

High Efficiency Receiver Controller for Wireless Power Systems

TRIUNE PRODUCTS

Features

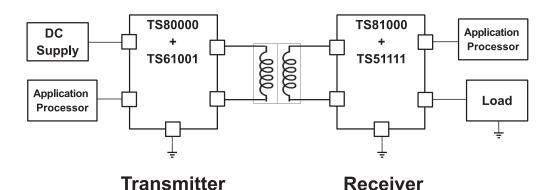
- Supports Qi®, PMA and proprietary charging applications
- Dual-mode Qi + PMA functionality using a single LC resonant circuit
- Wireless power systems up to 40W+
- Compatible with variable voltage, variable frequency and variable duty cycle transmitters
- Supports indirect (fixed voltage) and multi-cell battery charging applications (>3.15V)
- Integrated controller and FLASH for communications and control
- · High precision data converter

Low external component count

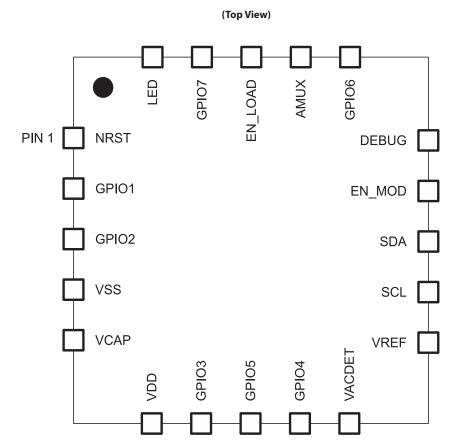
Applications

- Qi®, PMA and non-standard wireless chargers for:
 - Cell Phones and Smartphones
 - GPS Devices
 - Digital Cameras
 - Tablets and eReaders
 - Portable Lighting
 - Toys
 - Medical devices
 - Industrial devices

Description

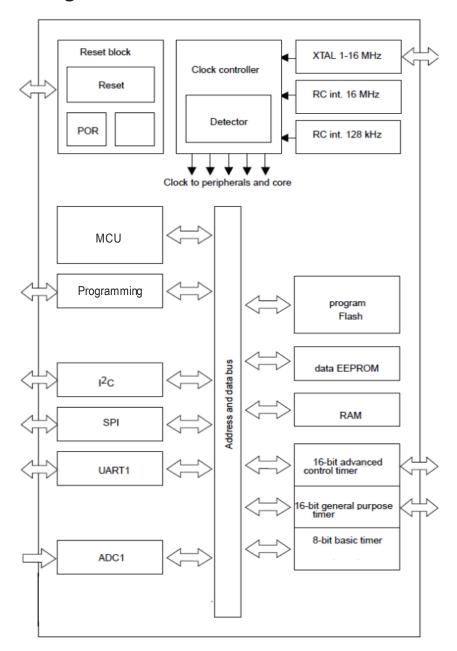

The TS81000 is a power receiver communications and control unit for wireless charging applications. The TS81000 can support systems up to 40W+, and supports Qi® compliant, PMA compliant and proprietary applications.

The TS81000 performs the necessary coding of packets to send commands to the transmitter to adjust the power level accordingly.


Specification

- RISC-based controller core with flash and SRAM memory
- 10-bit A/D converter
- Two 16-bit timers, advanced control and general purpose
- 8-bit timer
- Auto-wakeup and watchdog timers
- 8 configurable analog general purpose IOs
- Charging LED output
- I2C interface
- 20 pin 3x3 QFN

Typical Application Circuit


Pinout

Pin Description

Pin#	Pin Name	Pin Function	Description
1	NRST	Reset	Reset input
2	GPIO1	GPIO	GPIO 1
3	GPIO2	GPIO	GPIO 2
4	VSS	Power GND	Power GND
5	VCAP	Filter	Filter capacitor
6	VDD	Input power	Input power supply
7	GPIO3	GPIO	GPIO 3
8	GPIO5	Open-Drain GPIO	True Open-Drain GPIO 5
9	GPIO4	Open-Drain GPIO	True Open-Drain GPIO 4
10	VACDET	Analog GPIO	VACDET input from TS51111
11	VREF	Analog GPIO	VREF input from TS51111
12	SCL	I2C Serial Clock	I2C Serial Clock
13	SDA	I2C Serial Data	I2C Serial Data
14	EN_MOD	GPIO	EN_MOD output to TS51111
15	DEBUG	Debug	Debug interface
16	GPIO6	GPIO	GPIO 6
17	AMUX	Analog GPIO	AMUX input from TS51111
18	EN_LOAD	Enable Load	Enable an optional load switch
19	GPIO7	GPIO	GPIO 7
20	LED	Charging LED	Charging LED output

