

Coil AC Current Register (AC_CURRENT_H:AC_CURRENT_L)

Addres Reset v	-	0x50 0x0000													
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							AC_CURF	RENT[15:0)]						
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
		Bits 15:	0				AC currer current tl			(mA RM	5)				

Example: If the coil current is 2A RMS, a value of 2000 is read from the AC_CURRENT register.

Temperature at the Coil Thermistor Register (TEMP_COIL_H:TEMP_COIL_L)

Address Reset v		0x52 0x0000)												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							TEMP_C	OIL[15:0]							
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

Bits 15:0 TEMP_COIL[15:0]: Coil temperature measurement (0.01 degrees C) Coil temperature measurement using an external thermistor. The unit is 0.01 deg. C.

Example: If the coil temperature to 85 degrees C, a value of 8500 is read from the TEMP_COIL register.

DieTem	pera	ture Reg	gister (TEMP_	DIE_H:1	TEMP_I	DIE_L)								
Address:		0x54													
Reset valu	le:	0x0000)												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							TEMP	DIE[15:0]							
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
		Bits 15	:0				-	ature mea nt using a			-	-	unit is 0.	01 deg.	C.

Example: If the die temperature to 85 degrees C, a value of 8500 is read from the TEMP_DIE register.

DC Power at the Bridge Input Register (POWER_DC_IN_H:POWER_DC_IN_L)

Address Reset va		0x56 0x0000	D												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						F	POWER_	DC_IN[15:0	0]						
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

Bits 15:0

POWER_DC_IN[15:0]: DC power supplied at the bridge input (10 mW) DC power measurement at the input of the bridge. The unit is 10 mW.

Example: If the input power into the bridge is 6W, a value of 600 is read from the POWER_DC_IN register.

TX Power into the Magnetic Field Register (POWER_TX_H:POWER_TX_L)

Addres Reset v		0x58 0x0000)												
15	14	13	12	11	10	9	8 POWER	7 TX[15:0]	6	5	4	3	2	1	0
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
		Bits 15:	:0	POWE	ER_TX[1	5:0]: Pov	ver supp	lied into	the mag	netic fie	ld (10 m	W)			

Estimate of the amount of power transferred into the magnetic field. The unit is 10 mW.

Received Power Reported by the RX Register (POWER_RX_H:POWER_RX_L)

Address Reset va		0x5A 0x000	D												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					POWER_RX[15:0]										
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
Bits 15:0 POWER_RX[15:0]: RX reported received power (10 mW) Value of the power received from the magnetic field as reported by the RX using Power or Rectified Power packets. The unit is 10 mW.										ng Rece	ived				

Receiver Battery Charge Level Register (BATT_CHARGE_LEVEL_RX)

Address:	0x5C						
Reset value:	0x00						
7	6	5	4	3	2	1	0
			CHARGE	LEVEL[7:0]			
r	r	r	r	r	r	r	r

Bits 7:0 CHARGE_LEVEL[7:0]: Battery charge level (%) These bits contain the battery charge level as reported by the RX using the Charge Status packet.

LED State Register (LED_STATE)

Address:	0x5D						
Reset value:	0x00						
7	6	5	4	3	2	1	0
	F	Res			LED_ST	ATE[3:0]	
r	r	r	r	r	r	r	r
	Bits 7:4 Reserv Bits 3:0 LED_ST	rATE[3:0]: LED sta These bits cont without having 0x00 0x01 0x02 0x03 0x04 0x05 0x06	ate sain the state of t to interpret the Standby, waitin Power Transfer Power Transfer, End of Charge v RX reported err TX error, RX stil FOD error, RX stil	contents of othe g for RX to be pla , Battery Status 1 vithout Error, RX or, RX still present	er registers. aced 100% still present	lementation of a	user interface

Error Code and Parameter Register (ERROR_H:ERROR_L)

