

Specification LB520

SSC		Customer
Drawn	Approval	Approval

Rev. 07

December 2010

CONTENTS

- 1. Features
- 2. Absolute Maximum Ratings
- 3. Electric-Optical Characteristics
- 4. Reliability Tests
- 5. Characteristic Diagrams
- 6. Color & Binning
- 7. Outline Dimensions
- 8. Standard of Taping Empty Space
- 9. Packing
- 10. Soldering
- 11. Precaution for use

Rev. 0

December 2010

LB520

Description

Lamp LEDs are effective in hot thermal and humid condition. This high brightness and weatherresistant packaging design makes these Lamp LEDs ideal for Outdoor applications such as traffic signals, variable message signs and backlighting for transparent sign panels.

LB520

Features

- High luminous
 emission
- Non-standoff leads
- 5mm type package
- Transparent
- epoxy lens
- Viewing angle : 22°
- Dominant Wavelength
- : 470nm

Applications

- Electronic signs and signals
- Specialty lighting
- Small area
- illumination
- BacklightingOther outdoor
- displays

Rev. 07

December 2010

SEOUL

Item	Symbol	Value	Unit
DC Forward Current	I _F	30	mA
Forward Peak Pulse Current	I _{FP} ^[1]	100	mA
Reverse Voltage	V _R	5	V
Power Dissipation	P _D	114	mW
Operating Temperature	T _{opr}	-30 ~ 85	°C
Storage Temperature	T _{stg}	-40 ~ 100	Ĵ
Solder Temperature	T _s	260°C for 10second ^[2]	Ĉ

2. Absolute maximum ratings ($T_a = 25^{\circ}C$)

Notes :

[1] t≤0.1ms, D = 1/10

[2] No lower than 3mm from the base of the epoxy bulb.

3. Electro-Optical characteristics ($T_a = 25^{\circ}C$, $I_F = 20mA$)

Parameter	Symbol	Value		11	
Parameter		Min.	Тур.	Max.	Unit
Luminous Intensity ^[3]	۱ _۷ [4]	1500	3500	-	mcd
Dominant Wavelength ^[5]	λ _d	464	470	476	nm
Forward Voltage [6]	V _F	-	3.2	3.8	V
View Angle	20 _{1/2}		22		deg.
Reverse Current (at V _R =5V)	I _R	-	-	5	μA

Notes :

[3] SSC maintains a tolerance of $\pm 10\%$ on intensity and power measurements.

[4] I_V is the luminous intensity output as measured with a cylinder.

[5] Dominant wavelength is derived from the CIE 1931 Chromaticity diagram.

- A tolerance of ± 0.5 nm for dominant wavelength.
- [6] A tolerance of $\pm 0.05 V$ on forward voltage measurements

Rev. 07

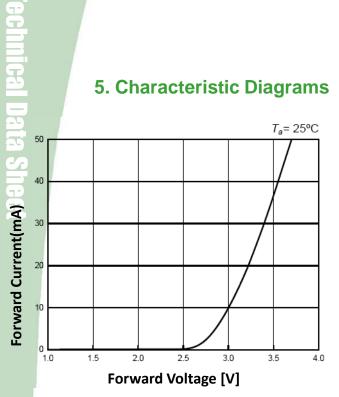
December 2010

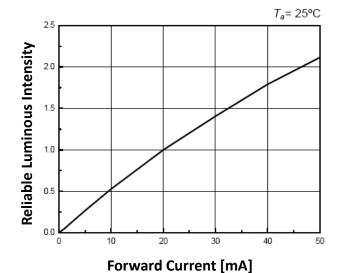
4. Reliability Tests

Item	Condition	Note	Failures
Life Test	T _a = RT, I _F = 30mA	1000hrs	0/22
High Temperature Operating	T _a = 85⁰C, I _F = 8mA	1000hrs	0/22
Low Temperature Operating	T _a = -30°C, I _F = 20mA	1000hrs	0/22
Thermal Shock	T _a = -40ºC (30min) ~ 100º(30min) (Transfer time : 10sec, 1Cycle = 1hr)	100 cycles	0/40
Resistance to soldering Heat	T _s = 255 ±5⁰C, t= 10sec	1 time	0/22
ESD (Human Body Model)	1kV, 1.5kΩ; 100pF	1 time	0/22
High Temperature Storage	T _a = 100°C	1000hrs	0/22
Low Temperature Storage	T _a = -40°C	1000hrs	0/22
Temperature Humidity Storage	T _a = 85⁰C, RH = 85%	1000hrs	0/22
Temperature Humidity Operating	T _a = 85°C, RH = 85%, I _F = 8mA	100hrs	0/22

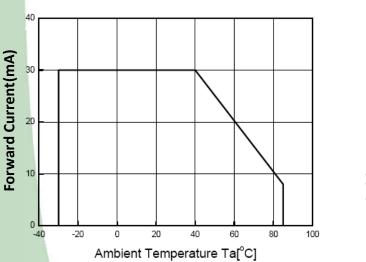
< Judging Criteria For Reliability Tests >