Functional Block Diagram

Absolute Maximum Ratings

Over operating free-air temperature range unless otherwise noted(1, 2, 3)

	MIN	MAX	UNIT
VDD, VSS	-0.3	6.5	V
GPIO1, GPIO2, GPIO3, GPIO5, GPIO4, VAC_DET, VREF, SCL, SDA, EN_MOD, DEBUG, GPIO6, AMUX, EN_LOAD, GPIO7, LED	VSS - 0.3	6.5	V
NRST, VCAP	VSS - 0.3	VDD + 0.3	V
Operating Junction Temperature Range, T _J	-40	125	°C
Storage Temperature Range, T _{STG}	-65	150	°C
Electrostatic Discharge – Human Body Model		±2k	V
Lead Temperature (soldering, 10 seconds)		260	°C

Notes:

- (1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) All voltage values are with respect to network ground terminal.
- (3) ESD testing is performed according to the respective JESD22 JEDEC standard.

Recommended Operating Conditions

Symbol	Parameter	Min	Тур	Max	Unit
VDD	Input Operating Voltage	2.95		5.5	V
F _{MCU}	Operating Frequency	0		16	MHz
VDD	Decoupling capacitor value		1		uF
LDO	Decoupling capacitor value		1		uF
T _A	Operating Free Air Temperature	-40		85	°C
T _J	Operating Junction Temperature	-40		105	°C

Communication Interfaces

I2C or UART communication can only take place in the following cases:

Rev 1.3

- The Wireless Power Receiver is placed on the Wireless Power Transmitter and power transfer is taking place, or
- External power is applied, either through the system power supply or on the TS51111 USB pin

In both cases, an internal voltage regulator inside the TS51111 provides 3.3V on the VCORE pin for the TS81000 to use.

The Applications Processor can interrogate the TS81000 using the I2C or UART interfaces. The TS81000 acknowledges its I2C Slave Address only if it is powered. No ACK from the TS81000 after its slave address means that power transfer does not take place and power is not applied to the TS51111 USB pin.

I2C

I2C Signal Pins

- ALERT pin (GPIO pin) optional:
 - Driven high when an event is active in the internal STATUS register
 - Driven low when all the internal events are cleared

Note: The ALERT pin is provided to help with I2C communication, i.e. to signal events to the EC so the EC can interrogate the TS8100x via I2C. The use of the ALERT pin is not mandatory in the application.

- SCL TXD pin:
 - Clock pin for the I2C interface.
 - True open-drain. Needs external pull-ups.
- SDA_RXD pin:
 - Data pin for the I2C interface.
 - True open-drain. Needs external pull-ups.

I2C Protocol

The TS81000 Wireless Power Receiver acts as an I2C slave peripheral to allow communication with an application microcontroller. The slave address (7 bit) is **0x49**. The Embedded Controller is an I2C master and initiates every data transfer.

The TS81000 implements a set of registers available from the I2C bus. It also implements a set of API functions that receive parameters and return values using the I2C bus. Four transfer types are possible:

- · Write Register
- Read Register
- Run API Function
- · Read API Function Return Buffer

Write Register Operations

Description

START				Start of the I2C transfer
M⇒S	Slave Address (7 bits) 0 (1 bit)		Slave ACK	Slave address + R/nW bit (0x92 as 8-bit).
M⇒S	Register <i>n</i> address (8 bits)		Slave ACK	Address of the first register.
M⇒S	Register <i>n</i> Data (8 bits)		Slave ACK	Write the first register.
M⇒S	Register n+1 Data (8 bits)		Slave ACK	Optionally write the following registers.
M⇒S	Register <i>n+k</i> Data (8 bits)		Slave ACK	
STOP			Stop of the I2C transfer.	