Address: Reset value:	0x5E 0x0000												
15 14	13 12	11 10	9	8	7	6	5	4	3	2	1	0	
	ERROR	PARAM[7:0]						ERROR_	CODE[7:0]	1		
r r	r r	r r	r	r	r	r	r	r	r	r	ſ	r	
7	6	5		4		3		2		1		0	
-				ERROR	CODE[7:	0]	1				1		
Г	r	r		r		r		r		r		r	
Bits 15:8		RAM[7:0]: Error	paramet	ter			ERR		DE = 0x	08			
	These bits co	ontain an optiona	l error p	parameter	•		0x00: Unknown reason						
	associated to	o the error report	ed in th	e ERROR_	-		0x01	L: Charge	complet	e (not a	n error)		
	CODE field.						0x02	2: Interna	l fault				
							0x03	3: Over te	mperatu	re			
	ERROR_COD							l: Over Vo	-				
	0x00-0xFF: R	eserved						5: Over Cu					
								5: Battery					
	ERROR_COE							7: Reserve					
	0x00-0xFF: R	eserved						3: No resp					
)-0x0F: Re					
	ERROR_COL 0x00-0xFF: R						0x10: Battery fully charged (not an error) 0x11: No load (not an error)						
	0X00-0XFF. K	eserveu						2: Host EC			n orror)		
	ERROR_COL	DF = 0x03						3: Incomp	-		-		
	0x00-0xFF: R							l-0x16: Re			33		
							0x17: Over Dec						
	ERROR_COD	DE = 0x04						3: Alterna		/ conne	cted		
	0x00-0xFF: R						0x19-0x1A: Reserved						
							0x1B: Communication error						
	ERROR_COE	DE = 0x05					0x1C-0xFF: Reserved						
	0x00-0xFF: R	eserved											
			Bits	7:0 ERRC	OR_COE	DE[7:0]:	Error co	de					
	ERROR_COD		_	se bits cor									
	0x00-0xFF: R	eserved	-	erated by	the tran	smitter	during p	ower					
							tran						
	ERROR_CO 0x00: Generi): No erro					
		ic error y voltage too low	0x01: Insufficient software resources										
		y voltage too low	0x02: Incorrect RX packet timing										
		dge current limit	0x03: Incorrect RX packet sequence 0x04: Incorrect RX packet data										
		ltage limitreache		~			0x05: RX packet timeout during power transfer						
		mperature limit i					0x06: FOD error						
		mperature limit i	0x07: Limit exceeded (temperature, voltage,										
	0x07-0xFF: R	-					curr			·	-, -,	0-7	
				0x08: End Power Transfer packet received									
)-0xFF: Re					

Interrupt Mask 0 Register (INTERRUPT_MASK0)

Address:	0x78
Reset value:	0x00

7	6		5	4	3	2	1	0
Re	es		CTS_IF	CTS_API_IF	STATUS3	STATUS2	STATUS1	Res
			r	r	ſ	r	r	
	Bits 7:6	Reserv	ed					
	Bit 5		: Clear To Send					
	Dit 5	010_11		from 0 to 1 of th	o CTS bit in the S	TATUSO register	doesn't cause an	intorrunt
						-		-
					he CTS bit in the S	TATUSO register	causes an interru	ipt.
	Bit 4	CTS_AI	PI_IF: Clear to Se	nd for API				
			0: A transition	from 0 to 1 of th	ne CTS_API bit in	the STATUS0 reg	ister doesn't caus	e an interrupt.
			1: A transition	from 0 to 1 of th	ne CTS_API bit in	the STATUS0 reg	ister causes an in	terrupt.
	Bit 3	STATU	S3_IF: STATUS1					
					e STATUS3 IF hi	t in the STATUSO	register doesn't o	ause an
			interrupt.	6 e 6				
					the STATUS3_IF	bit in the STATU	SO register cause	s an interrupt.
	Bit 2	STATU	S2_IF: STATUS2	Event				
			0: A transition	from 0 to 1 of th	ne STATUS2_IF bi	t in the STATUS0	register doesn't o	cause an
			interrupt.					
			1: A transition	n from 0 to 1 of	the STATUS2 IF	bit in the STATU	SO register cause	s an interrupt.
	Bit 1	στατι	S1 IF: STATUS1					
	DICI	STATU	—			t in the STATUSO	register deesn't	
						t in the STATUSU	register doesn't o	ause all
			interrupt.					
			1: A transition	n from 0 to 1 of	the STATUS1_IF	bit in the STATU	SO register cause	s an interrupt.
	Bit 0	Reserv	ed					