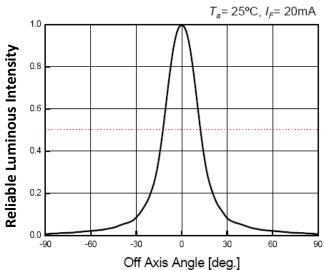
V _F	USL ^[1] X 1.2	
I _R	USL X 2.0	
Φ	LSL ^[2] X 0.7	


Notes : [1] USL : Upper Standard Level [2] LSL : Lower Standard Level


Rev. 07

December 2010


5. Characteristic Diagrams



Forward Voltage vs. Forward Current

Directivity

서식번호: SSC-QP-7-07-24 (Rev.00)

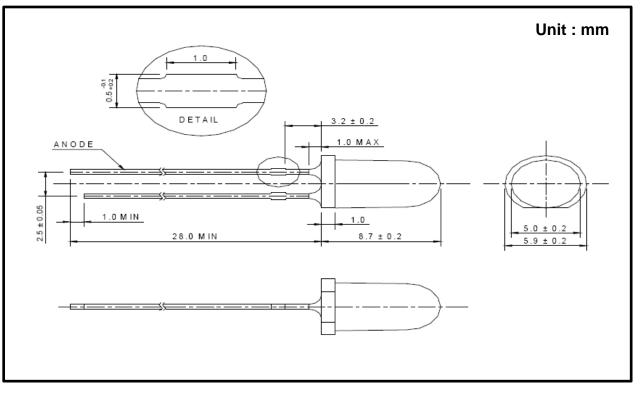
6. Color & Binning

Bin Code				
Luminous Intensity	Dominant Wavelength	Forward Voltage		
E	2	5		

-			
Luminous Intensity (mcd) @ I _F =20mA			
Bin Code	Min.	Max.	
С	1500	2100	
D	2100	3000	
Е	3000	4200	
F	4200	7000	

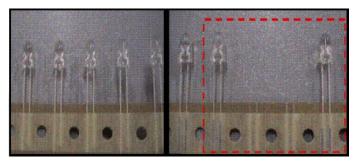
Dominant Wavelength (nm) @ I _F =20mA			
Bin Code	Min.	Max.	
1	464	470	
2	470	476	

Forward Voltage (V) @ I _F =20mA				
Bin Code	Min.	Max.		
3	2.8	3.0		
4	3.0	3.2		
5	3.2	3.4		
6	3.4	3.6		
7	3.6	3.8		
8	3.8	4.0		


Available ranks

Rev. 07

December 2010



7. Outline Dimensions

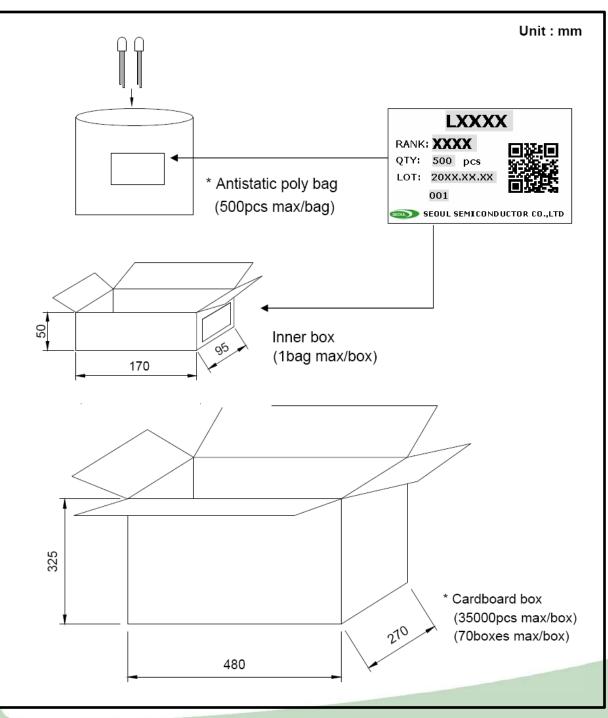
Notes : Protruded epoxy is 1.0mm maximum.

8. Standard of Taping Empty Space

Available Empty Space : 2ea

Before

After

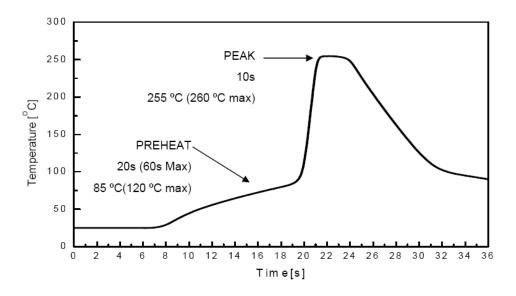

- * Purpose : Prevention of being Mixed & Reverse mounting
- *Before : Insert the right PKG after removing defective product
- % After : Attaching the right PKG on the backside after removing defective product

Rev. 07

December 2010

9. Packing

Rev. 07


December 2010

10. Soldering Profile

- 1) Wave Soldering Conditions / Profile
- Preliminary heating to be at 85°C(120 °C max) for 20 seconds(60 seconds max).