Read Register Operations

Description

START				Start of the I2C transfer
M⇒S	Slave Address (7 bits)	0 (1 bit)	Slave ACK	Slave address + 0 as R/nW bit (0x92 as 8-bit).
M⇒S	Register <i>n</i> address (8 bits)		Slave ACK	Address of the first register.
START				Repeated Start.
M⇒S	Slave Address (7 bits) 1 (1 bit)		Slave ACK	Slave address + 1 as R/nW bit (0x93 as 8-bit).
S⇔M	Register <i>n</i> Data (8 bits)		Master ACK	Read the first register.
S⇔M	Register n+1 Data (8 bits)		Master ACK	Optionally read the following registers.
S⇔M	Register n+k Data (8 bits)		Slave ACK	The master should send a nACK after the last data byte was received.
STOP				Stop of the I2C transfer.

Run API Function Operations

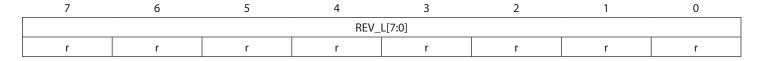
Description

START				Start of the I2C transfer
M⇒S	Slave Address (7 bits)	0 (1 bit)	Slave ACK	Slave address + R/nW bit (0x92 as 8-bit).
M⇒S	API number (8 bits)		Slave ACK	API number.
M⇒S	API input buffer length m (8 bits)		Slave ACK	API input buffer length. Equal to 0 if no input buffer data is required by the API.
M⇒S	Input buffer data[0] (8 bits)		Slave ACK	First byte of the input buffer (optional).
M⇒S	Input buffer data[1] (8 bits)		Slave ACK	Second byte of the input buffer (optional).
M⇒S	Input buffer data[m-1] (8 bits)		Slave ACK	Last byte of the input buffer (optional).
STOP				Stop of the I2C transfer and execute the API function

Read API Function Return Buffer

Description

START				Start of the I2C transfer		
M⇒S	Slave Address (7 bits)	0 (1 bit)	Slave ACK	Slave address + R/nW bit (0x92 as 8-bit).		
M⇒S	Register <i>n</i> address (8 bits)		Slave ACK	API number.		
START				Repeated Start.		
M⇒S	Slave Address (7 bits)	1 (1 bit)	Slave ACK	Slave address + 1 as R/nW bit (0x93 as 8-bit).		
S⇔M	API number (8 bits)		Master ACK	API number for the following return buffer.		
S⇔M	API return buffer length n (8	B bits)	Master ACK	API return buffer length.		
S⇔M	Output buffer data[0] (8 bits	5)	Master ACK	Read the first byte in the output buffer.		
S⇔M	Output buffer data[1] (8 bits	5)	Master ACK	Optionally read the following bytes.		
S⇔M	Output buffer data[n-1] (8 bits)		Master nACK	The master should send a nACK after the last data byte was received.		
STOP				Stop of the I2C transfer.		


Internal Registers

Address	Name	Туре	Description
0x00	BOOTFW_REV_L	R/W	Bootloader Firmware Revision Low Register
0x01	BOOTFW_REV_H	R/W	Bootloader Firmware Revision High Register
0x02	FW_REV_L	R/W	Firmware Revision Low Register
0x03	FW_REV_H	R/W	Firmware Revision High Register
0x04	MODE_L	R/W	Operating Mode Low Register
0x05	MODE_H	R/W	Operating Mode High Register
0x06	RESET_L	R/W	Reset Low Register
0x07	RESET_H	R/W	Reset High Register
0x08	STATUS	R	Main Status Register
0x09	STATUS0	R	Status0 Register
0x0A	STATUS1	R	Status1 Register
0x0B	STATUS2	R	Status2 Register
0x0C	STATUS3	R	Status3 Register
0x0D-0x7F	RESERVED. Will be defi		

Bootloader Firmware Revision Low Register (BOOTFW_REV_L)

Address: 0x00

Reset value: Minor version number of the bootloader firmware

Bits 7:0 REV_L[7:0]: Bootloader Firmware Revision Low

These bits contain the minor version number of the bootloader firmware.

Bootloader Firmware Revision High Register (BOOTFW_REV_H)

Address: 0x01

Major version number of the bootloader firmware Reset value:

Rev 1.3

7	6	5	4	3	2	1	0			
	REV_H[7:0]									
r	r	r	r	r	r	r	r			

Bits 7:0 REV_H[7:0]: Bootloader Firmware Revision High

These bits contain the major version number of the bootloader firmware.