ddress:	()x79									
eset valu	e: (00x00									
7		6		5		4	3		2	1	0
	Res			RX EOC		RX CHG	RX CONF	IG	RX ID	RX RMV	RX DET
ts 7:6 R	eserved										
t5 R	X_EOC:	RX End of	Charg	ge Receive	d						
): A value o register.	of 1 of	this bit in	the ST/	ATUS1 regis	ter doesn't ca	use the	e STATUS1 eve	ent flag to be set	in the STATUSC
		-	of 1 of	this bit in	the ST/	ATUS1 regis	ter causes the	STATU	JS1 event flag	to be set in the	STATUSO registe
t4 R		RX Charge				0			0		Ũ
): A value o register.	of 1 of	this bit in	the ST	ATUS1 regis	ter doesn't ca	use the	e STATUS1 eve	ent flag to be set	in the STATUSC
		L: A value o	of 1 of	this bit in	the ST/	ATUS1 regis	ter causes the	STATU	JS1 event flag	to be set in the	STATUSO registe
t3 R		IG: RX Co									
): A value o register.	of 1 of	this bit in	the ST	ATUS1 regis	ter doesn't ca	use the	e STATUS1 eve	ent flag to be set	in the STATUSC
	-	L: A value o	of 1 of	this bit in	the ST/	ATUS1 regis	ter causes the	STATU	JS1 event flag	to be set in the	STATUS0 registe
t2 R		(Identifica									-
): A value o register.	of 1 of	this bit in	the ST/	ATUS1 regis	ter doesn't ca	use the	e STATUS1 eve	ent flag to be set	in the STATUSC
		-	of 1 of	this hit in	the ST	ATUS1 regis	ter causes the	STΔΤΠ	IS1 event flag	to be set in the	STATUSO registe
it 1 R		RX Remov				100110513		517(10	or event hug		
	- (this bit in	the ST/	ATUS1 regis	ter doesn't ca	use the	e STATUS1 eve	ent flag to be set	in the STATUSC
			of 1 of	this bit in	the ST/	ATUS1 regis	ter causes the	STATU	JS1 event flag	to be set in the	STATUSO regist
to R		RX Detecte				0			5		0
	(this bit in	the ST/	ATUS1 regis	ter doesn't ca	use the	e STATUS1 eve	ent flag to be set	in the STATUSC
		-	of 1 of	this bit in	the ST/	ATUS1 regis	ter causes the	STATU	JS1 event flag	to be set in the	STATUSO regist
nterrup	t Mask	2 Registo	er (IN	TERRUPT	_MAS	SK2)					
ddress:	()x7A									
eset valu	e: (00x00									

7	6	5	4	3	2	1	0
		D				LED	ERROR
		ĸ	es			rw	rw

Bits 7:2 Reserved

Bit 1 LED: LED Status Changed

0: A value of 1 of this bit in the STATUS2 register doesn't cause the STATUS2 event flag to be set in the STATUS0 register. 1: A value of 1 of this bit in the STATUS2 register causes the STATUS2 event flag to be set in the STATUS0 register.

Bit 0 ERROR: Error Condition Detected

0: A value of 1 of this bit in the STATUS2 register doesn't cause the STATUS2 event flag to be set in the STATUS0 register.1: A value of 1 of this bit in the STATUS2 register causes the STATUS2 event flag to be set in the STATUS0 register.