SEOUL

- Soldering heat to be at 255 °C (260°C max) for 10 seconds
- Soak time above 200 °C is 5 seconds

2) Hand Soldering conditions

• Not more than 3 seconds at max. 350°C, under Soldering iron.

3) Caution

• Lead frames are silver plated copper alloy. This substance has a low thermal coefficient (easily conducts heat)

- The LEDs must not be repositioned after soldering.
- Do not apply any stress to the lead particularly when heat.

Note : In case the soldered products are reused in soldering process, we don't guarantee the products

Rev. 07

December 2010

SEOUL SEMICONDUCTOR

11. Precaution for Use

- 1) Storage
- Before opening the package

Avoid the absorption of moisture, we recommended to store Lamp LEDs in a dry box(or desiccators) with a desiccant . Otherwise, store them in the following environment: Temperature : 5 $^{\circ}C$ ~30 $^{\circ}C$ Humidity : 50% max.

- After opening the package
 - a. Soldering should be done right after opening the package(within 24Hrs).
 - b. Keeping of a fraction
 - Sealing
 - Temperature : 5 ~ 40 $\,^\circ\!\mathbb{C}$, Humidity : less than 30%
 - c. If the package has been opened more than 1 week or the color of desiccant changes,
 - Components should be dried for 10-12hr at 60 $\pm 5\,\,^\circ \!\! \mathbb{C}$
- Any mechanical force or any excess vibration shall not be accepted to apply during cooling process to normal temp. after soldering.
- Avoid quick cooling
- Leadframes are silver plated SPCC. The silver plate surface may be affected by environments which contains corrosive substances. Please avoid conditions which may cause the LEDs to corrode, tarnish or discolor.

2) Lead Forming

• When the lead forming is required before soldering , care must be taken to avoid any bending and mechanical stress. The stress to the base may damage the LEDs.

• When mounting the LEDs onto a PCB, the holes on the circuit board should be exactly aligned with the leads of the LEDs.

• It is recommended that tooling made to precisely form and cut the leads to length rather than rely on hand operating.

Rev. 07

December 2010

SEOUL SEMICONDUCTOR

SEOUL

3) Static Electricity

• Static Electricity and surge voltage damage the LEDs. So it is recommended that a wrist band or an anti-electrostatic glove be used when handling the LEDs.

SEOUL

• All devices, equipment and machinery must be properly grounded.

It is recommended precautions be taken against surge voltage to the equipment that mounts the LEDs.

4) Heat Generation

• Thermal is one of the important parameter to design the end product. Please consider the heat generation of the LEDs.

• The operating current should be decided after considering the ambient maximum temperature of LEDs.

5) Others

- The color of the LEDs is changed a little by an operating current and thermal.
- Anti radioactive ray design is not considered for the products listed here in.
- Gallium arsenide is used in some of the products listed in this publication. These products are dangerous if they are burned or smashed in the process of disposal. It is also dangerous to drink the liquid or inhale the gas generated by such products when chemically disposed.
- This device should not be used in any type of fluid such as water, oil, organic solvent and etc.

When washing is required, IPA(Isopropyl Alcohol) should be used.

• When the LEDs are illuminating, operating current should be decided after considering the junction temperature.

Cf.) Please refer Ambient temperature vs. Forward Current graph on page 5

• The appearance and specifications of the product may be modified for improvement without notice.

Rev. 07

December 2010

SEOUL SEMICONDUCTOR

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Standard LEDs - Through Hole category:

Click to view products by Seoul Semiconductor manufacturer:

Other Similar products are found below :

LTL-10254W LTL-1214A LTL-3251A LTL-4262N LTL-433P LTL-5234 LTL87HTBK LTW-87HD4B HLMP-EL30-PS0DD 1L0532V23G0TD001 NSPW500CS NTE30036 NTE30044 NTE30059 NTE3020 LD CQDP-1U3U-W5-1-K LO566UHR3-70G-A3 LP379PPG1C0G0300001 SLX-LX3044GD SLX-LX3044ID SLX-LX3044YD 1.90690.3330000 SSS-LX4673ID-410B 1L0532Y24I0TD001 264-7SYGD/S530-E2 HLMP-1301-G00FG HLMP1385 LTL-10224W LTL-1224A LTL-1234A LTL-2251AT LTL-307YE-012 LTL-403HR LTL-4222 LU7-E-B 4380H1 TLHY44K1L2 HLMP-3962-F0002 HLMP-GG15-R0000 323-2SURD/S530-A3 L53SRC/E-Z L-7679C1ZGC 4302T1-5V 4306D23 4363D1/5 WP1503SRC/J4 WP153GDT WP153YDT WP1543SGC WP1543SURC