TS81000 **Final Datasheet** June 2, 2015

www.semtech.com

Firmware Revision Low Register (FW_REV_L)

Address: 0x02

Reset value: Minor version number of the user firmware

/	6	5	4	3		I	U
			REV_	L[7:0]			
r	r	r	r	r	r	r	r

Bits 7:0 REV_L[7:0]: Firmware Revision Low

These bits contain the minor version number of the user firmware.

Firmware Revision High Register (BOOTFW_REV_H)

Address: 0x03

Reset value: Major version number of the user firmware

7	6	5	4	3	2	1	0	
REV_H[7:0]								
r	r	r	r	r	r	r	r	

Bits 7:0 **REV_H[7:0]**: Bootloader Firmware Revision High

These bits contain the major version number of the user firmware.

Operating Mode Low Register (MODE_L)

Address: 0x04

Reset value: Depends on the bootloader mode and the firmware type

,	0	5	4	3	2	!	U	
			Doc				BOOTLDR	
			Res				r	

Bits 7:1 Reserved

Bit 0 BOOTLDR: Bootloader mode

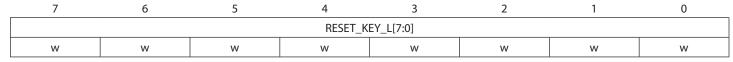
0: The user firmware is running

1: The controller is in bootloader mode

Operating Mode High Register (MODE_H)

Address: 0x05

Reset value: Depends on the bootloader mode and the firmware type


7	6	5	4	3	2	1	0
			Re	25			

Bits 7:0 Reserved

Rev 1.3

Reset Low Register (RESET_L)

Address: 0x06 Reset value: 0x00

Bits 7:0 RESET_KEY_L[7:0]: Reset Key

0x55: generate a system reset. Both the RESET_L and the RESET_H registers have to be written with the correct key to generate a reset.

Any other value: a system reset is not generated.

TS81000 www.semtech.com 9 of 16

Reset High Register (RESET_H)

Address: 0x07 Reset value: 0x00

7	6	5	4	3	2	1	0
			RESET_KI	EY_H[7:0]			
W	w	W	w	w	W	W	W

Bits 7:0 RESET_KEY_H[7:0]: Reset Key

0xAA: generate a system reset. Both the RESET_L and the RESET_H registers have to be written with the correct key to generate a reset.

Any other value: a system reset is not generated.

Main Status Register (STATUS)

Address: 0x08 Reset value: 0xC0

7	6	5	4	3	2	1	0
CTS	CTS_API	De	26	STATUS3	STATUS2	STATUS1	STATUS0
rw	rw	- Re	25	rw	rw	rw	rw

Bit 7 CTS: Clear To Send

This bit indicates if a new command can be issued to the controller.

0: The controller is busy processing a previous command. New commands should not be sent to the controller.

1: The controller can accept a new command over the communication interface.

Bit 6 CTS API: Clear to Send for API

This bit indicates if a new API call can be issued to the controller.

0: The controller is busy processing a previous API call. New API calls should not be sent to the controller.

1: The controller can accept a new API call over the communication interface.

Bits 5:4 Reserved

Bit 3 STATUS3: STATUS3 Event Flag

0: No event is signaled in the STATUS3 register

1: An event is signaled in the STATUS3 register

Bit 2 STATUS2: STATUS2 Event Flag

0: No event is signaled in the STATUS2 register

1: An event is signaled in the STATUS2 register

Bit 1 STATUS1: STATUS1 Event Flag

0: No event is signaled in the STATUS1 register

1: An event is signaled in the STATUS1 register

Bit 0 STATUSO: STATUSO Event Flag

0: No event is signaled in the STATUS0 register

1: An event is signaled in the STATUSO register

TS81000 www.semtech.com 10 of 16
Final Datasheet Rev 1.3

API Functions

API Number	API Name	Description
0x80	BOOTLOADER_UNLOCK_FLASH	Allow changes to the FLASH memory
0x81	BOOTLOADER_WRITE_BLOCK Write a page into the FLASH memory	
0x82	BOOTLOADER_CRC_CHECK	Check the CRC of the user firmware
0x83-0xFE	RESERVED. Will be defined later.	
0xFF	API_ERROR Value returned in the API field when a Read API Functi	
		Return Buffer command is issued and the API function called
		previously has generated an error.