Interrupt Mask 3 Register (INTERRUPT_MASK3)

Address: 0x7B Reset value: 0x00

7	6	5	4	3	2	1	0	
Dee					TEST	DEBUG		
Res			DW.	rw/				

Bits 7:2 Reserved

Bit 0

Bit 1 TEST: Test Event

0: A value of 1 of this bit in the STATUS3 register doesn't cause the STATUS3 event flag to be set in the STATUS0 register.

1: A value of 1 of this bit in the STATUS3 register causes the STATUS3 event flag to be set in the STATUS0 register. DEBUG: Debug Event

0: A value of 1 of this bit in the STATUS3 register doesn't cause the STATUS3 event flag to be set in the STATUS0 register.

1: A value of 1 of this bit in the STATUS3 register causes the STATUS3 event flag to be set in the STATUS0 register.

API Functions

API Number	API Name	Description
0x80	BOOTLOADER_UNLOCK_FLASH	Allow changes to the FLASH memory
0x81	BOOTLOADER_WRITE_BLOCK	Write a page of the firmware into the FLASH memory
0x82	BOOTLOADER_CRC_CHECK	Check the CRC of the transmitter firmware
0x83	RESERVED	R
0x84	BOOTLOADER_WRITE_CONFIGURATION	Write a page of the configuration block into the FLASH memory
0x85	BOOTLOADER_READ_CONFIGURATION	Read a page of the configuration block from the FLASH memory
0x86	BOOTLOADER_WRITE_CALIBRATION	Write a page of the calibration block into the FLASH memory
0x87	BOOTLOADER_READ_CALIBRATION	Read a page of the calibration block from the FLASH memory
0x88	BOOTLOADER_TRIM	Execute the trim procedure and store the result in FLASH memory
0x89	BOOTLOADER_READ_TRIM	Read the trim block from the FLASH memory
0x8A-0x8F	RESERVED	
0x90	WRITE_CONFIGURATION	Write to the TX channel configuration
0x91	READ_CONFIGURATION	Read from the TX channel configuration
0x92	READ_RX_CONFIG	Read the RX power contract parameters
0x93	READ_RX_ID	Read the RX ID
0x94	WRITE_TX_ID	Write the TX ID
0x95	READ_TX_ID	Read the TX ID
0x96	READ_DEBUG	Read the next oldest debug block from the debug queue
0x97-0xFE	RESERVED	
		Value returned in the API field when a Read API Function
OxFF	API_ERROR	Return Buffer command is issued and the API function called
		previously has generated an error.

Bootloader Unlock Flash (BOOTLOADER_UNLOCK_FLASH)

API number:	0x80
Input buffer size:	16
Output buffer size:	1

Buffer	Parameter	Length (bytes)	Description
Input buffer	Nonce	16	Firmware authentication string.
Return data buffer			
Note: The firmware authentication string is obtained from the header of the Triune Systems firmware image file.			

Bootloader Write Block (BOOTLOADER_WRITE_BLOCK)

API number:	0x81
Input buffer size:	66
Output buffer size:	1

Buffer	Parameter	Length (bytes)	Description
land the offer	Block Number	2	Disal index. The first block has an index of O
Input buffer	Block Data	64	Block index. The first block has an index of 0.
Return data buffer	ERROR_CODE	1	

Bootloader CRC Check (BOOTLOADER_CRC_CHECK)

API number:	0x82
Input buffer size:	0
Output buffer size:	3

Buffer	Parameter	Length (bytes)	Description
	ERROR_CODE	1	CRC check error code for the firmware block.
Return data buffer	ERROR_CODE	1	CRC check error code for the configuration block.
	ERROR_CODE	1	CRC check error code for the calibration block.

Read RX ID (READ_RX_ID)

API number:	0x93
Input buffer size:	0
Output buffer size:	6

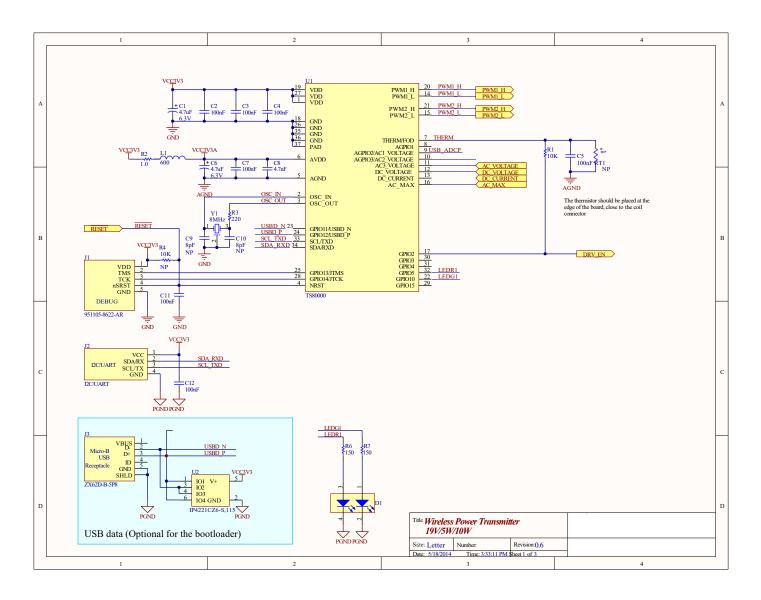
Buffer	Parameter	Length (bytes)	Description
	Block Data	64	
Return data buffer	RXID	6	RXID data.

WriteTXID(WRITE_TX_ID)

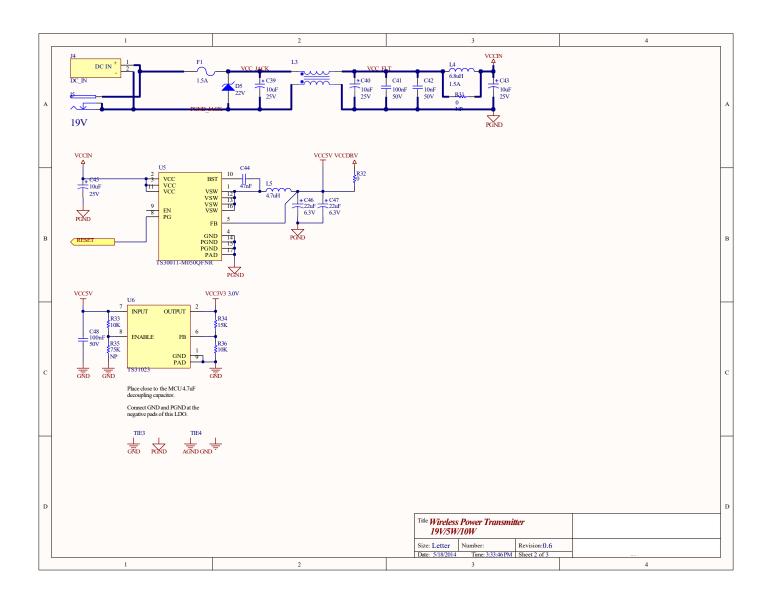
API number:	0x94
Input buffer size:	6
Output buffer size:	1

Buffer	Parameter	Length (bytes)	Description
	Block Data	64	
Input buffer	TXID	6	TXID data.
Return data buffer	ERROR_CODE	1	