Bootloader Unlock Flash (BOOTLOADER_UNLOCK_FLASH)

API number: 0x80 Input buffer size: TBD Output buffer size: 1

Buffer	Parameter	Length (bytes)	Description
Input buffer	TBD		
Return data buffer	ERROR_CODE	1	

Bootloader Write Block (BOOTLOADER_WRITE_BLOCK)

API number: 0x81 Input buffer size: 66 Output buffer size: 1

Buffer	Parameter	Length (bytes)	Description
Input buffer	Block Number	2	Block index. The first block has an index of 0.
input buner	Block Data	64	Data to be written to the FLASH page.
Return data buffer	ERROR_CODE	1	

Bootloader CRC Check (BOOTLOADER_CRC_CHECK)

API number: 0x82 Input buffer size: 0 Output buffer size: 1

Buffer	Parameter	Length (bytes)	Description
Return data buffer	ERROR_CODE	1t	

API Error Codes

Error Code	Error Code Name	Description
0x00	ERROR_GENERIC	Generic error.
0x01	ERROR_OK	Operation succeeded. This is not indicating an error.
0x02	ERROR_INVALID_CRC	CRC error.
0x03	ERROR_FLASH_UNLOCK_FAILED	FLASH unlocking has failed.
0x04	ERROR_API_NOT_IMPLEMENTED	The API number is not implemented.
0x05	ERROR_API_DATA_OVERFLOW	The API input buffer has been filled with more data than its length.
0x06	ERROR_API_INVALID_PARAMETERS	At least one of the API parameters is invalid.
0x07-0xFF	RESERVED. Will be defined later.	

Application Schematic

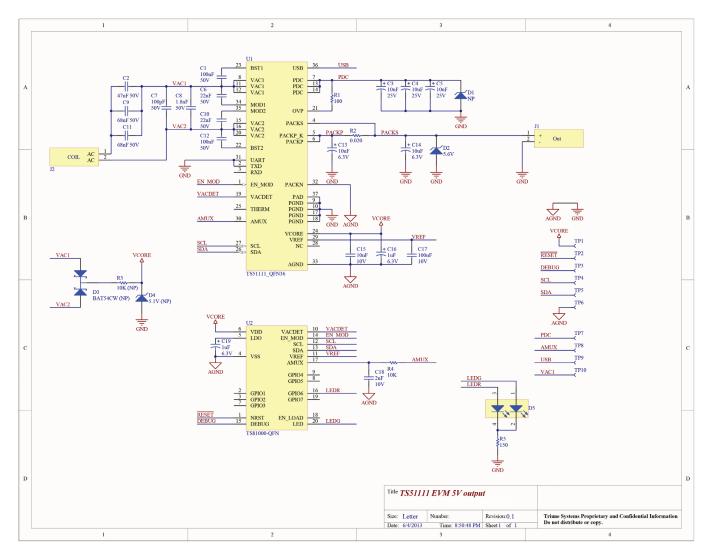


Figure 1: TS81000 Application Schematic

Package Dimensions

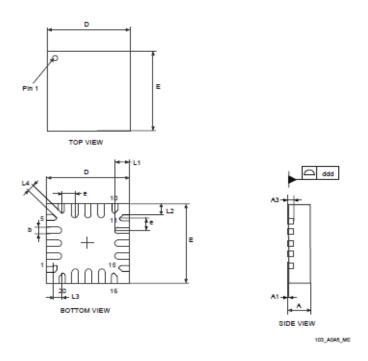
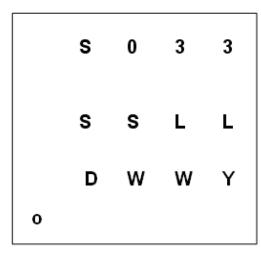



Figure 46: 20-lead ultra thin fine pitch quad flat no-lead package outline (3x3)

Table 53: 20-lead ultra thin fine pitch quad flat no-lead package (3x3) mechanical data

Dim.	mm			inches		
	Min	Тур	Max	Min	Тур	Max
D		3.000			0.1181	
Е		3.000			0.1181	
А	0.500	0.550	0.600	0.0197	0.0217	0.0236
A1	0.000	0.020	0.050	0.0000	0.0008	0.0020
A3		0.152			0.0060	
е		0.500			0.0197	
L1	0.500	0.550	0.600	0.0197	0.0217	0.0236
L2	0.300	0.350	0.400	0.0118	0.0138	0.0157
L3		0.150			0.0059	
L4		0.200			0.0079	
b	0.180	0.250	0.300	0.0071	0.0098	0.0118