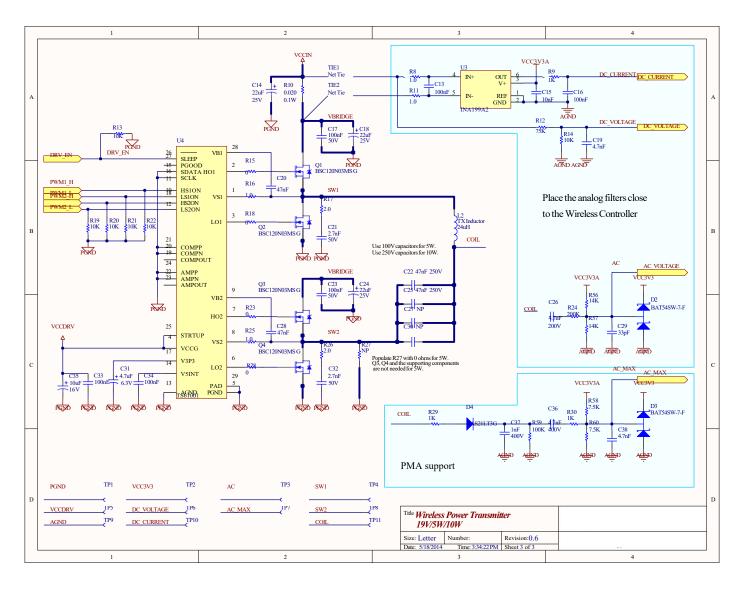
ReadTXID(READ_TX_ID)


API number:	0x95		
Input buffer size:	0		
Output buffer size:	6		

Buffer	Parameter	Length (bytes)	Description
	Block Data	64	
Return data buffer	TXID	6	TXID data.


API Error Codes

Error Code	Error Code Name	Description	
0x00	ERROR_GENERIC	Generic error.	
0x01	ERROR_OK	Operation succeeded. This is not indicating an error.	
0x02	ERROR_INVALID_CRC	CRC error.	
0x03	ERROR_FLASH_UNLOCK_FAILED	FLASH unlocking has failed.	
0x04	ERROR_API_NOT_IMPLEMENTED	The API number is not implemented.	
0x05	ERROR_API_DATA_OVERFLOW	The API input buffer has been filled with more data than its length.	
0x06	ERROR_API_INVALID_PARAMETERS	At least one of the API parameters is invalid.	
0x07	ERROR_FLASH_ERASE_FAILED	FLASH erase has failed.	
0x08	ERROR_FLASH_PROGRAM_FAILED	FLASH programming has failed.	
0x09	ERROR_API_DATA_NOT_READY	The API data is not available yet.	
0x0A-0xFF	RESERVED. Will be defined later.		


Application Schematics

Application Schematics

Application Schematics

Package Dimensions

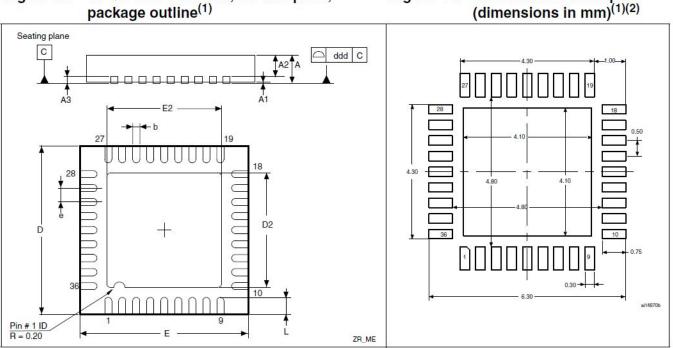


Figure 42. Recommended footprint

Figure 41. VFQFPN36 6 x 6 mm, 0.5 mm pitch, package outline⁽¹⁾

1. Drawing is not to scale.

All leads/pads should also be soldered to the PCB to improve the lead solder joint life. 2.

Table 51.	VFQFPN36 6 x 6 mm,	0.5 mm pitch, p	ackage mechanical data
-----------	--------------------	-----------------	------------------------

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Max	Min	Тур	Max
A	0.800	0.900	1.000	0.0315	0.0354	0.0394
A1		0.020	0.050		0.0008	0.0020
A2		0.650	1.000		0.0256	0.0394
A3		0.250			0.0098	
b	0.180	0.230	0.300	0.0071	0.0091	0.0118
D	5.875	6.000	6.125	0.2313	0.2362	0.2411
D2	1.750	3.700	4.250	0.0689	0.1457	0.1673
E	5.875	6.000	6.125	0.2313	0.2362	0.2411
E2	1.750	3.700	4.250	0.0689	0.1457	0.1673
е	0.450	0.500	0.550	0.0177	0.0197	0.0217
L	0.350	0.550	0.750	0.0138	0.0217	0.0295
ddd	5	0.080	1		0.0031	100

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Ordering Information

Part Number	Description	Reel quantity
	Bootloader programmed device. Ready for	
TS80000-QFNR	firmware programming	3,000 pcs
TS80000-916203QFNR	Device programmed with a custom firmware	3,000 pcs

RoHS and Reach Compliance

Triune Systems is fully committed to environmental quality. All Triune Systems materials and suppliers are fully compliant with RoHS (European Union Directive 2011/65/EU), REACH SVHC Chemical Restrictions (EC 1907/2006), IPC-1752 Level 3 materials declarations, and their subsequent amendments. Triune Systems maintains certified laboratory reports for all product materials, from all suppliers, which show full compliance to restrictions on the following:

- Cadmium (Cd)
- Chlorofluorocarbons (CFCs)
- Chlorinate Hydrocarbons (CHCs)
- Halons (Halogen free)
- Hexavalent Chromium (CrVI)
- Hydrobromofluorocarbons (HBFCs)
- Hydrochlorofluorocarbons (HCFCs)
- Lead (Pb)
- Mercury (Hg)
- Perfluorocarbons (PFCs)
- Polybrominated biphenyls (PBB)
- Polybrominated Diphenyl Ethers (PBDEs)

IMPORTANT NOTICE

Information relating to this product and the application or design described herein is believed to be reliable, however such information is provided as a guide only and Semtech assumes no liability for any errors in this document, or for the application or design described herein. Semtech reserves the right to make changes to the product or this document at any time without notice. Buvers should obtain the latest relevant information before placing orders and should verify

SEMTECH PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS, OR IN NUCLEAR APPLICATIONS IN WHICH THE FAILURE COULD BE REASONABLY EXPECTED TO RESULT IN PERSONAL INJURY, LOSS OF LIFE OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. INCLUSION OF SEMTECH PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE UNDERTAKEN SOLELY AT THE CUSTOMER'S OWN RISK. Should a customer purchase or use Semtech products for any such unauthorized application, the customer shall indemnify and hold Semtech and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs damages and attorney fees which could arise.

The Semtech name and logo are registered trademarks of the Semtech Corporation. All other trademarks and trade names mentioned may be marks and names of Semtech or their respective companies. Semtech reserves the right to make changes to, or discontinue any products described in this document without further notice. Semtech makes no warranty, representation or guarantee, express or implied, regarding the suitability of its products for any particular purpose. All rights reserved.

©Semtech 2018

Contact Information

Semtech Corporation 200 Flynn Road, Camarillo, CA 93012 Phone: (805) 498-2111, Fax: (805) 498-3804 www.semtech.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Wireless Charging ICs category:

Click to view products by Semtech manufacturer:

Other Similar products are found below :

MWCT1111CLH P9028AC-0NBGI8 P9036BNTGI MWCT1012CFM BD57020MWV-E2 P9027LP-RAWGI8 MWCT1012VLF MWCT1013VLH MWCT1003AVLHR NXQ1TXA5/404J TS51111-M22WCSR TS51224-M000WCSR TS51231-QFNR MWCT1001AVLH STWBC STWLC03JR STWLC04JR BQ500410ARGZT BQ51003YFPR BQ51013BRHLR BQ51020YFPR TS80003-QFNR NN32251A-VT STWBCTR STWLC68JRH BQ50002ARHBR BQ50002RHBR BQ50002RHBT BQ500211ARGZT BQ500211RGZT BQ500414QRGZTQ1 BQ51013AYFPT BQ51025YFPT BQ51051BRHLR BQ51051BRHLT BQ51051BYFPR BQ51051BYFPT BQ51052BYFPT BQ51221YFPT BQ51222YFPR