QFN Package (Top marking)

Legend:

9		
Line 1 Marking:	S033	Internal part code
Line 2 Marking:	SS	Assembly site identifier
	LL	Lot trace code
Line 3 Marking:	D	Assembly year
	ww	Assembly week
	Υ	Additional marking
	О	Pin 1 Identifier

Ordering Information

Part Number		Description
	TS81000-QFNR	Bootloader programmed device

RoHS and Reach Compliance

Triune Systems is fully committed to environmental quality. All Triune Systems materials and suppliers are fully compliant with RoHS (European Union Directive 2011/65/EU), REACH SVHC Chemical Restrictions (EC 1907/2006), IPC-1752 Level 3 materials declarations, and their subsequent amendments. Triune Systems maintains certified laboratory reports for all product materials, from all suppliers, which show full compliance to restrictions on the following:

- Cadmium (Cd)
- Chlorofluorocarbons (CFCs)
- Chlorinate Hydrocarbons (CHCs)
- Halons (Halogen free)
- Hexavalent Chromium (CrVI)
- Hydrobromofluorocarbons (HBFCs)
- Hydrochlorofluorocarbons (HCFCs)
- Lead (Pb)
- Mercury (Hg)
- Perfluorocarbons (PFCs)
- Polybrominated biphenyls (PBB)
- Polybrominated Diphenyl Ethers (PBDEs)

IMPORTANT NOTICE

Information relating to this product and the application or design described herein is believed to be reliable, however such information is provided as a guide only and Semtech assumes no liability for any errors in this document, or for the application or design described herein. Semtech reserves the right to make changes to the product or this document at any time without notice. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. Semtech warrants performance of its products to the specifications applicable at the time of sale, and all sales are made in accordance with Semtech's standard terms and conditions of sale.

SEMTECH PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS, OR IN NUCLEAR APPLICATIONS IN WHICH THE FAILURE COULD BE REASONABLY EXPECTED TO RESULT IN PERSONAL INJURY, LOSS OF LIFE OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. INCLUSION OF SEMTECH PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE UNDERTAKEN SOLELY AT THE CUSTOMER'S OWN RISK. Should a customer purchase or use Semtech products for any such unauthorized application, the customer shall indemnify and hold Semtech and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs damages and attorney fees which could arise.

The Semtech name and logo are registered trademarks of the Semtech Corporation. All other trademarks and trade names mentioned may be marks and names of Semtech or their respective companies. Semtech reserves the right to make changes to, or discontinue any products described in this document without further notice. Semtech makes no warranty, representation or guarantee, express or implied, regarding the suitability of its products for any particular purpose. All rights reserved.

© Semtech 2015

Contact Information

Semtech Corporation 200 Flynn Road, Camarillo, CA 93012 Phone: (805) 498-2111, Fax: (805) 498-3804 www.semtech.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Wireless Charging ICs category:

Click to view products by Semtech manufacturer:

Other Similar products are found below:

 MWCT1111CLH
 P9028AC-0NBGI8
 P9036BNTGI
 MWCT1012CFM
 BD57020MWV-E2
 P9027LP-RAWGI8
 MWCT1012VLF

 MWCT1013VLH
 MWCT1003AVLHR
 NXQ1TXA5/404J
 TS51111-M22WCSR
 TS51224-M000WCSR
 TS51231-QFNR
 MWCT1001AVLH

 STWBC
 STWLC03JR
 STWLC04JR
 BQ500410ARGZT
 BQ51003YFPR
 BQ51013BRHLR
 BQ51020YFPR
 TS80003-QFNR
 NN32251A

 VT
 STWBCTR
 STWLC68JRH
 BQ50002ARHBR
 BQ50002RHBR
 BQ50002THBT
 BQ500211ARGZT
 BQ500211RGZT

 BQ500414QRGZTQ1
 BQ51013AYFPT
 BQ51051BRHLR
 BQ51051BRHLT
 BQ51051BYFPR
 BQ51051BYFPT

 BQ51052BYFPT
 BQ51222YFPR
 BQ51222YFPR